mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
54fbdd1035
Create a new helper to force the log up to the last LSN touching an inode. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
3967 lines
108 KiB
C
3967 lines
108 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*/
|
|
#include <linux/iversion.h>
|
|
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_defer.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_dir2.h"
|
|
#include "xfs_attr.h"
|
|
#include "xfs_trans_space.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_buf_item.h"
|
|
#include "xfs_inode_item.h"
|
|
#include "xfs_ialloc.h"
|
|
#include "xfs_bmap.h"
|
|
#include "xfs_bmap_util.h"
|
|
#include "xfs_errortag.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_quota.h"
|
|
#include "xfs_filestream.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_icache.h"
|
|
#include "xfs_symlink.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_bmap_btree.h"
|
|
#include "xfs_reflink.h"
|
|
|
|
kmem_zone_t *xfs_inode_zone;
|
|
|
|
/*
|
|
* Used in xfs_itruncate_extents(). This is the maximum number of extents
|
|
* freed from a file in a single transaction.
|
|
*/
|
|
#define XFS_ITRUNC_MAX_EXTENTS 2
|
|
|
|
STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
|
|
STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
|
|
STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
|
|
|
|
/*
|
|
* helper function to extract extent size hint from inode
|
|
*/
|
|
xfs_extlen_t
|
|
xfs_get_extsz_hint(
|
|
struct xfs_inode *ip)
|
|
{
|
|
/*
|
|
* No point in aligning allocations if we need to COW to actually
|
|
* write to them.
|
|
*/
|
|
if (xfs_is_always_cow_inode(ip))
|
|
return 0;
|
|
if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
|
|
return ip->i_d.di_extsize;
|
|
if (XFS_IS_REALTIME_INODE(ip))
|
|
return ip->i_mount->m_sb.sb_rextsize;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Helper function to extract CoW extent size hint from inode.
|
|
* Between the extent size hint and the CoW extent size hint, we
|
|
* return the greater of the two. If the value is zero (automatic),
|
|
* use the default size.
|
|
*/
|
|
xfs_extlen_t
|
|
xfs_get_cowextsz_hint(
|
|
struct xfs_inode *ip)
|
|
{
|
|
xfs_extlen_t a, b;
|
|
|
|
a = 0;
|
|
if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
|
|
a = ip->i_d.di_cowextsize;
|
|
b = xfs_get_extsz_hint(ip);
|
|
|
|
a = max(a, b);
|
|
if (a == 0)
|
|
return XFS_DEFAULT_COWEXTSZ_HINT;
|
|
return a;
|
|
}
|
|
|
|
/*
|
|
* These two are wrapper routines around the xfs_ilock() routine used to
|
|
* centralize some grungy code. They are used in places that wish to lock the
|
|
* inode solely for reading the extents. The reason these places can't just
|
|
* call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
|
|
* bringing in of the extents from disk for a file in b-tree format. If the
|
|
* inode is in b-tree format, then we need to lock the inode exclusively until
|
|
* the extents are read in. Locking it exclusively all the time would limit
|
|
* our parallelism unnecessarily, though. What we do instead is check to see
|
|
* if the extents have been read in yet, and only lock the inode exclusively
|
|
* if they have not.
|
|
*
|
|
* The functions return a value which should be given to the corresponding
|
|
* xfs_iunlock() call.
|
|
*/
|
|
uint
|
|
xfs_ilock_data_map_shared(
|
|
struct xfs_inode *ip)
|
|
{
|
|
uint lock_mode = XFS_ILOCK_SHARED;
|
|
|
|
if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
|
|
(ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
|
|
lock_mode = XFS_ILOCK_EXCL;
|
|
xfs_ilock(ip, lock_mode);
|
|
return lock_mode;
|
|
}
|
|
|
|
uint
|
|
xfs_ilock_attr_map_shared(
|
|
struct xfs_inode *ip)
|
|
{
|
|
uint lock_mode = XFS_ILOCK_SHARED;
|
|
|
|
if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
|
|
(ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
|
|
lock_mode = XFS_ILOCK_EXCL;
|
|
xfs_ilock(ip, lock_mode);
|
|
return lock_mode;
|
|
}
|
|
|
|
/*
|
|
* In addition to i_rwsem in the VFS inode, the xfs inode contains 2
|
|
* multi-reader locks: i_mmap_lock and the i_lock. This routine allows
|
|
* various combinations of the locks to be obtained.
|
|
*
|
|
* The 3 locks should always be ordered so that the IO lock is obtained first,
|
|
* the mmap lock second and the ilock last in order to prevent deadlock.
|
|
*
|
|
* Basic locking order:
|
|
*
|
|
* i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
|
|
*
|
|
* mmap_sem locking order:
|
|
*
|
|
* i_rwsem -> page lock -> mmap_sem
|
|
* mmap_sem -> i_mmap_lock -> page_lock
|
|
*
|
|
* The difference in mmap_sem locking order mean that we cannot hold the
|
|
* i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
|
|
* fault in pages during copy in/out (for buffered IO) or require the mmap_sem
|
|
* in get_user_pages() to map the user pages into the kernel address space for
|
|
* direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
|
|
* page faults already hold the mmap_sem.
|
|
*
|
|
* Hence to serialise fully against both syscall and mmap based IO, we need to
|
|
* take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
|
|
* taken in places where we need to invalidate the page cache in a race
|
|
* free manner (e.g. truncate, hole punch and other extent manipulation
|
|
* functions).
|
|
*/
|
|
void
|
|
xfs_ilock(
|
|
xfs_inode_t *ip,
|
|
uint lock_flags)
|
|
{
|
|
trace_xfs_ilock(ip, lock_flags, _RET_IP_);
|
|
|
|
/*
|
|
* You can't set both SHARED and EXCL for the same lock,
|
|
* and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
|
|
* and XFS_ILOCK_EXCL are valid values to set in lock_flags.
|
|
*/
|
|
ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
|
|
(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
|
|
ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
|
|
(XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
|
|
ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
|
|
(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
|
|
ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
|
|
|
|
if (lock_flags & XFS_IOLOCK_EXCL) {
|
|
down_write_nested(&VFS_I(ip)->i_rwsem,
|
|
XFS_IOLOCK_DEP(lock_flags));
|
|
} else if (lock_flags & XFS_IOLOCK_SHARED) {
|
|
down_read_nested(&VFS_I(ip)->i_rwsem,
|
|
XFS_IOLOCK_DEP(lock_flags));
|
|
}
|
|
|
|
if (lock_flags & XFS_MMAPLOCK_EXCL)
|
|
mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
|
|
else if (lock_flags & XFS_MMAPLOCK_SHARED)
|
|
mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
|
|
|
|
if (lock_flags & XFS_ILOCK_EXCL)
|
|
mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
|
|
else if (lock_flags & XFS_ILOCK_SHARED)
|
|
mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
|
|
}
|
|
|
|
/*
|
|
* This is just like xfs_ilock(), except that the caller
|
|
* is guaranteed not to sleep. It returns 1 if it gets
|
|
* the requested locks and 0 otherwise. If the IO lock is
|
|
* obtained but the inode lock cannot be, then the IO lock
|
|
* is dropped before returning.
|
|
*
|
|
* ip -- the inode being locked
|
|
* lock_flags -- this parameter indicates the inode's locks to be
|
|
* to be locked. See the comment for xfs_ilock() for a list
|
|
* of valid values.
|
|
*/
|
|
int
|
|
xfs_ilock_nowait(
|
|
xfs_inode_t *ip,
|
|
uint lock_flags)
|
|
{
|
|
trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
|
|
|
|
/*
|
|
* You can't set both SHARED and EXCL for the same lock,
|
|
* and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
|
|
* and XFS_ILOCK_EXCL are valid values to set in lock_flags.
|
|
*/
|
|
ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
|
|
(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
|
|
ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
|
|
(XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
|
|
ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
|
|
(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
|
|
ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
|
|
|
|
if (lock_flags & XFS_IOLOCK_EXCL) {
|
|
if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
|
|
goto out;
|
|
} else if (lock_flags & XFS_IOLOCK_SHARED) {
|
|
if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
|
|
goto out;
|
|
}
|
|
|
|
if (lock_flags & XFS_MMAPLOCK_EXCL) {
|
|
if (!mrtryupdate(&ip->i_mmaplock))
|
|
goto out_undo_iolock;
|
|
} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
|
|
if (!mrtryaccess(&ip->i_mmaplock))
|
|
goto out_undo_iolock;
|
|
}
|
|
|
|
if (lock_flags & XFS_ILOCK_EXCL) {
|
|
if (!mrtryupdate(&ip->i_lock))
|
|
goto out_undo_mmaplock;
|
|
} else if (lock_flags & XFS_ILOCK_SHARED) {
|
|
if (!mrtryaccess(&ip->i_lock))
|
|
goto out_undo_mmaplock;
|
|
}
|
|
return 1;
|
|
|
|
out_undo_mmaplock:
|
|
if (lock_flags & XFS_MMAPLOCK_EXCL)
|
|
mrunlock_excl(&ip->i_mmaplock);
|
|
else if (lock_flags & XFS_MMAPLOCK_SHARED)
|
|
mrunlock_shared(&ip->i_mmaplock);
|
|
out_undo_iolock:
|
|
if (lock_flags & XFS_IOLOCK_EXCL)
|
|
up_write(&VFS_I(ip)->i_rwsem);
|
|
else if (lock_flags & XFS_IOLOCK_SHARED)
|
|
up_read(&VFS_I(ip)->i_rwsem);
|
|
out:
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* xfs_iunlock() is used to drop the inode locks acquired with
|
|
* xfs_ilock() and xfs_ilock_nowait(). The caller must pass
|
|
* in the flags given to xfs_ilock() or xfs_ilock_nowait() so
|
|
* that we know which locks to drop.
|
|
*
|
|
* ip -- the inode being unlocked
|
|
* lock_flags -- this parameter indicates the inode's locks to be
|
|
* to be unlocked. See the comment for xfs_ilock() for a list
|
|
* of valid values for this parameter.
|
|
*
|
|
*/
|
|
void
|
|
xfs_iunlock(
|
|
xfs_inode_t *ip,
|
|
uint lock_flags)
|
|
{
|
|
/*
|
|
* You can't set both SHARED and EXCL for the same lock,
|
|
* and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
|
|
* and XFS_ILOCK_EXCL are valid values to set in lock_flags.
|
|
*/
|
|
ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
|
|
(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
|
|
ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
|
|
(XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
|
|
ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
|
|
(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
|
|
ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
|
|
ASSERT(lock_flags != 0);
|
|
|
|
if (lock_flags & XFS_IOLOCK_EXCL)
|
|
up_write(&VFS_I(ip)->i_rwsem);
|
|
else if (lock_flags & XFS_IOLOCK_SHARED)
|
|
up_read(&VFS_I(ip)->i_rwsem);
|
|
|
|
if (lock_flags & XFS_MMAPLOCK_EXCL)
|
|
mrunlock_excl(&ip->i_mmaplock);
|
|
else if (lock_flags & XFS_MMAPLOCK_SHARED)
|
|
mrunlock_shared(&ip->i_mmaplock);
|
|
|
|
if (lock_flags & XFS_ILOCK_EXCL)
|
|
mrunlock_excl(&ip->i_lock);
|
|
else if (lock_flags & XFS_ILOCK_SHARED)
|
|
mrunlock_shared(&ip->i_lock);
|
|
|
|
trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
|
|
}
|
|
|
|
/*
|
|
* give up write locks. the i/o lock cannot be held nested
|
|
* if it is being demoted.
|
|
*/
|
|
void
|
|
xfs_ilock_demote(
|
|
xfs_inode_t *ip,
|
|
uint lock_flags)
|
|
{
|
|
ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
|
|
ASSERT((lock_flags &
|
|
~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
|
|
|
|
if (lock_flags & XFS_ILOCK_EXCL)
|
|
mrdemote(&ip->i_lock);
|
|
if (lock_flags & XFS_MMAPLOCK_EXCL)
|
|
mrdemote(&ip->i_mmaplock);
|
|
if (lock_flags & XFS_IOLOCK_EXCL)
|
|
downgrade_write(&VFS_I(ip)->i_rwsem);
|
|
|
|
trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
|
|
}
|
|
|
|
#if defined(DEBUG) || defined(XFS_WARN)
|
|
int
|
|
xfs_isilocked(
|
|
xfs_inode_t *ip,
|
|
uint lock_flags)
|
|
{
|
|
if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
|
|
if (!(lock_flags & XFS_ILOCK_SHARED))
|
|
return !!ip->i_lock.mr_writer;
|
|
return rwsem_is_locked(&ip->i_lock.mr_lock);
|
|
}
|
|
|
|
if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
|
|
if (!(lock_flags & XFS_MMAPLOCK_SHARED))
|
|
return !!ip->i_mmaplock.mr_writer;
|
|
return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
|
|
}
|
|
|
|
if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
|
|
if (!(lock_flags & XFS_IOLOCK_SHARED))
|
|
return !debug_locks ||
|
|
lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
|
|
return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
|
|
}
|
|
|
|
ASSERT(0);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
|
|
* DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
|
|
* when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
|
|
* errors and warnings.
|
|
*/
|
|
#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
|
|
static bool
|
|
xfs_lockdep_subclass_ok(
|
|
int subclass)
|
|
{
|
|
return subclass < MAX_LOCKDEP_SUBCLASSES;
|
|
}
|
|
#else
|
|
#define xfs_lockdep_subclass_ok(subclass) (true)
|
|
#endif
|
|
|
|
/*
|
|
* Bump the subclass so xfs_lock_inodes() acquires each lock with a different
|
|
* value. This can be called for any type of inode lock combination, including
|
|
* parent locking. Care must be taken to ensure we don't overrun the subclass
|
|
* storage fields in the class mask we build.
|
|
*/
|
|
static inline int
|
|
xfs_lock_inumorder(int lock_mode, int subclass)
|
|
{
|
|
int class = 0;
|
|
|
|
ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
|
|
XFS_ILOCK_RTSUM)));
|
|
ASSERT(xfs_lockdep_subclass_ok(subclass));
|
|
|
|
if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
|
|
ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
|
|
class += subclass << XFS_IOLOCK_SHIFT;
|
|
}
|
|
|
|
if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
|
|
ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
|
|
class += subclass << XFS_MMAPLOCK_SHIFT;
|
|
}
|
|
|
|
if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
|
|
ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
|
|
class += subclass << XFS_ILOCK_SHIFT;
|
|
}
|
|
|
|
return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
|
|
}
|
|
|
|
/*
|
|
* The following routine will lock n inodes in exclusive mode. We assume the
|
|
* caller calls us with the inodes in i_ino order.
|
|
*
|
|
* We need to detect deadlock where an inode that we lock is in the AIL and we
|
|
* start waiting for another inode that is locked by a thread in a long running
|
|
* transaction (such as truncate). This can result in deadlock since the long
|
|
* running trans might need to wait for the inode we just locked in order to
|
|
* push the tail and free space in the log.
|
|
*
|
|
* xfs_lock_inodes() can only be used to lock one type of lock at a time -
|
|
* the iolock, the mmaplock or the ilock, but not more than one at a time. If we
|
|
* lock more than one at a time, lockdep will report false positives saying we
|
|
* have violated locking orders.
