linux_dsm_epyc7002/arch/mips/pci/ops-bcm63xx.c

529 lines
12 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
*/
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/io.h>
#include "pci-bcm63xx.h"
/*
* swizzle 32bits data to return only the needed part
*/
static int postprocess_read(u32 data, int where, unsigned int size)
{
u32 ret;
ret = 0;
switch (size) {
case 1:
ret = (data >> ((where & 3) << 3)) & 0xff;
break;
case 2:
ret = (data >> ((where & 3) << 3)) & 0xffff;
break;
case 4:
ret = data;
break;
}
return ret;
}
static int preprocess_write(u32 orig_data, u32 val, int where,
unsigned int size)
{
u32 ret;
ret = 0;
switch (size) {
case 1:
ret = (orig_data & ~(0xff << ((where & 3) << 3))) |
(val << ((where & 3) << 3));
break;
case 2:
ret = (orig_data & ~(0xffff << ((where & 3) << 3))) |
(val << ((where & 3) << 3));
break;
case 4:
ret = val;
break;
}
return ret;
}
/*
* setup hardware for a configuration cycle with given parameters
*/
static int bcm63xx_setup_cfg_access(int type, unsigned int busn,
unsigned int devfn, int where)
{
unsigned int slot, func, reg;
u32 val;
slot = PCI_SLOT(devfn);
func = PCI_FUNC(devfn);
reg = where >> 2;
/* sanity check */
if (slot > (MPI_L2PCFG_DEVNUM_MASK >> MPI_L2PCFG_DEVNUM_SHIFT))
return 1;
if (func > (MPI_L2PCFG_FUNC_MASK >> MPI_L2PCFG_FUNC_SHIFT))
return 1;
if (reg > (MPI_L2PCFG_REG_MASK >> MPI_L2PCFG_REG_SHIFT))
return 1;
/* ok, setup config access */
val = (reg << MPI_L2PCFG_REG_SHIFT);
val |= (func << MPI_L2PCFG_FUNC_SHIFT);
val |= (slot << MPI_L2PCFG_DEVNUM_SHIFT);
val |= MPI_L2PCFG_CFG_USEREG_MASK;
val |= MPI_L2PCFG_CFG_SEL_MASK;
/* type 0 cycle for local bus, type 1 cycle for anything else */
if (type != 0) {
/* FIXME: how to specify bus ??? */
val |= (1 << MPI_L2PCFG_CFG_TYPE_SHIFT);
}
bcm_mpi_writel(val, MPI_L2PCFG_REG);
return 0;
}
static int bcm63xx_do_cfg_read(int type, unsigned int busn,
unsigned int devfn, int where, int size,
u32 *val)
{
u32 data;
/* two phase cycle, first we write address, then read data at
* another location, caller already has a spinlock so no need
* to add one here */
if (bcm63xx_setup_cfg_access(type, busn, devfn, where))
return PCIBIOS_DEVICE_NOT_FOUND;
iob();
data = le32_to_cpu(__raw_readl(pci_iospace_start));
/* restore IO space normal behaviour */
bcm_mpi_writel(0, MPI_L2PCFG_REG);
*val = postprocess_read(data, where, size);
return PCIBIOS_SUCCESSFUL;
}
static int bcm63xx_do_cfg_write(int type, unsigned int busn,
unsigned int devfn, int where, int size,
u32 val)
{
u32 data;
/* two phase cycle, first we write address, then write data to
* another location, caller already has a spinlock so no need
* to add one here */
if (bcm63xx_setup_cfg_access(type, busn, devfn, where))
return PCIBIOS_DEVICE_NOT_FOUND;
iob();
data = le32_to_cpu(__raw_readl(pci_iospace_start));
data = preprocess_write(data, val, where, size);
__raw_writel(cpu_to_le32(data), pci_iospace_start);
wmb();
/* no way to know the access is done, we have to wait */
udelay(500);
/* restore IO space normal behaviour */
bcm_mpi_writel(0, MPI_L2PCFG_REG);
return PCIBIOS_SUCCESSFUL;
}
static int bcm63xx_pci_read(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 *val)
{
int type;
type = bus->parent ? 1 : 0;
if (type == 0 && PCI_SLOT(devfn) == CARDBUS_PCI_IDSEL)
return PCIBIOS_DEVICE_NOT_FOUND;
return bcm63xx_do_cfg_read(type, bus->number, devfn,
where, size, val);
}
static int bcm63xx_pci_write(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 val)
{
int type;
type = bus->parent ? 1 : 0;
if (type == 0 && PCI_SLOT(devfn) == CARDBUS_PCI_IDSEL)
return PCIBIOS_DEVICE_NOT_FOUND;
return bcm63xx_do_cfg_write(type, bus->number, devfn,
where, size, val);
}
struct pci_ops bcm63xx_pci_ops = {
.read = bcm63xx_pci_read,
.write = bcm63xx_pci_write
};
#ifdef CONFIG_CARDBUS
/*
* emulate configuration read access on a cardbus bridge
*/
#define FAKE_CB_BRIDGE_SLOT 0x1e
static int fake_cb_bridge_bus_number = -1;
static struct {
u16 pci_command;
u8 cb_latency;
u8 subordinate_busn;
u8 cardbus_busn;
u8 pci_busn;
int bus_assigned;
u16 bridge_control;
u32 mem_base0;
u32 mem_limit0;
u32 mem_base1;
u32 mem_limit1;
u32 io_base0;
u32 io_limit0;
u32 io_base1;
u32 io_limit1;
} fake_cb_bridge_regs;
static int fake_cb_bridge_read(int where, int size, u32 *val)
{
unsigned int reg;
u32 data;
data = 0;
reg = where >> 2;
switch (reg) {
case (PCI_VENDOR_ID >> 2):
case (PCI_CB_SUBSYSTEM_VENDOR_ID >> 2):
/* create dummy vendor/device id from our cpu id */
data = (bcm63xx_get_cpu_id() << 16) | PCI_VENDOR_ID_BROADCOM;
break;
case (PCI_COMMAND >> 2):
data = (PCI_STATUS_DEVSEL_SLOW << 16);
data |= fake_cb_bridge_regs.pci_command;
break;
case (PCI_CLASS_REVISION >> 2):
data = (PCI_CLASS_BRIDGE_CARDBUS << 16);
break;
case (PCI_CACHE_LINE_SIZE >> 2):
data = (PCI_HEADER_TYPE_CARDBUS << 16);
break;
case (PCI_INTERRUPT_LINE >> 2):
/* bridge control */
data = (fake_cb_bridge_regs.bridge_control << 16);
/* pin:intA line:0xff */
data |= (0x1 << 8) | 0xff;
break;
case (PCI_CB_PRIMARY_BUS >> 2):
data = (fake_cb_bridge_regs.cb_latency << 24);
data |= (fake_cb_bridge_regs.subordinate_busn << 16);
data |= (fake_cb_bridge_regs.cardbus_busn << 8);
data |= fake_cb_bridge_regs.pci_busn;
break;
case (PCI_CB_MEMORY_BASE_0 >> 2):
data = fake_cb_bridge_regs.mem_base0;
break;
case (PCI_CB_MEMORY_LIMIT_0 >> 2):
data = fake_cb_bridge_regs.mem_limit0;
break;
case (PCI_CB_MEMORY_BASE_1 >> 2):
data = fake_cb_bridge_regs.mem_base1;
break;
case (PCI_CB_MEMORY_LIMIT_1 >> 2):
data = fake_cb_bridge_regs.mem_limit1;
break;
case (PCI_CB_IO_BASE_0 >> 2):
/* | 1 for 32bits io support */
data = fake_cb_bridge_regs.io_base0 | 0x1;
break;
case (PCI_CB_IO_LIMIT_0 >> 2):
data = fake_cb_bridge_regs.io_limit0;