|
|
*/
|
|
static void
|
|
xfs_lock_inodes(
|
|
struct xfs_inode **ips,
|
|
int inodes,
|
|
uint lock_mode)
|
|
{
|
|
int attempts = 0, i, j, try_lock;
|
|
struct xfs_log_item *lp;
|
|
|
|
/*
|
|
* Currently supports between 2 and 5 inodes with exclusive locking. We
|
|
* support an arbitrary depth of locking here, but absolute limits on
|
|
* inodes depend on the the type of locking and the limits placed by
|
|
* lockdep annotations in xfs_lock_inumorder. These are all checked by
|
|
* the asserts.
|
|
*/
|
|
ASSERT(ips && inodes >= 2 && inodes <= 5);
|
|
ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
|
|
XFS_ILOCK_EXCL));
|
|
ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
|
|
XFS_ILOCK_SHARED)));
|
|
ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
|
|
inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
|
|
ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
|
|
inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
|
|
|
|
if (lock_mode & XFS_IOLOCK_EXCL) {
|
|
ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
|
|
} else if (lock_mode & XFS_MMAPLOCK_EXCL)
|
|
ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
|
|
|
|
try_lock = 0;
|
|
i = 0;
|
|
again:
|
|
for (; i < inodes; i++) {
|
|
ASSERT(ips[i]);
|
|
|
|
if (i && (ips[i] == ips[i - 1])) /* Already locked */
|
|
continue;
|
|
|
|
/*
|
|
* If try_lock is not set yet, make sure all locked inodes are
|
|
* not in the AIL. If any are, set try_lock to be used later.
|
|
*/
|
|
if (!try_lock) {
|
|
for (j = (i - 1); j >= 0 && !try_lock; j--) {
|
|
lp = &ips[j]->i_itemp->ili_item;
|
|
if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
|
|
try_lock++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If any of the previous locks we have locked is in the AIL,
|
|
* we must TRY to get the second and subsequent locks. If
|
|
* we can't get any, we must release all we have
|
|
* and try again.
|
|
*/
|
|
if (!try_lock) {
|
|
xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
|
|
continue;
|
|
}
|
|
|
|
/* try_lock means we have an inode locked that is in the AIL. */
|
|
ASSERT(i != 0);
|
|
if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
|
|
continue;
|
|
|
|
/*
|
|
* Unlock all previous guys and try again. xfs_iunlock will try
|
|
* to push the tail if the inode is in the AIL.
|
|
*/
|
|
attempts++;
|
|
for (j = i - 1; j >= 0; j--) {
|
|
/*
|
|
* Check to see if we've already unlocked this one. Not
|
|
* the first one going back, and the inode ptr is the
|
|
* same.
|
|
*/
|
|
if (j != (i - 1) && ips[j] == ips[j + 1])
|
|
continue;
|
|
|
|
xfs_iunlock(ips[j], lock_mode);
|
|
}
|
|
|
|
if ((attempts % 5) == 0) {
|
|
delay(1); /* Don't just spin the CPU */
|
|
}
|
|
i = 0;
|
|
try_lock = 0;
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
|
|
* the mmaplock or the ilock, but not more than one type at a time. If we lock
|
|
* more than one at a time, lockdep will report false positives saying we have
|
|
* violated locking orders. The iolock must be double-locked separately since
|
|
* we use i_rwsem for that. We now support taking one lock EXCL and the other
|
|
* SHARED.
|
|
*/
|
|
void
|
|
xfs_lock_two_inodes(
|
|
struct xfs_inode *ip0,
|
|
uint ip0_mode,
|
|
struct xfs_inode *ip1,
|
|
uint ip1_mode)
|
|
{
|
|
struct xfs_inode *temp;
|
|
uint mode_temp;
|
|
int attempts = 0;
|
|
struct xfs_log_item *lp;
|
|
|
|
ASSERT(hweight32(ip0_mode) == 1);
|
|
ASSERT(hweight32(ip1_mode) == 1);
|
|
ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
|
|
ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
|
|
ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
|
|
!(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
|
|
ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
|
|
!(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
|
|
ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
|
|
!(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
|
|
ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
|
|
!(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
|
|
|
|
ASSERT(ip0->i_ino != ip1->i_ino);
|
|
|
|
if (ip0->i_ino > ip1->i_ino) {
|
|
temp = ip0;
|
|
ip0 = ip1;
|
|
ip1 = temp;
|
|
mode_temp = ip0_mode;
|
|
ip0_mode = ip1_mode;
|
|
ip1_mode = mode_temp;
|
|
}
|
|
|
|
again:
|
|
xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
|
|
|
|
/*
|
|
* If the first lock we have locked is in the AIL, we must TRY to get
|
|
* the second lock. If we can't get it, we must release the first one
|
|
* and try again.
|
|
*/
|
|
lp = &ip0->i_itemp->ili_item;
|
|
if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
|
|
if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
|
|
xfs_iunlock(ip0, ip0_mode);
|
|
if ((++attempts % 5) == 0)
|
|
delay(1); /* Don't just spin the CPU */
|
|
goto again;
|
|
}
|
|
} else {
|
|
xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
|
|
}
|
|
}
|
|
|
|
void
|
|
__xfs_iflock(
|
|
struct xfs_inode *ip)
|
|
{
|
|
wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
|
|
DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
|
|
|
|
do {
|
|
prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
|
|
if (xfs_isiflocked(ip))
|
|
io_schedule();
|
|
} while (!xfs_iflock_nowait(ip));
|
|
|
|
finish_wait(wq, &wait.wq_entry);
|
|
}
|
|
|
|
STATIC uint
|
|
_xfs_dic2xflags(
|
|
uint16_t di_flags,
|
|
uint64_t di_flags2,
|
|
bool has_attr)
|
|
{
|
|
uint flags = 0;
|
|
|
|
if (di_flags & XFS_DIFLAG_ANY) {
|
|
if (di_flags & XFS_DIFLAG_REALTIME)
|
|
flags |= FS_XFLAG_REALTIME;
|
|
if (di_flags & XFS_DIFLAG_PREALLOC)
|
|
flags |= FS_XFLAG_PREALLOC;
|
|
if (di_flags & XFS_DIFLAG_IMMUTABLE)
|
|
flags |= FS_XFLAG_IMMUTABLE;
|
|
if (di_flags & XFS_DIFLAG_APPEND)
|
|
flags |= FS_XFLAG_APPEND;
|
|
if (di_flags & XFS_DIFLAG_SYNC)
|
|
flags |= FS_XFLAG_SYNC;
|
|
if (di_flags & XFS_DIFLAG_NOATIME)
|
|
flags |= FS_XFLAG_NOATIME;
|
|
if (di_flags & XFS_DIFLAG_NODUMP)
|
|
flags |= FS_XFLAG_NODUMP;
|
|
if (di_flags & XFS_DIFLAG_RTINHERIT)
|
|
flags |= FS_XFLAG_RTINHERIT;
|
|
if (di_flags & XFS_DIFLAG_PROJINHERIT)
|
|
flags |= FS_XFLAG_PROJINHERIT;
|
|
if (di_flags & XFS_DIFLAG_NOSYMLINKS)
|
|
flags |= FS_XFLAG_NOSYMLINKS;
|
|
if (di_flags & XFS_DIFLAG_EXTSIZE)
|
|
flags |= FS_XFLAG_EXTSIZE;
|
|
if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
|
|
flags |= FS_XFLAG_EXTSZINHERIT;
|
|
if (di_flags & XFS_DIFLAG_NODEFRAG)
|
|
flags |= FS_XFLAG_NODEFRAG;
|
|
if (di_flags & XFS_DIFLAG_FILESTREAM)
|
|
flags |= FS_XFLAG_FILESTREAM;
|
|
}
|
|
|
|
if (di_flags2 & XFS_DIFLAG2_ANY) {
|
|
if (di_flags2 & XFS_DIFLAG2_DAX)
|
|
flags |= FS_XFLAG_DAX;
|
|
if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
|
|
flags |= FS_XFLAG_COWEXTSIZE;
|
|
}
|
|
|
|
if (has_attr)
|
|
flags |= FS_XFLAG_HASATTR;
|
|
|
|
return flags;
|
|
}
|
|
|
|
uint
|
|
xfs_ip2xflags(
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_icdinode *dic = &ip->i_d;
|
|
|
|
return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
|
|
}
|
|
|
|
/*
|
|
* Lookups up an inode from "name". If ci_name is not NULL, then a CI match
|
|
* is allowed, otherwise it has to be an exact match. If a CI match is found,
|
|
* ci_name->name will point to a the actual name (caller must free) or
|
|
* will be set to NULL if an exact match is found.
|
|
*/
|
|
int
|
|
xfs_lookup(
|
|
xfs_inode_t *dp,
|
|
struct xfs_name *name,
|
|
xfs_inode_t **ipp,
|
|
struct xfs_name *ci_name)
|
|
{
|
|
xfs_ino_t inum;
|
|
int error;
|
|
|
|
trace_xfs_lookup(dp, name);
|
|
|
|
if (XFS_FORCED_SHUTDOWN(dp->i_mount))
|
|
return -EIO;
|
|
|
|
error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
|
|
if (error)
|
|
goto out_unlock;
|
|
|
|
error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
|
|
if (error)
|
|
goto out_free_name;
|
|
|
|
return 0;
|
|
|
|
out_free_name:
|
|
if (ci_name)
|
|
kmem_free(ci_name->name);
|
|
out_unlock:
|
|
*ipp = NULL;
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Allocate an inode on disk and return a copy of its in-core version.
|
|
* The in-core inode is locked exclusively. Set mode, nlink, and rdev
|
|
* appropriately within the inode. The uid and gid for the inode are
|
|
* set according to the contents of the given cred structure.
|
|
*
|
|
* Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
|
|
* has a free inode available, call xfs_iget() to obtain the in-core
|
|
* version of the allocated inode. Finally, fill in the inode and
|
|
* log its initial contents. In this case, ialloc_context would be
|
|
* set to NULL.
|
|
*
|
|
* If xfs_dialloc() does not have an available inode, it will replenish
|
|
* its supply by doing an allocation. Since we can only do one
|
|
* allocation within a transaction without deadlocks, we must commit
|
|
* the current transaction before returning the inode itself.
|
|
* In this case, therefore, we will set ialloc_context and return.
|
|
* The caller should then commit the current transaction, start a new
|
|
* transaction, and call xfs_ialloc() again to actually get the inode.
|
|
*
|
|
* To ensure that some other process does not grab the inode that
|
|
* was allocated during the first call to xfs_ialloc(), this routine
|
|
* also returns the [locked] bp pointing to the head of the freelist
|
|
* as ialloc_context. The caller should hold this buffer across
|
|
* the commit and pass it back into this routine on the second call.
|
|
*
|
|
* If we are allocating quota inodes, we do not have a parent inode
|
|
* to attach to or associate with (i.e. pip == NULL) because they
|
|
* are not linked into the directory structure - they are attached
|
|
* directly to the superblock - and so have no parent.
|
|
*/
|
|
static int
|
|
xfs_ialloc(
|
|
xfs_trans_t *tp,
|
|
xfs_inode_t *pip,
|
|
umode_t mode,
|
|
xfs_nlink_t nlink,
|
|
dev_t rdev,
|
|
prid_t prid,
|
|
xfs_buf_t **ialloc_context,
|
|
xfs_inode_t **ipp)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
xfs_ino_t ino;
|
|
xfs_inode_t *ip;
|
|
uint flags;
|
|
int error;
|
|
struct timespec64 tv;
|
|
struct inode *inode;
|
|
|
|
/*
|
|
* Call the space management code to pick
|
|
* the on-disk inode to be allocated.
|
|
*/
|
|
error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
|
|
ialloc_context, &ino);
|
|
if (error)
|
|
return error;
|
|
if (*ialloc_context || ino == NULLFSINO) {
|
|
*ipp = NULL;
|
|
return 0;
|
|
}
|
|
ASSERT(*ialloc_context == NULL);
|
|
|
|
/*
|
|
* Protect against obviously corrupt allocation btree records. Later
|
|
* xfs_iget checks will catch re-allocation of other active in-memory
|
|
* and on-disk inodes. If we don't catch reallocating the parent inode
|
|
* here we will deadlock in xfs_iget() so we have to do these checks
|
|
* first.
|
|
*/
|
|
if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
|
|
xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
/*
|
|
* Get the in-core inode with the lock held exclusively.
|
|
* This is because we're setting fields here we need
|
|
* to prevent others from looking at until we're done.
|
|
*/
|
|
error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
|
|
XFS_ILOCK_EXCL, &ip);
|
|
if (error)
|
|
return error;
|
|
ASSERT(ip != NULL);
|
|
inode = VFS_I(ip);
|
|
inode->i_mode = mode;
|
|
set_nlink(inode, nlink);
|
|
inode->i_uid = current_fsuid();
|
|
inode->i_rdev = rdev;
|
|
ip->i_d.di_projid = prid;
|
|
|
|
if (pip && XFS_INHERIT_GID(pip)) {
|
|
inode->i_gid = VFS_I(pip)->i_gid;
|
|
if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
|
|
inode->i_mode |= S_ISGID;
|
|
} else {
|
|
inode->i_gid = current_fsgid();
|
|
}
|
|
|
|
/*
|
|
* If the group ID of the new file does not match the effective group
|
|
* ID or one of the supplementary group IDs, the S_ISGID bit is cleared
|
|
* (and only if the irix_sgid_inherit compatibility variable is set).
|
|
*/
|
|
if (irix_sgid_inherit &&
|
|
(inode->i_mode & S_ISGID) && !in_group_p(inode->i_gid))
|
|
inode->i_mode &= ~S_ISGID;
|
|
|
|
ip->i_d.di_size = 0;
|
|
ip->i_d.di_nextents = 0;
|
|
ASSERT(ip->i_d.di_nblocks == 0);
|
|
|
|
tv = current_time(inode);
|
|
inode->i_mtime = tv;
|
|
inode->i_atime = tv;
|
|
inode->i_ctime = tv;
|
|
|
|
ip->i_d.di_extsize = 0;
|
|
ip->i_d.di_dmevmask = 0;
|
|
ip->i_d.di_dmstate = 0;
|
|
ip->i_d.di_flags = 0;
|
|
|
|
if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
|
|
inode_set_iversion(inode, 1);
|
|
ip->i_d.di_flags2 = 0;
|
|
ip->i_d.di_cowextsize = 0;
|
|
ip->i_d.di_crtime = tv;
|
|
}
|
|
|
|
flags = XFS_ILOG_CORE;
|
|
switch (mode & S_IFMT) {
|
|
case S_IFIFO:
|
|
case S_IFCHR:
|
|
case S_IFBLK:
|
|
case S_IFSOCK:
|
|
ip->i_d.di_format = XFS_DINODE_FMT_DEV;
|
|
ip->i_df.if_flags = 0;
|
|
flags |= XFS_ILOG_DEV;
|
|
break;
|
|
case S_IFREG:
|
|
case S_IFDIR:
|
|
if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
|
|
uint di_flags = 0;
|
|
|
|
if (S_ISDIR(mode)) {
|
|
if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
|
|
di_flags |= XFS_DIFLAG_RTINHERIT;
|
|
if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
|
|
di_flags |= XFS_DIFLAG_EXTSZINHERIT;
|
|
ip->i_d.di_extsize = pip->i_d.di_extsize;
|
|
}
|
|
if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
|
|
di_flags |= XFS_DIFLAG_PROJINHERIT;
|
|
} else if (S_ISREG(mode)) {
|
|
if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
|
|
di_flags |= XFS_DIFLAG_REALTIME;
|
|
if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
|
|
di_flags |= XFS_DIFLAG_EXTSIZE;
|
|
ip->i_d.di_extsize = pip->i_d.di_extsize;
|
|
}
|
|
}
|
|
if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
|
|
xfs_inherit_noatime)
|
|
di_flags |= XFS_DIFLAG_NOATIME;
|
|
if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
|
|
xfs_inherit_nodump)
|
|
di_flags |= XFS_DIFLAG_NODUMP;
|
|
if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
|
|
xfs_inherit_sync)
|
|
di_flags |= XFS_DIFLAG_SYNC;
|
|
if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
|
|
xfs_inherit_nosymlinks)
|
|
di_flags |= XFS_DIFLAG_NOSYMLINKS;
|
|
if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
|
|
xfs_inherit_nodefrag)
|
|
di_flags |= XFS_DIFLAG_NODEFRAG;
|
|
if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
|
|
di_flags |= XFS_DIFLAG_FILESTREAM;
|
|
|
|
ip->i_d.di_flags |= di_flags;
|
|
}
|
|
if (pip && (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY)) {
|
|
if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
|
|
ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
|
|
ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
|
|
}
|
|
if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
|
|
ip->i_d.di_flags2 |= XFS_DIFLAG2_DAX;
|
|
}
|
|
/* FALLTHROUGH */
|
|
case S_IFLNK:
|
|
ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
|
|
ip->i_df.if_flags = XFS_IFEXTENTS;
|
|
ip->i_df.if_bytes = 0;
|
|
ip->i_df.if_u1.if_root = NULL;
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
}
|
|
/*
|
|
* Attribute fork settings for new inode.