break;
case (PCI_CB_IO_BASE_1 >> 2):
/* | 1 for 32bits io support */
data = fake_cb_bridge_regs.io_base1 | 0x1;
break;
case (PCI_CB_IO_LIMIT_1 >> 2):
data = fake_cb_bridge_regs.io_limit1;
break;
}
*val = postprocess_read(data, where, size);
return PCIBIOS_SUCCESSFUL;
}
/*
* emulate configuration write access on a cardbus bridge
*/
static int fake_cb_bridge_write(int where, int size, u32 val)
{
unsigned int reg;
u32 data, tmp;
int ret;
ret = fake_cb_bridge_read((where & ~0x3), 4, &data);
if (ret != PCIBIOS_SUCCESSFUL)
return ret;
data = preprocess_write(data, val, where, size);
reg = where >> 2;
switch (reg) {
case (PCI_COMMAND >> 2):
fake_cb_bridge_regs.pci_command = (data & 0xffff);
break;
case (PCI_CB_PRIMARY_BUS >> 2):
fake_cb_bridge_regs.cb_latency = (data >> 24) & 0xff;
fake_cb_bridge_regs.subordinate_busn = (data >> 16) & 0xff;
fake_cb_bridge_regs.cardbus_busn = (data >> 8) & 0xff;
fake_cb_bridge_regs.pci_busn = data & 0xff;
if (fake_cb_bridge_regs.cardbus_busn)
fake_cb_bridge_regs.bus_assigned = 1;
break;
case (PCI_INTERRUPT_LINE >> 2):
tmp = (data >> 16) & 0xffff;
/* disable memory prefetch support */
tmp &= ~PCI_CB_BRIDGE_CTL_PREFETCH_MEM0;
tmp &= ~PCI_CB_BRIDGE_CTL_PREFETCH_MEM1;
fake_cb_bridge_regs.bridge_control = tmp;
break;
case (PCI_CB_MEMORY_BASE_0 >> 2):
fake_cb_bridge_regs.mem_base0 = data;
break;
case (PCI_CB_MEMORY_LIMIT_0 >> 2):
fake_cb_bridge_regs.mem_limit0 = data;
break;
case (PCI_CB_MEMORY_BASE_1 >> 2):
fake_cb_bridge_regs.mem_base1 = data;
break;
case (PCI_CB_MEMORY_LIMIT_1 >> 2):
fake_cb_bridge_regs.mem_limit1 = data;
break;
case (PCI_CB_IO_BASE_0 >> 2):
fake_cb_bridge_regs.io_base0 = data;
break;
case (PCI_CB_IO_LIMIT_0 >> 2):
fake_cb_bridge_regs.io_limit0 = data;
break;
case (PCI_CB_IO_BASE_1 >> 2):
fake_cb_bridge_regs.io_base1 = data;
break;
case (PCI_CB_IO_LIMIT_1 >> 2):
fake_cb_bridge_regs.io_limit1 = data;
break;
}
return PCIBIOS_SUCCESSFUL;
}
static int bcm63xx_cb_read(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 *val)
{
/* snoop access to slot 0x1e on root bus, we fake a cardbus
* bridge at this location */
if (!bus->parent && PCI_SLOT(devfn) == FAKE_CB_BRIDGE_SLOT) {
fake_cb_bridge_bus_number = bus->number;
return fake_cb_bridge_read(where, size, val);
}
/* a configuration cycle for the device behind the cardbus
* bridge is actually done as a type 0 cycle on the primary
* bus. This means that only one device can be on the cardbus
* bus */
if (fake_cb_bridge_regs.bus_assigned &&
bus->number == fake_cb_bridge_regs.cardbus_busn &&
PCI_SLOT(devfn) == 0)
return bcm63xx_do_cfg_read(0, 0,
PCI_DEVFN(CARDBUS_PCI_IDSEL, 0),
where, size, val);
return PCIBIOS_DEVICE_NOT_FOUND;
}
static int bcm63xx_cb_write(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 val)
{
if (!bus->parent && PCI_SLOT(devfn) == FAKE_CB_BRIDGE_SLOT) {
fake_cb_bridge_bus_number = bus->number;