|
|
*/
|
|
ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
|
|
ip->i_d.di_anextents = 0;
|
|
|
|
/*
|
|
* Log the new values stuffed into the inode.
|
|
*/
|
|
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
|
|
xfs_trans_log_inode(tp, ip, flags);
|
|
|
|
/* now that we have an i_mode we can setup the inode structure */
|
|
xfs_setup_inode(ip);
|
|
|
|
*ipp = ip;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Allocates a new inode from disk and return a pointer to the
|
|
* incore copy. This routine will internally commit the current
|
|
* transaction and allocate a new one if the Space Manager needed
|
|
* to do an allocation to replenish the inode free-list.
|
|
*
|
|
* This routine is designed to be called from xfs_create and
|
|
* xfs_create_dir.
|
|
*
|
|
*/
|
|
int
|
|
xfs_dir_ialloc(
|
|
xfs_trans_t **tpp, /* input: current transaction;
|
|
output: may be a new transaction. */
|
|
xfs_inode_t *dp, /* directory within whose allocate
|
|
the inode. */
|
|
umode_t mode,
|
|
xfs_nlink_t nlink,
|
|
dev_t rdev,
|
|
prid_t prid, /* project id */
|
|
xfs_inode_t **ipp) /* pointer to inode; it will be
|
|
locked. */
|
|
{
|
|
xfs_trans_t *tp;
|
|
xfs_inode_t *ip;
|
|
xfs_buf_t *ialloc_context = NULL;
|
|
int code;
|
|
void *dqinfo;
|
|
uint tflags;
|
|
|
|
tp = *tpp;
|
|
ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
|
|
|
|
/*
|
|
* xfs_ialloc will return a pointer to an incore inode if
|
|
* the Space Manager has an available inode on the free
|
|
* list. Otherwise, it will do an allocation and replenish
|
|
* the freelist. Since we can only do one allocation per
|
|
* transaction without deadlocks, we will need to commit the
|
|
* current transaction and start a new one. We will then
|
|
* need to call xfs_ialloc again to get the inode.
|
|
*
|
|
* If xfs_ialloc did an allocation to replenish the freelist,
|
|
* it returns the bp containing the head of the freelist as
|
|
* ialloc_context. We will hold a lock on it across the
|
|
* transaction commit so that no other process can steal
|
|
* the inode(s) that we've just allocated.
|
|
*/
|
|
code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
|
|
&ip);
|
|
|
|
/*
|
|
* Return an error if we were unable to allocate a new inode.
|
|
* This should only happen if we run out of space on disk or
|
|
* encounter a disk error.
|
|
*/
|
|
if (code) {
|
|
*ipp = NULL;
|
|
return code;
|
|
}
|
|
if (!ialloc_context && !ip) {
|
|
*ipp = NULL;
|
|
return -ENOSPC;
|
|
}
|
|
|
|
/*
|
|
* If the AGI buffer is non-NULL, then we were unable to get an
|
|
* inode in one operation. We need to commit the current
|
|
* transaction and call xfs_ialloc() again. It is guaranteed
|
|
* to succeed the second time.
|
|
*/
|
|
if (ialloc_context) {
|
|
/*
|
|
* Normally, xfs_trans_commit releases all the locks.
|
|
* We call bhold to hang on to the ialloc_context across
|
|
* the commit. Holding this buffer prevents any other
|
|
* processes from doing any allocations in this
|
|
* allocation group.
|
|
*/
|
|
xfs_trans_bhold(tp, ialloc_context);
|
|
|
|
/*
|
|
* We want the quota changes to be associated with the next
|
|
* transaction, NOT this one. So, detach the dqinfo from this
|
|
* and attach it to the next transaction.
|
|
*/
|
|
dqinfo = NULL;
|
|
tflags = 0;
|
|
if (tp->t_dqinfo) {
|
|
dqinfo = (void *)tp->t_dqinfo;
|
|
tp->t_dqinfo = NULL;
|
|
tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
|
|
tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
|
|
}
|
|
|
|
code = xfs_trans_roll(&tp);
|
|
|
|
/*
|
|
* Re-attach the quota info that we detached from prev trx.
|
|
*/
|
|
if (dqinfo) {
|
|
tp->t_dqinfo = dqinfo;
|
|
tp->t_flags |= tflags;
|
|
}
|
|
|
|
if (code) {
|
|
xfs_buf_relse(ialloc_context);
|
|
*tpp = tp;
|
|
*ipp = NULL;
|
|
return code;
|
|
}
|
|
xfs_trans_bjoin(tp, ialloc_context);
|
|
|
|
/*
|
|
* Call ialloc again. Since we've locked out all
|
|
* other allocations in this allocation group,
|
|
* this call should always succeed.
|
|
*/
|
|
code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
|
|
&ialloc_context, &ip);
|
|
|
|
/*
|
|
* If we get an error at this point, return to the caller
|
|
* so that the current transaction can be aborted.
|
|
*/
|
|
if (code) {
|
|
*tpp = tp;
|
|
*ipp = NULL;
|
|
return code;
|
|
}
|
|
ASSERT(!ialloc_context && ip);
|
|
|
|
}
|
|
|
|
*ipp = ip;
|
|
*tpp = tp;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Decrement the link count on an inode & log the change. If this causes the
|
|
* link count to go to zero, move the inode to AGI unlinked list so that it can
|
|
* be freed when the last active reference goes away via xfs_inactive().
|
|
*/
|
|
static int /* error */
|
|
xfs_droplink(
|
|
xfs_trans_t *tp,
|
|
xfs_inode_t *ip)
|
|
{
|
|
xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
|
|
|
|
drop_nlink(VFS_I(ip));
|
|
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
|
|
|
|
if (VFS_I(ip)->i_nlink)
|
|
return 0;
|
|
|
|
return xfs_iunlink(tp, ip);
|
|
}
|
|
|
|
/*
|
|
* Increment the link count on an inode & log the change.
|
|
*/
|
|
static void
|
|
xfs_bumplink(
|
|
xfs_trans_t *tp,
|
|
xfs_inode_t *ip)
|
|
{
|
|
xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
|
|
|
|
inc_nlink(VFS_I(ip));
|
|
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
|
|
}
|
|
|
|
int
|
|
xfs_create(
|
|
xfs_inode_t *dp,
|
|
struct xfs_name *name,
|
|
umode_t mode,
|
|
dev_t rdev,
|
|
xfs_inode_t **ipp)
|
|
{
|
|
int is_dir = S_ISDIR(mode);
|
|
struct xfs_mount *mp = dp->i_mount;
|
|
struct xfs_inode *ip = NULL;
|
|
struct xfs_trans *tp = NULL;
|
|
int error;
|
|
bool unlock_dp_on_error = false;
|
|
prid_t prid;
|
|
struct xfs_dquot *udqp = NULL;
|
|
struct xfs_dquot *gdqp = NULL;
|
|
struct xfs_dquot *pdqp = NULL;
|
|
struct xfs_trans_res *tres;
|
|
uint resblks;
|
|
|
|
trace_xfs_create(dp, name);
|
|
|
|
if (XFS_FORCED_SHUTDOWN(mp))
|
|
return -EIO;
|
|
|
|
prid = xfs_get_initial_prid(dp);
|
|
|
|
/*
|
|
* Make sure that we have allocated dquot(s) on disk.
|
|
*/
|
|
error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid,
|
|
XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
|
|
&udqp, &gdqp, &pdqp);
|
|
if (error)
|
|
return error;
|
|
|
|
if (is_dir) {
|
|
resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
|
|
tres = &M_RES(mp)->tr_mkdir;
|
|
} else {
|
|
resblks = XFS_CREATE_SPACE_RES(mp, name->len);
|
|
tres = &M_RES(mp)->tr_create;
|
|
}
|
|
|
|
/*
|
|
* Initially assume that the file does not exist and
|
|
* reserve the resources for that case. If that is not
|
|
* the case we'll drop the one we have and get a more
|
|
* appropriate transaction later.
|
|
*/
|
|
error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
|
|
if (error == -ENOSPC) {
|
|
/* flush outstanding delalloc blocks and retry */
|
|
xfs_flush_inodes(mp);
|
|
error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
|
|
}
|
|
if (error)
|
|
goto out_release_inode;
|
|
|
|
xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
|
|
unlock_dp_on_error = true;
|
|
|
|
/*
|
|
* Reserve disk quota and the inode.
|
|
*/
|
|
error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
|
|
pdqp, resblks, 1, 0);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
/*
|
|
* A newly created regular or special file just has one directory
|
|
* entry pointing to them, but a directory also the "." entry
|
|
* pointing to itself.
|
|
*/
|
|
error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
/*
|
|
* Now we join the directory inode to the transaction. We do not do it
|
|
* earlier because xfs_dir_ialloc might commit the previous transaction
|
|
* (and release all the locks). An error from here on will result in
|
|
* the transaction cancel unlocking dp so don't do it explicitly in the
|
|
* error path.
|
|
*/
|
|
xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
|
|
unlock_dp_on_error = false;
|
|
|
|
error = xfs_dir_createname(tp, dp, name, ip->i_ino,
|
|
resblks - XFS_IALLOC_SPACE_RES(mp));
|
|
if (error) {
|
|
ASSERT(error != -ENOSPC);
|
|
goto out_trans_cancel;
|
|
}
|
|
xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
|
|
xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
|
|
|
|
if (is_dir) {
|
|
error = xfs_dir_init(tp, ip, dp);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
xfs_bumplink(tp, dp);
|
|
}
|
|
|
|
/*
|
|
* If this is a synchronous mount, make sure that the
|
|
* create transaction goes to disk before returning to
|
|
* the user.
|
|
*/
|
|
if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
|
|
xfs_trans_set_sync(tp);
|
|
|
|
/*
|
|
* Attach the dquot(s) to the inodes and modify them incore.
|
|
* These ids of the inode couldn't have changed since the new
|
|
* inode has been locked ever since it was created.
|
|
*/
|
|
xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
|
|
|
|
error = xfs_trans_commit(tp);
|
|
if (error)
|
|
goto out_release_inode;
|
|
|
|
xfs_qm_dqrele(udqp);
|
|
xfs_qm_dqrele(gdqp);
|
|
xfs_qm_dqrele(pdqp);
|
|
|
|
*ipp = ip;
|
|
return 0;
|
|
|
|
out_trans_cancel:
|
|
xfs_trans_cancel(tp);
|
|
out_release_inode:
|
|
/*
|
|
* Wait until after the current transaction is aborted to finish the
|
|
* setup of the inode and release the inode. This prevents recursive
|
|
* transactions and deadlocks from xfs_inactive.
|
|
*/
|
|
if (ip) {
|
|
xfs_finish_inode_setup(ip);
|
|
xfs_irele(ip);
|
|
}
|
|
|
|
xfs_qm_dqrele(udqp);
|
|
xfs_qm_dqrele(gdqp);
|
|
xfs_qm_dqrele(pdqp);
|
|
|
|
if (unlock_dp_on_error)
|
|
xfs_iunlock(dp, XFS_ILOCK_EXCL);
|
|
return error;
|
|
}
|
|
|
|
int
|
|
xfs_create_tmpfile(
|
|
struct xfs_inode *dp,
|
|
umode_t mode,
|
|
struct xfs_inode **ipp)
|
|
{
|
|
struct xfs_mount *mp = dp->i_mount;
|
|
struct xfs_inode *ip = NULL;
|
|
struct xfs_trans *tp = NULL;
|
|
int error;
|
|
prid_t prid;
|
|
struct xfs_dquot *udqp = NULL;
|
|
struct xfs_dquot *gdqp = NULL;
|
|
struct xfs_dquot *pdqp = NULL;
|
|
struct xfs_trans_res *tres;
|
|
uint resblks;
|
|
|
|
if (XFS_FORCED_SHUTDOWN(mp))
|
|
return -EIO;
|
|
|
|
prid = xfs_get_initial_prid(dp);
|
|
|
|
/*
|
|
* Make sure that we have allocated dquot(s) on disk.
|
|
*/
|
|
error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid,
|
|
XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
|
|
&udqp, &gdqp, &pdqp);
|
|
if (error)
|
|
return error;
|
|
|
|
resblks = XFS_IALLOC_SPACE_RES(mp);
|
|
tres = &M_RES(mp)->tr_create_tmpfile;
|
|
|
|
error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
|
|
if (error)
|
|
goto out_release_inode;
|
|
|
|
error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
|
|
pdqp, resblks, 1, 0);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
if (mp->m_flags & XFS_MOUNT_WSYNC)
|
|
xfs_trans_set_sync(tp);
|
|
|
|
/*
|
|
* Attach the dquot(s) to the inodes and modify them incore.
|
|
* These ids of the inode couldn't have changed since the new
|
|
* inode has been locked ever since it was created.
|
|
*/
|
|
xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
|
|
|
|
error = xfs_iunlink(tp, ip);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
error = xfs_trans_commit(tp);
|
|
if (error)
|
|
goto out_release_inode;
|
|
|
|
xfs_qm_dqrele(udqp);
|
|
xfs_qm_dqrele(gdqp);
|
|
xfs_qm_dqrele(pdqp);
|
|
|
|
*ipp = ip;
|
|
return 0;
|
|
|
|
out_trans_cancel:
|
|
xfs_trans_cancel(tp);
|
|
out_release_inode:
|
|
/*
|
|
* Wait until after the current transaction is aborted to finish the
|
|
* setup of the inode and release the inode. This prevents recursive
|
|
* transactions and deadlocks from xfs_inactive.
|
|
*/
|
|
if (ip) {
|
|
xfs_finish_inode_setup(ip);
|
|
xfs_irele(ip);
|
|
}
|
|
|
|
xfs_qm_dqrele(udqp);
|
|
xfs_qm_dqrele(gdqp);
|
|
xfs_qm_dqrele(pdqp);
|
|
|
|
return error;
|
|
}
|
|
|
|
int
|
|
xfs_link(
|
|
xfs_inode_t *tdp,
|
|
xfs_inode_t *sip,
|
|
struct xfs_name *target_name)
|
|
{
|
|
xfs_mount_t *mp = tdp->i_mount;
|
|
xfs_trans_t *tp;
|
|
int error;
|
|
int resblks;
|
|
|
|
trace_xfs_link(tdp, target_name);
|
|
|
|
ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
|
|
|
|
if (XFS_FORCED_SHUTDOWN(mp))
|
|
return -EIO;
|
|
|
|
error = xfs_qm_dqattach(sip);
|
|
if (error)
|
|
goto std_return;
|
|
|
|
error = xfs_qm_dqattach(tdp);
|
|
if (error)
|
|
goto std_return;
|
|
|
|
resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
|
|
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
|
|
if (error == -ENOSPC) {
|
|
resblks = 0;
|
|
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
|
|
}
|
|
if (error)
|
|
goto std_return;
|
|
|
|
xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
|
|
|
|
xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
|
|
xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
|
|
|
|
/*
|
|
* If we are using project inheritance, we only allow hard link
|
|
* creation in our tree when the project IDs are the same; else
|
|
* the tree quota mechanism could be circumvented.
|
|
*/
|
|
if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
|
|
tdp->i_d.di_projid != sip->i_d.di_projid)) {
|
|
error = -EXDEV;
|
|
goto error_return;
|
|
}
|
|
|
|
if (!resblks) {
|
|
error = xfs_dir_canenter(tp, tdp, target_name);
|
|
if (error)
|
|
goto error_return;
|
|
}
|
|
|
|
/*
|
|
* Handle initial link state of O_TMPFILE inode
|
|
*/
|
|
if (VFS_I(sip)->i_nlink == 0) {
|
|
error = xfs_iunlink_remove(tp, sip);
|
|
if (error)
|
|
goto error_return;
|
|
}
|
|
|
|
error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
|
|
resblks);
|
|
if (error)
|
|
goto error_return;
|
|
xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
|
|
xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
|
|
|
|
xfs_bumplink(tp, sip);
|
|
|
|
/*
|
|
* If this is a synchronous mount, make sure that the
|
|
* link transaction goes to disk before returning to
|
|
* the user.
|
|
*/
|
|
if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
|
|
xfs_trans_set_sync(tp);
|
|
|
|
return xfs_trans_commit(tp);
|
|
|
|
error_return:
|
|
xfs_trans_cancel(tp);
|
|
std_return:
|
|
return error;
|
|
}
|
|
|
|
/* Clear the reflink flag and the cowblocks tag if possible. */
|
|
static void
|
|
xfs_itruncate_clear_reflink_flags(
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_ifork *dfork;
|
|
struct xfs_ifork *cfork;
|
|
|
|
if (!xfs_is_reflink_inode(ip))
|
|
return;
|
|
dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
|
|
cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
|
|
if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
|
|
ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
|
|
if (cfork->if_bytes == 0)
|
|
xfs_inode_clear_cowblocks_tag(ip);
|
|
}
|
|
|
|
/*
|
|
* Free up the underlying blocks past new_size. The new size must be smaller
|
|
* than the current size. This routine can be used both for the attribute and
|
|
* data fork, and does not modify the inode size, which is left to the caller.
|
|
*
|
|
* The transaction passed to this routine must have made a permanent log
|
|
* reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
|
|
* given transaction and start new ones, so make sure everything involved in
|
|
* the transaction is tidy before calling here. Some transaction will be
|
|
* returned to the caller to be committed. The incoming transaction must
|
|
* already include the inode, and both inode locks must be held exclusively.
|
|
* The inode must also be "held" within the transaction. On return the inode
|
|
* will be "held" within the returned transaction. This routine does NOT
|
|
* require any disk space to be reserved for it within the transaction.
|
|
*
|
|
* If we get an error, we must return with the inode locked and linked into the
|
|
* current transaction. This keeps things simple for the higher level code,
|
|
* because it always knows that the inode is locked and held in the transaction
|
|
* that returns to it whether errors occur or not. We don't mark the inode
|
|
* dirty on error so that transactions can be easily aborted if possible.
|
|
*/
|
|
int
|
|
xfs_itruncate_extents_flags(
|
|
struct xfs_trans **tpp,
|
|
struct xfs_inode *ip,
|
|
int whichfork,
|
|
xfs_fsize_t new_size,
|
|
int flags)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_trans *tp = *tpp;
|
|
xfs_fileoff_t first_unmap_block;
|
|
xfs_filblks_t unmap_len;
|
|
int error = 0;
|
|
|
|
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
|
|
ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
|
|
xfs_isilocked(ip, XFS_IOLOCK_EXCL));
|
|
ASSERT(new_size <= XFS_ISIZE(ip));
|
|
ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
|
|
ASSERT(ip->i_itemp != NULL);
|
|
ASSERT(ip->i_itemp->ili_lock_flags == 0);
|
|
ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
|
|
|
|
trace_xfs_itruncate_extents_start(ip, new_size);
|
|
|
|
flags |= xfs_bmapi_aflag(whichfork);
|
|
|
|
/*
|
|
* Since it is possible for space to become allocated beyond
|
|
* the end of the file (in a crash where the space is allocated
|
|
* but the inode size is not yet updated), simply remove any
|
|
* blocks which show up between the new EOF and the maximum
|
|
* possible file size.
|
|
*
|
|
* We have to free all the blocks to the bmbt maximum offset, even if
|
|
* the page cache can't scale that far.
|
|
*/
|
|
first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
|
|
if (first_unmap_block >= XFS_MAX_FILEOFF) {
|
|
WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
|
|
return 0;
|
|
}
|
|
|
|
unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
|
|
while (unmap_len > 0) {
|
|
ASSERT(tp->t_firstblock == NULLFSBLOCK);
|
|
error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
|
|
flags, XFS_ITRUNC_MAX_EXTENTS);
|
|
if (error)
|
|
goto out;
|
|
|
|
/*
|
|
* Duplicate the transaction that has the permanent
|
|
* reservation and commit the old transaction.
|
|
*/
|
|
error = xfs_defer_finish(&tp);
|
|
if (error)
|
|
goto out;
|
|
|
|
error = xfs_trans_roll_inode(&tp, ip);
|
|
if (error)
|
|
goto out;
|
|
}
|
|
|
|
if (whichfork == XFS_DATA_FORK) {
|
|
/* Remove all pending CoW reservations. */
|
|
error = xfs_reflink_cancel_cow_blocks(ip, &tp,
|
|
first_unmap_block, XFS_MAX_FILEOFF, true);
|
|
if (error)
|
|
goto out;
|
|
|
|
xfs_itruncate_clear_reflink_flags(ip);
|
|
}
|
|
|
|
/*
|
|
* Always re-log the inode so that our permanent transaction can keep
|
|
* on rolling it forward in the log.
|
|
*/
|
|
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
|
|
|
|
trace_xfs_itruncate_extents_end(ip, new_size);
|
|
|
|
out:
|
|
*tpp = tp;
|
|
return error;
|
|
}
|
|
|
|
int
|
|
xfs_release(
|
|
xfs_inode_t *ip)
|
|
{
|
|
xfs_mount_t *mp = ip->i_mount;
|
|
int error;
|
|
|
|
if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
|
|
return 0;
|
|
|
|
/* If this is a read-only mount, don't do this (would generate I/O) */
|
|
if (mp->m_flags & XFS_MOUNT_RDONLY)
|
|
return 0;
|
|
|
|
if (!XFS_FORCED_SHUTDOWN(mp)) {
|
|
int truncated;
|
|
|
|
/*
|
|
* If we previously truncated this file and removed old data
|
|
* in the process, we want to initiate "early" writeout on
|
|
* the last close. This is an attempt to combat the notorious
|
|
* NULL files problem which is particularly noticeable from a
|
|
* truncate down, buffered (re-)write (delalloc), followed by
|
|
* a crash. What we are effectively doing here is
|
|
* significantly reducing the time window where we'd otherwise
|
|
* be exposed to that problem.
|
|
*/
|
|
truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
|
|
if (truncated) {
|
|
xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
|
|
if (ip->i_delayed_blks > 0) {
|
|
error = filemap_flush(VFS_I(ip)->i_mapping);
|
|
if (error)
|
|
return error;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (VFS_I(ip)->i_nlink == 0)
|
|
return 0;
|
|
|
|
if (xfs_can_free_eofblocks(ip, false)) {
|
|
|
|
/*
|
|
* Check if the inode is being opened, written and closed
|
|
* frequently and we have delayed allocation blocks outstanding
|
|
* (e.g. streaming writes from the NFS server), truncating the
|
|
* blocks past EOF will cause fragmentation to occur.
|
|
*
|
|
* In this case don't do the truncation, but we have to be
|
|
* careful how we detect this case. Blocks beyond EOF show up as
|
|
* i_delayed_blks even when the inode is clean, so we need to
|
|
* truncate them away first before checking for a dirty release.
|
|
* Hence on the first dirty close we will still remove the
|
|
* speculative allocation, but after that we will leave it in
|
|
* place.
|
|
*/
|
|
if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
|
|
return 0;
|
|
/*
|
|
* If we can't get the iolock just skip truncating the blocks
|
|
* past EOF because we could deadlock with the mmap_sem
|
|
* otherwise. We'll get another chance to drop them once the
|
|
* last reference to the inode is dropped, so we'll never leak
|
|
* blocks permanently.
|
|
*/
|
|
if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
|
|
error = xfs_free_eofblocks(ip);
|
|
xfs_iunlock(ip, XFS_IOLOCK_EXCL);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
/* delalloc blocks after truncation means it really is dirty */
|
|
if (ip->i_delayed_blks)
|
|
xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* xfs_inactive_truncate
|
|
*
|
|
* Called to perform a truncate when an inode becomes unlinked.
|
|
*/
|
|
STATIC int
|
|
xfs_inactive_truncate(
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_trans *tp;
|
|
int error;
|
|
|
|
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
|
|
if (error) {
|
|
ASSERT(XFS_FORCED_SHUTDOWN(mp));
|
|
return error;
|
|
}
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
xfs_trans_ijoin(tp, ip, 0);
|
|
|
|
/*
|
|
* Log the inode size first to prevent stale data exposure in the event
|
|
* of a system crash before the truncate completes. See the related
|
|
* comment in xfs_vn_setattr_size() for details.
|
|
*/
|
|
ip->i_d.di_size = 0;
|
|
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
|
|
|
|
error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
|
|
if (error)
|
|
goto error_trans_cancel;
|
|
|
|
ASSERT(ip->i_d.di_nextents == 0);
|
|
|
|
error = xfs_trans_commit(tp);
|
|
if (error)
|
|
goto error_unlock;
|
|
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
return 0;
|
|
|
|
error_trans_cancel:
|
|
xfs_trans_cancel(tp);
|
|
error_unlock:
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* xfs_inactive_ifree()
|
|
*
|
|
* Perform the inode free when an inode is unlinked.
|
|
*/
|
|
STATIC int
|
|
xfs_inactive_ifree(
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_trans *tp;
|
|
int error;
|
|
|
|
/*
|
|
* We try to use a per-AG reservation for any block needed by the finobt
|
|
* tree, but as the finobt feature predates the per-AG reservation
|
|
* support a degraded file system might not have enough space for the
|
|
* reservation at mount time. In that case try to dip into the reserved
|
|
* pool and pray.
|
|
*
|
|
* Send a warning if the reservation does happen to fail, as the inode
|
|
* now remains allocated and sits on the unlinked list until the fs is
|
|
* repaired.
|
|
*/
|
|
if (unlikely(mp->m_finobt_nores)) {
|
|
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
|
|
XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
|
|
&tp);
|
|
} else {
|
|
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
|
|
}
|
|
if (error) {
|
|
if (error == -ENOSPC) {
|
|
xfs_warn_ratelimited(mp,
|
|
"Failed to remove inode(s) from unlinked list. "
|
|
"Please free space, unmount and run xfs_repair.");
|
|
} else {
|
|
ASSERT(XFS_FORCED_SHUTDOWN(mp));
|
|
}
|
|
return error;
|
|
}
|
|
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
xfs_trans_ijoin(tp, ip, 0);
|
|
|
|
error = xfs_ifree(tp, ip);
|
|
if (error) {
|
|
/*
|
|
* If we fail to free the inode, shut down. The cancel
|
|
* might do that, we need to make sure. Otherwise the
|
|
* inode might be lost for a long time or forever.
|
|
*/
|
|
if (!XFS_FORCED_SHUTDOWN(mp)) {
|
|
xfs_notice(mp, "%s: xfs_ifree returned error %d",
|
|
__func__, error);
|
|
xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
|
|
}
|
|
xfs_trans_cancel(tp);
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Credit the quota account(s). The inode is gone.
|
|
*/
|
|
xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
|
|
|
|
/*
|
|
* Just ignore errors at this point. There is nothing we can do except
|
|
* to try to keep going. Make sure it's not a silent error.
|
|
*/
|
|
error = xfs_trans_commit(tp);
|
|
if (error)
|
|
xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
|
|
__func__, error);
|
|
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* xfs_inactive
|
|
*
|
|
* This is called when the vnode reference count for the vnode
|
|
* goes to zero. If the file has been unlinked, then it must
|
|
* now be truncated. Also, we clear all of the read-ahead state
|
|
* kept for the inode here since the file is now closed.
|
|
*/
|
|
void
|
|
xfs_inactive(
|
|
xfs_inode_t *ip)
|
|
{
|
|
struct xfs_mount *mp;
|
|
int error;
|
|
int truncate = 0;
|
|
|
|
/*
|
|
* If the inode is already free, then there can be nothing
|
|
* to clean up here.
|
|
*/
|
|
if (VFS_I(ip)->i_mode == 0) {
|
|
ASSERT(ip->i_df.if_broot_bytes == 0);
|
|
return;
|
|
}
|
|
|
|
mp = ip->i_mount;
|
|
ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
|
|
|
|
/* If this is a read-only mount, don't do this (would generate I/O) */
|
|
if (mp->m_flags & XFS_MOUNT_RDONLY)
|
|
return;
|
|
|
|
/* Try to clean out the cow blocks if there are any. */
|
|
if (xfs_inode_has_cow_data(ip))
|
|
xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
|
|
|
|
if (VFS_I(ip)->i_nlink != 0) {
|
|
/*
|
|
* force is true because we are evicting an inode from the
|
|
* cache. Post-eof blocks must be freed, lest we end up with
|
|
* broken free space accounting.
|
|
*
|
|
* Note: don't bother with iolock here since lockdep complains
|
|
* about acquiring it in reclaim context. We have the only
|
|
* reference to the inode at this point anyways.
|
|
*/
|
|
if (xfs_can_free_eofblocks(ip, true))
|
|
xfs_free_eofblocks(ip);
|
|
|
|
return;
|
|
}
|
|
|
|
if (S_ISREG(VFS_I(ip)->i_mode) &&
|
|
(ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
|
|
ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
|
|
truncate = 1;
|
|
|
|
error = xfs_qm_dqattach(ip);
|
|
if (error)
|
|
return;
|
|
|
|
if (S_ISLNK(VFS_I(ip)->i_mode))
|
|
error = xfs_inactive_symlink(ip);
|
|
else if (truncate)
|
|
error = xfs_inactive_truncate(ip);
|
|
if (error)
|
|
return;
|
|
|
|
/*
|
|
* If there are attributes associated with the file then blow them away
|
|
* now. The code calls a routine that recursively deconstructs the
|
|
* attribute fork. If also blows away the in-core attribute fork.
|
|
*/
|
|
if (XFS_IFORK_Q(ip)) {
|
|
error = xfs_attr_inactive(ip);
|
|
if (error)
|
|
return;
|
|
}
|
|
|
|
ASSERT(!ip->i_afp);
|
|
ASSERT(ip->i_d.di_anextents == 0);
|
|
ASSERT(ip->i_d.di_forkoff == 0);
|
|
|
|
/*
|
|
* Free the inode.