return fake_cb_bridge_write(where, size, val);
}
if (fake_cb_bridge_regs.bus_assigned &&
bus->number == fake_cb_bridge_regs.cardbus_busn &&
PCI_SLOT(devfn) == 0)
return bcm63xx_do_cfg_write(0, 0,
PCI_DEVFN(CARDBUS_PCI_IDSEL, 0),
where, size, val);
return PCIBIOS_DEVICE_NOT_FOUND;
}
struct pci_ops bcm63xx_cb_ops = {
.read = bcm63xx_cb_read,
.write = bcm63xx_cb_write,
};
/*
* only one IO window, so it cannot be shared by PCI and cardbus, use
* fixup to choose and detect unhandled configuration
*/
static void __devinit bcm63xx_fixup(struct pci_dev *dev)
{
static int io_window = -1;
int i, found, new_io_window;
u32 val;
/* look for any io resource */
found = 0;
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
if (pci_resource_flags(dev, i) & IORESOURCE_IO) {
found = 1;
break;
}
}
if (!found)
return;
/* skip our fake bus with only cardbus bridge on it */
if (dev->bus->number == fake_cb_bridge_bus_number)
return;
/* find on which bus the device is */
if (fake_cb_bridge_regs.bus_assigned &&
dev->bus->number == fake_cb_bridge_regs.cardbus_busn &&
PCI_SLOT(dev->devfn) == 0)
new_io_window = 1;
else
new_io_window = 0;
if (new_io_window == io_window)
return;
if (io_window != -1) {
printk(KERN_ERR "bcm63xx: both PCI and cardbus devices "
"need IO, which hardware cannot do\n");
return;
}
printk(KERN_INFO "bcm63xx: PCI IO window assigned to %s\n",
(new_io_window == 0) ? "PCI" : "cardbus");
val = bcm_mpi_readl(MPI_L2PIOREMAP_REG);
if (io_window)
val |= MPI_L2PREMAP_IS_CARDBUS_MASK;
else
val &= ~MPI_L2PREMAP_IS_CARDBUS_MASK;
bcm_mpi_writel(val, MPI_L2PIOREMAP_REG);
io_window = new_io_window;
}
DECLARE_PCI_FIXUP_ENABLE(PCI_ANY_ID, PCI_ANY_ID, bcm63xx_fixup);
#endif
static int bcm63xx_pcie_can_access(struct pci_bus *bus, int devfn)
{
switch (bus->number) {
case PCIE_BUS_BRIDGE:
return (PCI_SLOT(devfn) == 0);
case PCIE_BUS_DEVICE:
if (PCI_SLOT(devfn) == 0)
return bcm_pcie_readl(PCIE_DLSTATUS_REG)
& DLSTATUS_PHYLINKUP;
default:
return false;
}
}
static int bcm63xx_pcie_read(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 *val)
{
u32 data;
u32 reg = where & ~3;
if (!bcm63xx_pcie_can_access(bus, devfn))
return PCIBIOS_DEVICE_NOT_FOUND;
if (bus->number == PCIE_BUS_DEVICE)
reg += PCIE_DEVICE_OFFSET;
data = bcm_pcie_readl(reg);
*val = postprocess_read(data, where, size);
return PCIBIOS_SUCCESSFUL;
}
static int bcm63xx_pcie_write(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 val)
{
u32 data;
u32 reg = where & ~3;
if (!bcm63xx_pcie_can_access(bus, devfn))
return PCIBIOS_DEVICE_NOT_FOUND;
if (bus->number == PCIE_BUS_DEVICE)
reg += PCIE_DEVICE_OFFSET;
data = bcm_pcie_readl(reg);
data = preprocess_write(data, val, where, size);
bcm_pcie_writel(data, reg);
return PCIBIOS_SUCCESSFUL;
}
struct pci_ops bcm63xx_pcie_ops = {
.read = bcm63xx_pcie_read,
.write = bcm63xx_pcie_write
};