|
|
*/
|
|
error = xfs_inactive_ifree(ip);
|
|
if (error)
|
|
return;
|
|
|
|
/*
|
|
* Release the dquots held by inode, if any.
|
|
*/
|
|
xfs_qm_dqdetach(ip);
|
|
}
|
|
|
|
/*
|
|
* In-Core Unlinked List Lookups
|
|
* =============================
|
|
*
|
|
* Every inode is supposed to be reachable from some other piece of metadata
|
|
* with the exception of the root directory. Inodes with a connection to a
|
|
* file descriptor but not linked from anywhere in the on-disk directory tree
|
|
* are collectively known as unlinked inodes, though the filesystem itself
|
|
* maintains links to these inodes so that on-disk metadata are consistent.
|
|
*
|
|
* XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI
|
|
* header contains a number of buckets that point to an inode, and each inode
|
|
* record has a pointer to the next inode in the hash chain. This
|
|
* singly-linked list causes scaling problems in the iunlink remove function
|
|
* because we must walk that list to find the inode that points to the inode
|
|
* being removed from the unlinked hash bucket list.
|
|
*
|
|
* What if we modelled the unlinked list as a collection of records capturing
|
|
* "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd
|
|
* have a fast way to look up unlinked list predecessors, which avoids the
|
|
* slow list walk. That's exactly what we do here (in-core) with a per-AG
|
|
* rhashtable.
|
|
*
|
|
* Because this is a backref cache, we ignore operational failures since the
|
|
* iunlink code can fall back to the slow bucket walk. The only errors that
|
|
* should bubble out are for obviously incorrect situations.
|
|
*
|
|
* All users of the backref cache MUST hold the AGI buffer lock to serialize
|
|
* access or have otherwise provided for concurrency control.
|
|
*/
|
|
|
|
/* Capture a "X.next_unlinked = Y" relationship. */
|
|
struct xfs_iunlink {
|
|
struct rhash_head iu_rhash_head;
|
|
xfs_agino_t iu_agino; /* X */
|
|
xfs_agino_t iu_next_unlinked; /* Y */
|
|
};
|
|
|
|
/* Unlinked list predecessor lookup hashtable construction */
|
|
static int
|
|
xfs_iunlink_obj_cmpfn(
|
|
struct rhashtable_compare_arg *arg,
|
|
const void *obj)
|
|
{
|
|
const xfs_agino_t *key = arg->key;
|
|
const struct xfs_iunlink *iu = obj;
|
|
|
|
if (iu->iu_next_unlinked != *key)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static const struct rhashtable_params xfs_iunlink_hash_params = {
|
|
.min_size = XFS_AGI_UNLINKED_BUCKETS,
|
|
.key_len = sizeof(xfs_agino_t),
|
|
.key_offset = offsetof(struct xfs_iunlink,
|
|
iu_next_unlinked),
|
|
.head_offset = offsetof(struct xfs_iunlink, iu_rhash_head),
|
|
.automatic_shrinking = true,
|
|
.obj_cmpfn = xfs_iunlink_obj_cmpfn,
|
|
};
|
|
|
|
/*
|
|
* Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such
|
|
* relation is found.
|
|
*/
|
|
static xfs_agino_t
|
|
xfs_iunlink_lookup_backref(
|
|
struct xfs_perag *pag,
|
|
xfs_agino_t agino)
|
|
{
|
|
struct xfs_iunlink *iu;
|
|
|
|
iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
|
|
xfs_iunlink_hash_params);
|
|
return iu ? iu->iu_agino : NULLAGINO;
|
|
}
|
|
|
|
/*
|
|
* Take ownership of an iunlink cache entry and insert it into the hash table.
|
|
* If successful, the entry will be owned by the cache; if not, it is freed.
|
|
* Either way, the caller does not own @iu after this call.
|
|
*/
|
|
static int
|
|
xfs_iunlink_insert_backref(
|
|
struct xfs_perag *pag,
|
|
struct xfs_iunlink *iu)
|
|
{
|
|
int error;
|
|
|
|
error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
|
|
&iu->iu_rhash_head, xfs_iunlink_hash_params);
|
|
/*
|
|
* Fail loudly if there already was an entry because that's a sign of
|
|
* corruption of in-memory data. Also fail loudly if we see an error
|
|
* code we didn't anticipate from the rhashtable code. Currently we
|
|
* only anticipate ENOMEM.
|
|
*/
|
|
if (error) {
|
|
WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
|
|
kmem_free(iu);
|
|
}
|
|
/*
|
|
* Absorb any runtime errors that aren't a result of corruption because
|
|
* this is a cache and we can always fall back to bucket list scanning.
|
|
*/
|
|
if (error != 0 && error != -EEXIST)
|
|
error = 0;
|
|
return error;
|
|
}
|
|
|
|
/* Remember that @prev_agino.next_unlinked = @this_agino. */
|
|
static int
|
|
xfs_iunlink_add_backref(
|
|
struct xfs_perag *pag,
|
|
xfs_agino_t prev_agino,
|
|
xfs_agino_t this_agino)
|
|
{
|
|
struct xfs_iunlink *iu;
|
|
|
|
if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
|
|
return 0;
|
|
|
|
iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
|
|
iu->iu_agino = prev_agino;
|
|
iu->iu_next_unlinked = this_agino;
|
|
|
|
return xfs_iunlink_insert_backref(pag, iu);
|
|
}
|
|
|
|
/*
|
|
* Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
|
|
* If @next_unlinked is NULLAGINO, we drop the backref and exit. If there
|
|
* wasn't any such entry then we don't bother.
|
|
*/
|
|
static int
|
|
xfs_iunlink_change_backref(
|
|
struct xfs_perag *pag,
|
|
xfs_agino_t agino,
|
|
xfs_agino_t next_unlinked)
|
|
{
|
|
struct xfs_iunlink *iu;
|
|
int error;
|
|
|
|
/* Look up the old entry; if there wasn't one then exit. */
|
|
iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
|
|
xfs_iunlink_hash_params);
|
|
if (!iu)
|
|
return 0;
|
|
|
|
/*
|
|
* Remove the entry. This shouldn't ever return an error, but if we
|
|
* couldn't remove the old entry we don't want to add it again to the
|
|
* hash table, and if the entry disappeared on us then someone's
|
|
* violated the locking rules and we need to fail loudly. Either way
|
|
* we cannot remove the inode because internal state is or would have
|
|
* been corrupt.
|
|
*/
|
|
error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
|
|
&iu->iu_rhash_head, xfs_iunlink_hash_params);
|
|
if (error)
|
|
return error;
|
|
|
|
/* If there is no new next entry just free our item and return. */
|
|
if (next_unlinked == NULLAGINO) {
|
|
kmem_free(iu);
|
|
return 0;
|
|
}
|
|
|
|
/* Update the entry and re-add it to the hash table. */
|
|
iu->iu_next_unlinked = next_unlinked;
|
|
return xfs_iunlink_insert_backref(pag, iu);
|
|
}
|
|
|
|
/* Set up the in-core predecessor structures. */
|
|
int
|
|
xfs_iunlink_init(
|
|
struct xfs_perag *pag)
|
|
{
|
|
return rhashtable_init(&pag->pagi_unlinked_hash,
|
|
&xfs_iunlink_hash_params);
|
|
}
|
|
|
|
/* Free the in-core predecessor structures. */
|
|
static void
|
|
xfs_iunlink_free_item(
|
|
void *ptr,
|
|
void *arg)
|
|
{
|
|
struct xfs_iunlink *iu = ptr;
|
|
bool *freed_anything = arg;
|
|
|
|
*freed_anything = true;
|
|
kmem_free(iu);
|
|
}
|
|
|
|
void
|
|
xfs_iunlink_destroy(
|
|
struct xfs_perag *pag)
|
|
{
|
|
bool freed_anything = false;
|
|
|
|
rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
|
|
xfs_iunlink_free_item, &freed_anything);
|
|
|
|
ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
|
|
}
|
|
|
|
/*
|
|
* Point the AGI unlinked bucket at an inode and log the results. The caller
|
|
* is responsible for validating the old value.
|
|
*/
|
|
STATIC int
|
|
xfs_iunlink_update_bucket(
|
|
struct xfs_trans *tp,
|
|
xfs_agnumber_t agno,
|
|
struct xfs_buf *agibp,
|
|
unsigned int bucket_index,
|
|
xfs_agino_t new_agino)
|
|
{
|
|
struct xfs_agi *agi = agibp->b_addr;
|
|
xfs_agino_t old_value;
|
|
int offset;
|
|
|
|
ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino));
|
|
|
|
old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
|
|
trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index,
|
|
old_value, new_agino);
|
|
|
|
/*
|
|
* We should never find the head of the list already set to the value
|
|
* passed in because either we're adding or removing ourselves from the
|
|
* head of the list.
|
|
*/
|
|
if (old_value == new_agino) {
|
|
xfs_buf_mark_corrupt(agibp);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
|
|
offset = offsetof(struct xfs_agi, agi_unlinked) +
|
|
(sizeof(xfs_agino_t) * bucket_index);
|
|
xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
|
|
return 0;
|
|
}
|
|
|
|
/* Set an on-disk inode's next_unlinked pointer. */
|
|
STATIC void
|
|
xfs_iunlink_update_dinode(
|
|
struct xfs_trans *tp,
|
|
xfs_agnumber_t agno,
|
|
xfs_agino_t agino,
|
|
struct xfs_buf *ibp,
|
|
struct xfs_dinode *dip,
|
|
struct xfs_imap *imap,
|
|
xfs_agino_t next_agino)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
int offset;
|
|
|
|
ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
|
|
|
|
trace_xfs_iunlink_update_dinode(mp, agno, agino,
|
|
be32_to_cpu(dip->di_next_unlinked), next_agino);
|
|
|
|
dip->di_next_unlinked = cpu_to_be32(next_agino);
|
|
offset = imap->im_boffset +
|
|
offsetof(struct xfs_dinode, di_next_unlinked);
|
|
|
|
/* need to recalc the inode CRC if appropriate */
|
|
xfs_dinode_calc_crc(mp, dip);
|
|
xfs_trans_inode_buf(tp, ibp);
|
|
xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
|
|
xfs_inobp_check(mp, ibp);
|
|
}
|
|
|
|
/* Set an in-core inode's unlinked pointer and return the old value. */
|
|
STATIC int
|
|
xfs_iunlink_update_inode(
|
|
struct xfs_trans *tp,
|
|
struct xfs_inode *ip,
|
|
xfs_agnumber_t agno,
|
|
xfs_agino_t next_agino,
|
|
xfs_agino_t *old_next_agino)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
struct xfs_dinode *dip;
|
|
struct xfs_buf *ibp;
|
|
xfs_agino_t old_value;
|
|
int error;
|
|
|
|
ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
|
|
|
|
error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0, 0);
|
|
if (error)
|
|
return error;
|
|
|
|
/* Make sure the old pointer isn't garbage. */
|
|
old_value = be32_to_cpu(dip->di_next_unlinked);
|
|
if (!xfs_verify_agino_or_null(mp, agno, old_value)) {
|
|
xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
|
|
sizeof(*dip), __this_address);
|
|
error = -EFSCORRUPTED;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Since we're updating a linked list, we should never find that the
|
|
* current pointer is the same as the new value, unless we're
|
|
* terminating the list.
|
|
*/
|
|
*old_next_agino = old_value;
|
|
if (old_value == next_agino) {
|
|
if (next_agino != NULLAGINO) {
|
|
xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
|
|
dip, sizeof(*dip), __this_address);
|
|
error = -EFSCORRUPTED;
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
/* Ok, update the new pointer. */
|
|
xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino),
|
|
ibp, dip, &ip->i_imap, next_agino);
|
|
return 0;
|
|
out:
|
|
xfs_trans_brelse(tp, ibp);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* This is called when the inode's link count has gone to 0 or we are creating
|
|
* a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0.
|
|
*
|
|
* We place the on-disk inode on a list in the AGI. It will be pulled from this
|
|
* list when the inode is freed.
|
|
*/
|
|
STATIC int
|
|
xfs_iunlink(
|
|
struct xfs_trans *tp,
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
struct xfs_agi *agi;
|
|
struct xfs_buf *agibp;
|
|
xfs_agino_t next_agino;
|
|
xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
|
|
xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
|
|
short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
|
|
int error;
|
|
|
|
ASSERT(VFS_I(ip)->i_nlink == 0);
|
|
ASSERT(VFS_I(ip)->i_mode != 0);
|
|
trace_xfs_iunlink(ip);
|
|
|
|
/* Get the agi buffer first. It ensures lock ordering on the list. */
|
|
error = xfs_read_agi(mp, tp, agno, &agibp);
|
|
if (error)
|
|
return error;
|
|
agi = agibp->b_addr;
|
|
|
|
/*
|
|
* Get the index into the agi hash table for the list this inode will
|
|
* go on. Make sure the pointer isn't garbage and that this inode
|
|
* isn't already on the list.
|
|
*/
|
|
next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
|
|
if (next_agino == agino ||
|
|
!xfs_verify_agino_or_null(mp, agno, next_agino)) {
|
|
xfs_buf_mark_corrupt(agibp);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
if (next_agino != NULLAGINO) {
|
|
struct xfs_perag *pag;
|
|
xfs_agino_t old_agino;
|
|
|
|
/*
|
|
* There is already another inode in the bucket, so point this
|
|
* inode to the current head of the list.
|
|
*/
|
|
error = xfs_iunlink_update_inode(tp, ip, agno, next_agino,
|
|
&old_agino);
|
|
if (error)
|
|
return error;
|
|
ASSERT(old_agino == NULLAGINO);
|
|
|
|
/*
|
|
* agino has been unlinked, add a backref from the next inode
|
|
* back to agino.
|
|
*/
|
|
pag = xfs_perag_get(mp, agno);
|
|
error = xfs_iunlink_add_backref(pag, agino, next_agino);
|
|
xfs_perag_put(pag);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
/* Point the head of the list to point to this inode. */
|
|
return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino);
|
|
}
|
|
|
|
/* Return the imap, dinode pointer, and buffer for an inode. */
|
|
STATIC int
|
|
xfs_iunlink_map_ino(
|
|
struct xfs_trans *tp,
|
|
xfs_agnumber_t agno,
|
|
xfs_agino_t agino,
|
|
struct xfs_imap *imap,
|
|
struct xfs_dinode **dipp,
|
|
struct xfs_buf **bpp)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
int error;
|
|
|
|
imap->im_blkno = 0;
|
|
error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
|
|
if (error) {
|
|
xfs_warn(mp, "%s: xfs_imap returned error %d.",
|
|
__func__, error);
|
|
return error;
|
|
}
|
|
|
|
error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0, 0);
|
|
if (error) {
|
|
xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
|
|
__func__, error);
|
|
return error;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Walk the unlinked chain from @head_agino until we find the inode that
|
|
* points to @target_agino. Return the inode number, map, dinode pointer,
|
|
* and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
|
|
*
|
|
* @tp, @pag, @head_agino, and @target_agino are input parameters.
|
|
* @agino, @imap, @dipp, and @bpp are all output parameters.
|
|
*
|
|
* Do not call this function if @target_agino is the head of the list.
|
|
*/
|
|
STATIC int
|
|
xfs_iunlink_map_prev(
|
|
struct xfs_trans *tp,
|
|
xfs_agnumber_t agno,
|
|
xfs_agino_t head_agino,
|
|
xfs_agino_t target_agino,
|
|
xfs_agino_t *agino,
|
|
struct xfs_imap *imap,
|
|
struct xfs_dinode **dipp,
|
|
struct xfs_buf **bpp,
|
|
struct xfs_perag *pag)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
xfs_agino_t next_agino;
|
|
int error;
|
|
|
|
ASSERT(head_agino != target_agino);
|
|
*bpp = NULL;
|
|
|
|
/* See if our backref cache can find it faster. */
|
|
*agino = xfs_iunlink_lookup_backref(pag, target_agino);
|
|
if (*agino != NULLAGINO) {
|
|
error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp);
|
|
if (error)
|
|
return error;
|
|
|
|
if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
|
|
return 0;
|
|
|
|
/*
|
|
* If we get here the cache contents were corrupt, so drop the
|
|
* buffer and fall back to walking the bucket list.
|
|
*/
|
|
xfs_trans_brelse(tp, *bpp);
|
|
*bpp = NULL;
|
|
WARN_ON_ONCE(1);
|
|
}
|
|
|
|
trace_xfs_iunlink_map_prev_fallback(mp, agno);
|
|
|
|
/* Otherwise, walk the entire bucket until we find it. */
|
|
next_agino = head_agino;
|
|
while (next_agino != target_agino) {
|
|
xfs_agino_t unlinked_agino;
|
|
|
|
if (*bpp)
|
|
xfs_trans_brelse(tp, *bpp);
|
|
|
|
*agino = next_agino;
|
|
error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp,
|
|
bpp);
|
|
if (error)
|
|
return error;
|
|
|
|
unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
|
|
/*
|
|
* Make sure this pointer is valid and isn't an obvious
|
|
* infinite loop.
|
|
*/
|
|
if (!xfs_verify_agino(mp, agno, unlinked_agino) ||
|
|
next_agino == unlinked_agino) {
|
|
XFS_CORRUPTION_ERROR(__func__,
|
|
XFS_ERRLEVEL_LOW, mp,
|
|
*dipp, sizeof(**dipp));
|
|
error = -EFSCORRUPTED;
|
|
return error;
|
|
}
|
|
next_agino = unlinked_agino;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Pull the on-disk inode from the AGI unlinked list.
|
|
*/
|
|
STATIC int
|
|
xfs_iunlink_remove(
|
|
struct xfs_trans *tp,
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
struct xfs_agi *agi;
|
|
struct xfs_buf *agibp;
|
|
struct xfs_buf *last_ibp;
|
|
struct xfs_dinode *last_dip = NULL;
|
|
struct xfs_perag *pag = NULL;
|
|
xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
|
|
xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
|
|
xfs_agino_t next_agino;
|
|
xfs_agino_t head_agino;
|
|
short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
|
|
int error;
|
|
|
|
trace_xfs_iunlink_remove(ip);
|
|
|
|
/* Get the agi buffer first. It ensures lock ordering on the list. */
|
|
error = xfs_read_agi(mp, tp, agno, &agibp);
|
|
if (error)
|
|
return error;
|
|
agi = agibp->b_addr;
|
|
|
|
/*
|
|
* Get the index into the agi hash table for the list this inode will
|
|
* go on. Make sure the head pointer isn't garbage.
|
|
*/
|
|
head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
|
|
if (!xfs_verify_agino(mp, agno, head_agino)) {
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
|
|
agi, sizeof(*agi));
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
/*
|
|
* Set our inode's next_unlinked pointer to NULL and then return
|
|
* the old pointer value so that we can update whatever was previous
|
|
* to us in the list to point to whatever was next in the list.
|
|
*/
|
|
error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* If there was a backref pointing from the next inode back to this
|
|
* one, remove it because we've removed this inode from the list.
|
|
*
|
|
* Later, if this inode was in the middle of the list we'll update
|
|
* this inode's backref to point from the next inode.
|
|
*/
|
|
if (next_agino != NULLAGINO) {
|
|
pag = xfs_perag_get(mp, agno);
|
|
error = xfs_iunlink_change_backref(pag, next_agino,
|
|
NULLAGINO);
|
|
if (error)
|
|
goto out;
|
|
}
|
|
|
|
if (head_agino == agino) {
|
|
/* Point the head of the list to the next unlinked inode. */
|
|
error = xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index,
|
|
next_agino);
|
|
if (error)
|
|
goto out;
|
|
} else {
|
|
struct xfs_imap imap;
|
|
xfs_agino_t prev_agino;
|
|
|
|
if (!pag)
|
|
pag = xfs_perag_get(mp, agno);
|
|
|
|
/* We need to search the list for the inode being freed. */
|
|
error = xfs_iunlink_map_prev(tp, agno, head_agino, agino,
|
|
&prev_agino, &imap, &last_dip, &last_ibp,
|
|
pag);
|
|
if (error)
|
|
goto out;
|
|
|
|
/* Point the previous inode on the list to the next inode. */
|
|
xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp,
|
|
last_dip, &imap, next_agino);
|
|
|
|
/*
|
|
* Now we deal with the backref for this inode. If this inode
|
|
* pointed at a real inode, change the backref that pointed to
|
|
* us to point to our old next. If this inode was the end of
|
|
* the list, delete the backref that pointed to us. Note that
|
|
* change_backref takes care of deleting the backref if
|
|
* next_agino is NULLAGINO.
|
|
*/
|
|
error = xfs_iunlink_change_backref(pag, agino, next_agino);
|
|
if (error)
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
if (pag)
|
|
xfs_perag_put(pag);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Look up the inode number specified and mark it stale if it is found. If it is
|
|
* dirty, return the inode so it can be attached to the cluster buffer so it can
|
|
* be processed appropriately when the cluster free transaction completes.
|
|
*/
|
|
static struct xfs_inode *
|
|
xfs_ifree_get_one_inode(
|
|
struct xfs_perag *pag,
|
|
struct xfs_inode *free_ip,
|
|
xfs_ino_t inum)
|
|
{
|
|
struct xfs_mount *mp = pag->pag_mount;
|
|
struct xfs_inode *ip;
|
|
|
|
retry:
|
|
rcu_read_lock();
|
|
ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
|
|
|
|
/* Inode not in memory, nothing to do */
|
|
if (!ip)
|
|
goto out_rcu_unlock;
|
|
|
|
/*
|
|
* because this is an RCU protected lookup, we could find a recently
|
|
* freed or even reallocated inode during the lookup. We need to check
|
|
* under the i_flags_lock for a valid inode here. Skip it if it is not
|
|
* valid, the wrong inode or stale.
|
|
*/
|
|
spin_lock(&ip->i_flags_lock);
|
|
if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) {
|
|
spin_unlock(&ip->i_flags_lock);
|
|
goto out_rcu_unlock;
|
|
}
|
|
spin_unlock(&ip->i_flags_lock);
|
|
|
|
/*
|
|
* Don't try to lock/unlock the current inode, but we _cannot_ skip the
|
|
* other inodes that we did not find in the list attached to the buffer
|
|
* and are not already marked stale. If we can't lock it, back off and
|
|
* retry.
|
|
*/
|
|
if (ip != free_ip) {
|
|
if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
|
|
rcu_read_unlock();
|
|
delay(1);
|
|
goto retry;
|
|
}
|
|
|
|
/*
|
|
* Check the inode number again in case we're racing with
|
|
* freeing in xfs_reclaim_inode(). See the comments in that
|
|
* function for more information as to why the initial check is
|
|
* not sufficient.
|
|
*/
|
|
if (ip->i_ino != inum) {
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
goto out_rcu_unlock;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
xfs_iflock(ip);
|
|
xfs_iflags_set(ip, XFS_ISTALE);
|
|
|
|
/*
|
|
* We don't need to attach clean inodes or those only with unlogged
|
|
* changes (which we throw away, anyway).
|
|
*/
|
|
if (!ip->i_itemp || xfs_inode_clean(ip)) {
|
|
ASSERT(ip != free_ip);
|
|
xfs_ifunlock(ip);
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
goto out_no_inode;
|
|
}
|
|
return ip;
|
|
|
|
out_rcu_unlock:
|
|
rcu_read_unlock();
|
|
out_no_inode:
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* A big issue when freeing the inode cluster is that we _cannot_ skip any
|
|
* inodes that are in memory - they all must be marked stale and attached to
|
|
* the cluster buffer.
|
|
*/
|
|
STATIC int
|
|
xfs_ifree_cluster(
|
|
xfs_inode_t *free_ip,
|
|
xfs_trans_t *tp,
|
|
struct xfs_icluster *xic)
|
|
{
|
|
xfs_mount_t *mp = free_ip->i_mount;
|
|
int nbufs;
|
|
int i, j;
|
|
int ioffset;
|
|
xfs_daddr_t blkno;
|
|
xfs_buf_t *bp;
|
|
xfs_inode_t *ip;
|
|
xfs_inode_log_item_t *iip;
|
|
struct xfs_log_item *lip;
|
|
struct xfs_perag *pag;
|
|
struct xfs_ino_geometry *igeo = M_IGEO(mp);
|
|
xfs_ino_t inum;
|
|
int error;
|
|
|
|
inum = xic->first_ino;
|
|
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
|
|
nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
|
|
|
|
for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
|
|
/*
|
|
* The allocation bitmap tells us which inodes of the chunk were
|
|
* physically allocated. Skip the cluster if an inode falls into
|
|
* a sparse region.
|
|
*/
|
|
ioffset = inum - xic->first_ino;
|
|
if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
|
|
ASSERT(ioffset % igeo->inodes_per_cluster == 0);
|
|
continue;
|
|
}
|
|
|
|
blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
|
|
XFS_INO_TO_AGBNO(mp, inum));
|
|
|
|
/*
|
|
* We obtain and lock the backing buffer first in the process
|
|
* here, as we have to ensure that any dirty inode that we
|
|
* can't get the flush lock on is attached to the buffer.
|
|
* If we scan the in-memory inodes first, then buffer IO can
|
|
* complete before we get a lock on it, and hence we may fail
|
|
* to mark all the active inodes on the buffer stale.
|
|
*/
|
|
error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
|
|
mp->m_bsize * igeo->blocks_per_cluster,
|
|
XBF_UNMAPPED, &bp);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* This buffer may not have been correctly initialised as we
|
|
* didn't read it from disk. That's not important because we are
|
|
* only using to mark the buffer as stale in the log, and to
|
|
* attach stale cached inodes on it. That means it will never be
|
|
* dispatched for IO. If it is, we want to know about it, and we
|
|
* want it to fail. We can acheive this by adding a write
|
|
* verifier to the buffer.
|
|
*/
|
|
bp->b_ops = &xfs_inode_buf_ops;
|
|
|
|
/*
|
|
* Walk the inodes already attached to the buffer and mark them
|
|
* stale. These will all have the flush locks held, so an
|
|
* in-memory inode walk can't lock them. By marking them all
|
|
* stale first, we will not attempt to lock them in the loop
|
|
* below as the XFS_ISTALE flag will be set.
|
|
*/
|
|
list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
|
|
if (lip->li_type == XFS_LI_INODE) {
|
|
iip = (xfs_inode_log_item_t *)lip;
|
|
ASSERT(iip->ili_logged == 1);
|
|
lip->li_cb = xfs_istale_done;
|
|
xfs_trans_ail_copy_lsn(mp->m_ail,
|
|
&iip->ili_flush_lsn,
|
|
&iip->ili_item.li_lsn);
|
|
xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* For each inode in memory attempt to add it to the inode
|
|
* buffer and set it up for being staled on buffer IO
|
|
* completion. This is safe as we've locked out tail pushing
|
|
* and flushing by locking the buffer.
|
|
*
|
|
* We have already marked every inode that was part of a
|
|
* transaction stale above, which means there is no point in
|
|
* even trying to lock them.
|
|
*/
|
|
for (i = 0; i < igeo->inodes_per_cluster; i++) {
|
|
ip = xfs_ifree_get_one_inode(pag, free_ip, inum + i);
|
|
if (!ip)
|
|
continue;
|
|
|
|
iip = ip->i_itemp;
|
|
iip->ili_last_fields = iip->ili_fields;
|
|
iip->ili_fields = 0;
|
|
iip->ili_fsync_fields = 0;
|
|
iip->ili_logged = 1;
|
|
xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
|
|
&iip->ili_item.li_lsn);
|
|
|
|
xfs_buf_attach_iodone(bp, xfs_istale_done,
|
|
&iip->ili_item);
|
|
|
|
if (ip != free_ip)
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
}
|
|
|
|
xfs_trans_stale_inode_buf(tp, bp);
|
|
xfs_trans_binval(tp, bp);
|
|
}
|
|
|
|
xfs_perag_put(pag);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Free any local-format buffers sitting around before we reset to
|
|
* extents format.
|
|
*/
|
|
static inline void
|
|
xfs_ifree_local_data(
|
|
struct xfs_inode *ip,
|
|
int whichfork)
|
|
{
|
|
struct xfs_ifork *ifp;
|
|
|
|
if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
|
|
return;
|
|
|
|
ifp = XFS_IFORK_PTR(ip, whichfork);
|
|
xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
|
|
}
|
|
|
|
/*
|
|
* This is called to return an inode to the inode free list.
|
|
* The inode should already be truncated to 0 length and have
|
|
* no pages associated with it. This routine also assumes that
|
|
* the inode is already a part of the transaction.
|
|
*
|
|
* The on-disk copy of the inode will have been added to the list
|
|
* of unlinked inodes in the AGI. We need to remove the inode from
|
|
* that list atomically with respect to freeing it here.
|
|
*/
|
|
int
|
|
xfs_ifree(
|
|
struct xfs_trans *tp,
|
|
struct xfs_inode *ip)
|
|
{
|
|
int error;
|
|
struct xfs_icluster xic = { 0 };
|
|
|
|
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
|
|
ASSERT(VFS_I(ip)->i_nlink == 0);
|
|
ASSERT(ip->i_d.di_nextents == 0);
|
|
ASSERT(ip->i_d.di_anextents == 0);
|
|
ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
|
|
ASSERT(ip->i_d.di_nblocks == 0);
|
|
|
|
/*
|
|
* Pull the on-disk inode from the AGI unlinked list.
|
|
*/
|
|
error = xfs_iunlink_remove(tp, ip);
|
|
if (error)
|
|
return error;
|
|
|
|
error = xfs_difree(tp, ip->i_ino, &xic);
|
|
if (error)
|
|
return error;
|
|
|
|
xfs_ifree_local_data(ip, XFS_DATA_FORK);
|
|
xfs_ifree_local_data(ip, XFS_ATTR_FORK);
|
|
|
|
VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
|
|
ip->i_d.di_flags = 0;
|
|
ip->i_d.di_flags2 = 0;
|
|
ip->i_d.di_dmevmask = 0;
|
|
ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
|
|
ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
|
|
ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
|
|
|
|
/* Don't attempt to replay owner changes for a deleted inode */
|
|
ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
|
|
|
|
/*
|
|
* Bump the generation count so no one will be confused
|
|
* by reincarnations of this inode.
|
|
*/
|
|
VFS_I(ip)->i_generation++;
|
|
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
|
|
|
|
if (xic.deleted)
|
|
error = xfs_ifree_cluster(ip, tp, &xic);
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* This is called to unpin an inode. The caller must have the inode locked
|
|
* in at least shared mode so that the buffer cannot be subsequently pinned
|
|
* once someone is waiting for it to be unpinned.
|
|
*/
|
|
static void
|
|
xfs_iunpin(
|
|
struct xfs_inode *ip)
|
|
{
|
|
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
|
|
|
|
trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
|
|
|
|
/* Give the log a push to start the unpinning I/O */
|
|
xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
|
|
|
|
}
|
|
|
|
static void
|
|
__xfs_iunpin_wait(
|
|
struct xfs_inode *ip)
|
|
{
|
|
wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
|
|
DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
|
|
|
|
xfs_iunpin(ip);
|
|
|
|
do {
|
|
prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
|
|
if (xfs_ipincount(ip))
|
|
io_schedule();
|
|
} while (xfs_ipincount(ip));
|
|
finish_wait(wq, &wait.wq_entry);
|
|
}
|
|
|
|
void
|
|
xfs_iunpin_wait(
|
|
struct xfs_inode *ip)
|
|
{
|
|
if (xfs_ipincount(ip))
|
|
__xfs_iunpin_wait(ip);
|
|
}
|
|
|
|
/*
|
|
* Removing an inode from the namespace involves removing the directory entry
|
|
* and dropping the link count on the inode. Removing the directory entry can
|
|
* result in locking an AGF (directory blocks were freed) and removing a link
|
|
* count can result in placing the inode on an unlinked list which results in
|
|
* locking an AGI.
|
|
*
|
|
* The big problem here is that we have an ordering constraint on AGF and AGI
|
|
* locking - inode allocation locks the AGI, then can allocate a new extent for
|
|
* new inodes, locking the AGF after the AGI. Similarly, freeing the inode
|
|
* removes the inode from the unlinked list, requiring that we lock the AGI
|
|
* first, and then freeing the inode can result in an inode chunk being freed
|
|
* and hence freeing disk space requiring that we lock an AGF.
|
|
*
|
|
* Hence the ordering that is imposed by other parts of the code is AGI before
|
|
* AGF. This means we cannot remove the directory entry before we drop the inode
|
|
* reference count and put it on the unlinked list as this results in a lock
|
|
* order of AGF then AGI, and this can deadlock against inode allocation and
|
|
* freeing. Therefore we must drop the link counts before we remove the
|
|
* directory entry.
|
|
*
|
|
* This is still safe from a transactional point of view - it is not until we
|
|
* get to xfs_defer_finish() that we have the possibility of multiple
|
|
* transactions in this operation. Hence as long as we remove the directory
|
|
* entry and drop the link count in the first transaction of the remove
|
|
* operation, there are no transactional constraints on the ordering here.
|
|
*/
|
|
int
|
|
xfs_remove(
|
|
xfs_inode_t *dp,
|
|
struct xfs_name *name,
|
|
xfs_inode_t *ip)
|
|
{
|
|
xfs_mount_t *mp = dp->i_mount;
|
|
xfs_trans_t *tp = NULL;
|
|
int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
|
|
int error = 0;
|
|
uint resblks;
|
|
|
|
trace_xfs_remove(dp, name);
|
|
|
|
if (XFS_FORCED_SHUTDOWN(mp))
|
|
return -EIO;
|
|
|
|
error = xfs_qm_dqattach(dp);
|
|
if (error)
|
|
goto std_return;
|
|
|
|
error = xfs_qm_dqattach(ip);
|
|
if (error)
|
|
goto std_return;
|
|
|
|
/*
|
|
* We try to get the real space reservation first,
|
|
* allowing for directory btree deletion(s) implying
|
|
* possible bmap insert(s). If we can't get the space
|
|
* reservation then we use 0 instead, and avoid the bmap
|
|
* btree insert(s) in the directory code by, if the bmap
|
|
* insert tries to happen, instead trimming the LAST
|
|
* block from the directory.
|
|
*/
|
|
resblks = XFS_REMOVE_SPACE_RES(mp);
|
|
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
|
|
if (error == -ENOSPC) {
|
|
resblks = 0;
|
|
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
|
|
&tp);
|
|
}
|
|
if (error) {
|
|
ASSERT(error != -ENOSPC);
|
|
goto std_return;
|
|
}
|
|
|
|
xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
|
|
|
|
xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
|
|
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
|
|
|
|
/*
|
|
* If we're removing a directory perform some additional validation.
|
|
*/
|
|
if (is_dir) {
|
|
ASSERT(VFS_I(ip)->i_nlink >= 2);
|
|
if (VFS_I(ip)->i_nlink != 2) {
|
|
error = -ENOTEMPTY;
|
|
goto out_trans_cancel;
|
|
}
|
|
if (!xfs_dir_isempty(ip)) {
|
|
error = -ENOTEMPTY;
|
|
goto out_trans_cancel;
|
|
}
|
|
|
|
/* Drop the link from ip's "..". */
|
|
error = xfs_droplink(tp, dp);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
/* Drop the "." link from ip to self. */
|
|
error = xfs_droplink(tp, ip);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
} else {
|
|
/*
|
|
* When removing a non-directory we need to log the parent
|
|
* inode here. For a directory this is done implicitly
|
|
* by the xfs_droplink call for the ".." entry.
|
|
*/
|
|
xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
|
|
}
|
|
xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
|
|
|
|
/* Drop the link from dp to ip. */
|
|
error = xfs_droplink(tp, ip);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
|
|
if (error) {
|
|
ASSERT(error != -ENOENT);
|
|
goto out_trans_cancel;
|
|
}
|
|
|
|
/*
|
|
* If this is a synchronous mount, make sure that the
|
|
* remove transaction goes to disk before returning to
|
|
* the user.
|
|
*/
|
|
if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
|
|
xfs_trans_set_sync(tp);
|
|
|
|
error = xfs_trans_commit(tp);
|
|
if (error)
|
|
goto std_return;
|
|
|
|
if (is_dir && xfs_inode_is_filestream(ip))
|
|
xfs_filestream_deassociate(ip);
|
|
|
|
return 0;
|
|
|
|
out_trans_cancel:
|
|
xfs_trans_cancel(tp);
|
|
std_return:
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Enter all inodes for a rename transaction into a sorted array.
|
|
*/
|
|
#define __XFS_SORT_INODES 5
|
|
STATIC void
|
|
xfs_sort_for_rename(
|
|
struct xfs_inode *dp1, /* in: old (source) directory inode */
|
|
struct xfs_inode *dp2, /* in: new (target) directory inode */
|
|
struct xfs_inode *ip1, /* in: inode of old entry */
|
|
struct xfs_inode *ip2, /* in: inode of new entry */
|
|
struct xfs_inode *wip, /* in: whiteout inode */
|
|
struct xfs_inode **i_tab,/* out: sorted array of inodes */
|
|
int *num_inodes) /* in/out: inodes in array */
|
|
{
|
|
int i, j;
|
|
|
|
ASSERT(*num_inodes == __XFS_SORT_INODES);
|
|
memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
|
|
|
|
/*
|
|
* i_tab contains a list of pointers to inodes. We initialize
|
|
* the table here & we'll sort it. We will then use it to
|
|
* order the acquisition of the inode locks.
|
|
*
|
|
* Note that the table may contain duplicates. e.g., dp1 == dp2.
|
|
*/
|
|
i = 0;
|
|
i_tab[i++] = dp1;
|
|
i_tab[i++] = dp2;
|
|
i_tab[i++] = ip1;
|
|
if (ip2)
|
|
i_tab[i++] = ip2;
|
|
if (wip)
|
|
i_tab[i++] = wip;
|
|
*num_inodes = i;
|
|
|
|
/*
|
|
* Sort the elements via bubble sort. (Remember, there are at
|
|
* most 5 elements to sort, so this is adequate.)
|
|
*/
|
|
for (i = 0; i < *num_inodes; i++) {
|
|
for (j = 1; j < *num_inodes; j++) {
|
|
if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
|
|
struct xfs_inode *temp = i_tab[j];
|
|
i_tab[j] = i_tab[j-1];
|
|
i_tab[j-1] = temp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
xfs_finish_rename(
|
|
struct xfs_trans *tp)
|
|
{
|
|
/*
|
|
* If this is a synchronous mount, make sure that the rename transaction
|
|
* goes to disk before returning to the user.
|
|
*/
|
|
if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
|
|
xfs_trans_set_sync(tp);
|
|
|
|
return xfs_trans_commit(tp);
|
|
}
|
|
|
|
/*
|
|
* xfs_cross_rename()
|
|
*
|
|
* responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
|
|
*/
|
|
STATIC int
|
|
xfs_cross_rename(
|
|
struct xfs_trans *tp,
|
|
struct xfs_inode *dp1,
|
|
struct xfs_name *name1,
|
|
struct xfs_inode *ip1,
|
|
struct xfs_inode *dp2,
|
|
struct xfs_name *name2,
|
|
struct xfs_inode *ip2,
|
|
int spaceres)
|
|
{
|
|
int error = 0;
|
|
int ip1_flags = 0;
|
|
int ip2_flags = 0;
|
|
int dp2_flags = 0;
|
|
|
|
/* Swap inode number for dirent in first parent */
|
|
error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
|
|
if (error)
|
|
goto out_trans_abort;
|
|
|
|
/* Swap inode number for dirent in second parent */
|
|
error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
|
|
if (error)
|
|
goto out_trans_abort;
|
|
|
|
/*
|
|
* If we're renaming one or more directories across different parents,
|
|
* update the respective ".." entries (and link counts) to match the new
|
|
* parents.
|
|
*/
|
|
if (dp1 != dp2) {
|
|
dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
|
|
|
|
if (S_ISDIR(VFS_I(ip2)->i_mode)) {
|
|
error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
|
|
dp1->i_ino, spaceres);
|
|
if (error)
|
|
goto out_trans_abort;
|
|
|
|
/* transfer ip2 ".." reference to dp1 */
|
|
if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
|
|
error = xfs_droplink(tp, dp2);
|
|
if (error)
|
|
goto out_trans_abort;
|
|
xfs_bumplink(tp, dp1);
|
|
}
|
|
|
|
/*
|
|
* Although ip1 isn't changed here, userspace needs
|
|
* to be warned about the change, so that applications
|
|
* relying on it (like backup ones), will properly
|
|
* notify the change
|
|
*/
|
|
ip1_flags |= XFS_ICHGTIME_CHG;
|
|
ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
|
|
}
|
|
|
|
if (S_ISDIR(VFS_I(ip1)->i_mode)) {
|
|
error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
|
|
dp2->i_ino, spaceres);
|
|
if (error)
|
|
goto out_trans_abort;
|
|
|
|
/* transfer ip1 ".." reference to dp2 */
|
|
if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
|
|
error = xfs_droplink(tp, dp1);
|
|
if (error)
|
|
goto out_trans_abort;
|
|
xfs_bumplink(tp, dp2);
|
|
}
|
|
|
|
/*
|
|
* Although ip2 isn't changed here, userspace needs
|
|
* to be warned about the change, so that applications
|
|
* relying on it (like backup ones), will properly
|
|
* notify the change
|
|
*/
|
|
ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
|
|
ip2_flags |= XFS_ICHGTIME_CHG;
|
|
}
|
|
}
|
|
|
|
if (ip1_flags) {
|
|
xfs_trans_ichgtime(tp, ip1, ip1_flags);
|
|
xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
|
|
}
|
|
if (ip2_flags) {
|
|
xfs_trans_ichgtime(tp, ip2, ip2_flags);
|
|
xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
|
|
}
|
|
if (dp2_flags) {
|
|
xfs_trans_ichgtime(tp, dp2, dp2_flags);
|
|
xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
|
|
}
|
|
xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
|
|
xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
|
|
return xfs_finish_rename(tp);
|
|
|
|
out_trans_abort:
|
|
xfs_trans_cancel(tp);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* xfs_rename_alloc_whiteout()
|
|
*
|
|
* Return a referenced, unlinked, unlocked inode that that can be used as a
|
|
* whiteout in a rename transaction. We use a tmpfile inode here so that if we
|
|
* crash between allocating the inode and linking it into the rename transaction
|
|
* recovery will free the inode and we won't leak it.
|
|
*/
|
|
static int
|
|
xfs_rename_alloc_whiteout(
|
|
struct xfs_inode *dp,
|
|
struct xfs_inode **wip)
|
|
{
|
|
struct xfs_inode *tmpfile;
|
|
int error;
|
|
|
|
error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* Prepare the tmpfile inode as if it were created through the VFS.
|
|
* Complete the inode setup and flag it as linkable. nlink is already
|
|
* zero, so we can skip the drop_nlink.
|
|
*/
|
|
xfs_setup_iops(tmpfile);
|
|
xfs_finish_inode_setup(tmpfile);
|
|
VFS_I(tmpfile)->i_state |= I_LINKABLE;
|
|
|
|
*wip = tmpfile;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* xfs_rename
|
|
*/
|
|
int
|
|
xfs_rename(
|
|
struct xfs_inode *src_dp,
|
|
struct xfs_name *src_name,
|
|
struct xfs_inode *src_ip,
|
|
struct xfs_inode *target_dp,
|
|
struct xfs_name *target_name,
|
|
struct xfs_inode *target_ip,
|
|
unsigned int flags)
|
|
{
|
|
struct xfs_mount *mp = src_dp->i_mount;
|
|
struct xfs_trans *tp;
|
|
struct xfs_inode *wip = NULL; /* whiteout inode */
|
|
struct xfs_inode *inodes[__XFS_SORT_INODES];
|
|
struct xfs_buf *agibp;
|
|
int num_inodes = __XFS_SORT_INODES;
|
|
bool new_parent = (src_dp != target_dp);
|
|
bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
|
|
int spaceres;
|
|
int error;
|
|
|
|
trace_xfs_rename(src_dp, target_dp, src_name, target_name);
|
|
|
|
if ((flags & RENAME_EXCHANGE) && !target_ip)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* If we are doing a whiteout operation, allocate the whiteout inode
|
|
* we will be placing at the target and ensure the type is set
|
|
* appropriately.
|
|
*/
|
|
if (flags & RENAME_WHITEOUT) {
|
|
ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
|
|
error = xfs_rename_alloc_whiteout(target_dp, &wip);
|
|
if (error)
|
|
return error;
|
|
|
|
/* setup target dirent info as whiteout */
|
|
src_name->type = XFS_DIR3_FT_CHRDEV;
|
|
}
|
|
|
|
xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
|
|
inodes, &num_inodes);
|
|
|
|
spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
|
|
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
|
|
if (error == -ENOSPC) {
|
|
spaceres = 0;
|
|
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
|
|
&tp);
|
|
}
|
|
if (error)
|
|
goto out_release_wip;
|
|
|
|
/*
|
|
* Attach the dquots to the inodes
|
|
*/
|
|
error = xfs_qm_vop_rename_dqattach(inodes);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
/*
|
|
* Lock all the participating inodes. Depending upon whether
|
|
* the target_name exists in the target directory, and
|
|
* whether the target directory is the same as the source
|
|
* directory, we can lock from 2 to 4 inodes.
|
|
*/
|
|
xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
|
|
|
|
/*
|
|
* Join all the inodes to the transaction. From this point on,
|
|
* we can rely on either trans_commit or trans_cancel to unlock
|
|
* them.
|
|
*/
|
|
xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
|
|
if (new_parent)
|
|
xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
|
|
xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
|
|
if (target_ip)
|
|
xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
|
|
if (wip)
|
|
xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
|
|
|
|
/*
|
|
* If we are using project inheritance, we only allow renames
|
|
* into our tree when the project IDs are the same; else the
|
|
* tree quota mechanism would be circumvented.
|
|
*/
|
|
if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
|
|
target_dp->i_d.di_projid != src_ip->i_d.di_projid)) {
|
|
error = -EXDEV;
|
|
goto out_trans_cancel;
|
|
}
|
|
|
|
/* RENAME_EXCHANGE is unique from here on. */
|
|
if (flags & RENAME_EXCHANGE)
|
|
return xfs_cross_rename(tp, src_dp, src_name, src_ip,
|
|
target_dp, target_name, target_ip,
|
|
spaceres);
|
|
|
|
/*
|
|
* Check for expected errors before we dirty the transaction
|
|
* so we can return an error without a transaction abort.
|
|
*/
|
|
if (target_ip == NULL) {
|
|
/*
|
|
* If there's no space reservation, check the entry will
|
|
* fit before actually inserting it.
|
|
*/
|
|
if (!spaceres) {
|
|
error = xfs_dir_canenter(tp, target_dp, target_name);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
}
|
|
} else {
|
|
/*
|
|
* If target exists and it's a directory, check that whether
|
|
* it can be destroyed.
|
|
*/
|
|
if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
|
|
(!xfs_dir_isempty(target_ip) ||
|
|
(VFS_I(target_ip)->i_nlink > 2))) {
|
|
error = -EEXIST;
|
|
goto out_trans_cancel;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Directory entry creation below may acquire the AGF. Remove
|
|
* the whiteout from the unlinked list first to preserve correct
|
|
* AGI/AGF locking order. This dirties the transaction so failures
|
|
* after this point will abort and log recovery will clean up the
|
|
* mess.
|
|
*
|
|
* For whiteouts, we need to bump the link count on the whiteout
|
|
* inode. After this point, we have a real link, clear the tmpfile
|
|
* state flag from the inode so it doesn't accidentally get misused
|
|
* in future.
|
|
*/
|
|
if (wip) {
|
|
ASSERT(VFS_I(wip)->i_nlink == 0);
|
|
error = xfs_iunlink_remove(tp, wip);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
xfs_bumplink(tp, wip);
|
|
VFS_I(wip)->i_state &= ~I_LINKABLE;
|
|
}
|
|
|
|
/*
|
|
* Set up the target.
|
|
*/
|
|
if (target_ip == NULL) {
|
|
/*
|
|
* If target does not exist and the rename crosses
|
|
* directories, adjust the target directory link count
|
|
* to account for the ".." reference from the new entry.
|
|
*/
|
|
error = xfs_dir_createname(tp, target_dp, target_name,
|
|
src_ip->i_ino, spaceres);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
xfs_trans_ichgtime(tp, target_dp,
|
|
XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
|
|
|
|
if (new_parent && src_is_directory) {
|
|
xfs_bumplink(tp, target_dp);
|
|
}
|
|
} else { /* target_ip != NULL */
|
|
/*
|
|
* Link the source inode under the target name.
|
|
* If the source inode is a directory and we are moving
|
|
* it across directories, its ".." entry will be
|
|
* inconsistent until we replace that down below.
|
|
*
|
|
* In case there is already an entry with the same
|
|
* name at the destination directory, remove it first.
|
|
*/
|
|
|
|
/*
|
|
* Check whether the replace operation will need to allocate
|
|
* blocks. This happens when the shortform directory lacks
|
|
* space and we have to convert it to a block format directory.
|
|
* When more blocks are necessary, we must lock the AGI first
|
|
* to preserve locking order (AGI -> AGF).
|
|
*/
|
|
if (xfs_dir2_sf_replace_needblock(target_dp, src_ip->i_ino)) {
|
|
error = xfs_read_agi(mp, tp,
|
|
XFS_INO_TO_AGNO(mp, target_ip->i_ino),
|
|
&agibp);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
}
|
|
|
|
error = xfs_dir_replace(tp, target_dp, target_name,
|
|
src_ip->i_ino, spaceres);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
xfs_trans_ichgtime(tp, target_dp,
|
|
XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
|
|
|
|
/*
|
|
* Decrement the link count on the target since the target
|
|
* dir no longer points to it.
|
|
*/
|
|
error = xfs_droplink(tp, target_ip);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
if (src_is_directory) {
|
|
/*
|
|
* Drop the link from the old "." entry.
|
|
*/
|
|
error = xfs_droplink(tp, target_ip);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
}
|
|
} /* target_ip != NULL */
|
|
|
|
/*
|
|
* Remove the source.
|
|
*/
|
|
if (new_parent && src_is_directory) {
|
|
/*
|
|
* Rewrite the ".." entry to point to the new
|
|
* directory.
|
|
*/
|
|
error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
|
|
target_dp->i_ino, spaceres);
|
|
ASSERT(error != -EEXIST);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
}
|
|
|
|
/*
|
|
* We always want to hit the ctime on the source inode.
|
|
*
|
|
* This isn't strictly required by the standards since the source
|
|
* inode isn't really being changed, but old unix file systems did
|
|
* it and some incremental backup programs won't work without it.
|
|
*/
|
|
xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
|
|
xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
|
|
|
|
/*
|
|
* Adjust the link count on src_dp. This is necessary when
|
|
* renaming a directory, either within one parent when
|
|
* the target existed, or across two parent directories.
|
|
*/
|
|
if (src_is_directory && (new_parent || target_ip != NULL)) {
|
|
|
|
/*
|
|
* Decrement link count on src_directory since the
|
|
* entry that's moved no longer points to it.
|
|
*/
|
|
error = xfs_droplink(tp, src_dp);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
}
|
|
|
|
/*
|
|
* For whiteouts, we only need to update the source dirent with the
|
|
* inode number of the whiteout inode rather than removing it
|
|
* altogether.
|
|
*/
|
|
if (wip) {
|
|
error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
|
|
spaceres);
|
|
} else
|
|
error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
|
|
spaceres);
|
|
if (error)
|
|
goto out_trans_cancel;
|
|
|
|
xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
|
|
xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
|
|
if (new_parent)
|
|
xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
|
|
|
|
error = xfs_finish_rename(tp);
|
|
if (wip)
|
|
xfs_irele(wip);
|
|
return error;
|
|
|
|
out_trans_cancel:
|
|
xfs_trans_cancel(tp);
|
|
out_release_wip:
|
|
if (wip)
|
|
xfs_irele(wip);
|
|
return error;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_iflush_cluster(
|
|
struct xfs_inode *ip,
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_perag *pag;
|
|
unsigned long first_index, mask;
|
|
int cilist_size;
|
|
struct xfs_inode **cilist;
|
|
struct xfs_inode *cip;
|
|
struct xfs_ino_geometry *igeo = M_IGEO(mp);
|
|
int nr_found;
|
|
int clcount = 0;
|
|
int i;
|
|
|
|
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
|
|
|
|
cilist_size = igeo->inodes_per_cluster * sizeof(struct xfs_inode *);
|
|
cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
|
|
if (!cilist)
|
|
goto out_put;
|
|
|
|
mask = ~(igeo->inodes_per_cluster - 1);
|
|
first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
|
|
rcu_read_lock();
|
|
/* really need a gang lookup range call here */
|
|
nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
|
|
first_index, igeo->inodes_per_cluster);
|
|
if (nr_found == 0)
|
|
goto out_free;
|
|
|
|
for (i = 0; i < nr_found; i++) {
|
|
cip = cilist[i];
|
|
if (cip == ip)
|
|
continue;
|
|
|
|
/*
|
|
* because this is an RCU protected lookup, we could find a
|
|
* recently freed or even reallocated inode during the lookup.
|
|
* We need to check under the i_flags_lock for a valid inode
|
|
* here. Skip it if it is not valid or the wrong inode.
|
|
*/
|
|
spin_lock(&cip->i_flags_lock);
|
|
if (!cip->i_ino ||
|
|
__xfs_iflags_test(cip, XFS_ISTALE)) {
|
|
spin_unlock(&cip->i_flags_lock);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Once we fall off the end of the cluster, no point checking
|
|
* any more inodes in the list because they will also all be
|
|
* outside the cluster.
|
|
*/
|
|
if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
|
|
spin_unlock(&cip->i_flags_lock);
|
|
break;
|
|
}
|
|
spin_unlock(&cip->i_flags_lock);
|
|
|
|
/*
|
|
* Do an un-protected check to see if the inode is dirty and
|
|
* is a candidate for flushing. These checks will be repeated
|
|
* later after the appropriate locks are acquired.
|
|
*/
|
|
if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
|
|
continue;
|
|
|
|
/*
|
|
* Try to get locks. If any are unavailable or it is pinned,
|
|
* then this inode cannot be flushed and is skipped.
|
|
*/
|
|
|
|
if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
|
|
continue;
|
|
if (!xfs_iflock_nowait(cip)) {
|
|
xfs_iunlock(cip, XFS_ILOCK_SHARED);
|
|
continue;
|
|
}
|
|
if (xfs_ipincount(cip)) {
|
|
xfs_ifunlock(cip);
|
|
xfs_iunlock(cip, XFS_ILOCK_SHARED);
|
|
continue;
|
|
}
|
|
|
|
|
|
/*
|
|
* Check the inode number again, just to be certain we are not
|
|
* racing with freeing in xfs_reclaim_inode(). See the comments
|
|
* in that function for more information as to why the initial
|
|
* check is not sufficient.
|
|
*/
|
|
if (!cip->i_ino) {
|
|
xfs_ifunlock(cip);
|
|
xfs_iunlock(cip, XFS_ILOCK_SHARED);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* arriving here means that this inode can be flushed. First
|
|
* re-check that it's dirty before flushing.
|
|
*/
|
|
if (!xfs_inode_clean(cip)) {
|
|
int error;
|
|
error = xfs_iflush_int(cip, bp);
|
|
if (error) {
|
|
xfs_iunlock(cip, XFS_ILOCK_SHARED);
|
|
goto cluster_corrupt_out;
|
|
}
|
|
clcount++;
|
|
} else {
|
|
xfs_ifunlock(cip);
|
|
}
|
|
xfs_iunlock(cip, XFS_ILOCK_SHARED);
|
|
}
|
|
|
|
if (clcount) {
|
|
XFS_STATS_INC(mp, xs_icluster_flushcnt);
|
|
XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
|
|
}
|
|
|
|
out_free:
|
|
rcu_read_unlock();
|
|
kmem_free(cilist);
|
|
out_put:
|
|
xfs_perag_put(pag);
|
|
return 0;
|
|
|
|
|
|
cluster_corrupt_out:
|
|
/*
|
|
* Corruption detected in the clustering loop. Invalidate the
|
|
* inode buffer and shut down the filesystem.
|
|
*/
|
|
rcu_read_unlock();
|
|
|
|
/*
|
|
* We'll always have an inode attached to the buffer for completion
|
|
* process by the time we are called from xfs_iflush(). Hence we have
|
|
* always need to do IO completion processing to abort the inodes
|
|
* attached to the buffer. handle them just like the shutdown case in
|
|
* xfs_buf_submit().
|
|
*/
|
|
ASSERT(bp->b_iodone);
|
|
bp->b_flags |= XBF_ASYNC;
|
|
bp->b_flags &= ~XBF_DONE;
|
|
xfs_buf_stale(bp);
|
|
xfs_buf_ioerror(bp, -EIO);
|
|
xfs_buf_ioend(bp);
|
|
|
|
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
|
|
|
|
/* abort the corrupt inode, as it was not attached to the buffer */
|
|
xfs_iflush_abort(cip, false);
|
|
kmem_free(cilist);
|
|
xfs_perag_put(pag);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
/*
|
|
* Flush dirty inode metadata into the backing buffer.
|
|
*
|
|
* The caller must have the inode lock and the inode flush lock held. The
|
|
* inode lock will still be held upon return to the caller, and the inode
|
|
* flush lock will be released after the inode has reached the disk.
|
|
*
|
|
* The caller must write out the buffer returned in *bpp and release it.
|
|
*/
|
|
int
|
|
xfs_iflush(
|
|
struct xfs_inode *ip,
|
|
struct xfs_buf **bpp)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_buf *bp = NULL;
|
|
struct xfs_dinode *dip;
|
|
int error;
|
|
|
|
XFS_STATS_INC(mp, xs_iflush_count);
|
|
|
|
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
|
|
ASSERT(xfs_isiflocked(ip));
|
|
ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
|
|
ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
|
|
|
|
*bpp = NULL;
|
|
|
|
xfs_iunpin_wait(ip);
|
|
|
|
/*
|
|
* For stale inodes we cannot rely on the backing buffer remaining
|
|
* stale in cache for the remaining life of the stale inode and so
|
|
* xfs_imap_to_bp() below may give us a buffer that no longer contains
|
|
* inodes below. We have to check this after ensuring the inode is
|
|
* unpinned so that it is safe to reclaim the stale inode after the
|
|
* flush call.
|
|
*/
|
|
if (xfs_iflags_test(ip, XFS_ISTALE)) {
|
|
xfs_ifunlock(ip);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This may have been unpinned because the filesystem is shutting
|
|
* down forcibly. If that's the case we must not write this inode
|
|
* to disk, because the log record didn't make it to disk.
|
|
*
|
|
* We also have to remove the log item from the AIL in this case,
|
|
* as we wait for an empty AIL as part of the unmount process.
|
|
*/
|
|
if (XFS_FORCED_SHUTDOWN(mp)) {
|
|
error = -EIO;
|
|
goto abort_out;
|
|
}
|
|
|
|
/*
|
|
* Get the buffer containing the on-disk inode. We are doing a try-lock
|
|
* operation here, so we may get an EAGAIN error. In that case, we
|
|
* simply want to return with the inode still dirty.
|
|
*
|
|
* If we get any other error, we effectively have a corruption situation
|
|
* and we cannot flush the inode, so we treat it the same as failing
|
|
* xfs_iflush_int().
|
|
*/
|
|
error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
|
|
0);
|
|
if (error == -EAGAIN) {
|
|
xfs_ifunlock(ip);
|
|
return error;
|
|
}
|
|
if (error)
|
|
goto corrupt_out;
|
|
|
|
/*
|
|
* First flush out the inode that xfs_iflush was called with.
|
|
*/
|
|
error = xfs_iflush_int(ip, bp);
|
|
if (error)
|
|
goto corrupt_out;
|
|
|
|
/*
|
|
* If the buffer is pinned then push on the log now so we won't
|
|
* get stuck waiting in the write for too long.
|
|
*/
|
|
if (xfs_buf_ispinned(bp))
|
|
xfs_log_force(mp, 0);
|
|
|
|
/*
|
|
* inode clustering: try to gather other inodes into this write
|
|
*
|
|
* Note: Any error during clustering will result in the filesystem
|
|
* being shut down and completion callbacks run on the cluster buffer.
|
|
* As we have already flushed and attached this inode to the buffer,
|
|
* it has already been aborted and released by xfs_iflush_cluster() and
|
|
* so we have no further error handling to do here.
|
|
*/
|
|
error = xfs_iflush_cluster(ip, bp);
|
|
if (error)
|
|
return error;
|
|
|
|
*bpp = bp;
|
|
return 0;
|
|
|
|
corrupt_out:
|
|
if (bp)
|
|
xfs_buf_relse(bp);
|
|
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
|
|
abort_out:
|
|
/* abort the corrupt inode, as it was not attached to the buffer */
|
|
xfs_iflush_abort(ip, false);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* If there are inline format data / attr forks attached to this inode,
|
|
* make sure they're not corrupt.
|
|
*/
|
|
bool
|
|
xfs_inode_verify_forks(
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_ifork *ifp;
|
|
xfs_failaddr_t fa;
|
|
|
|
fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
|
|
if (fa) {
|
|
ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
|
|
xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
|
|
ifp->if_u1.if_data, ifp->if_bytes, fa);
|
|
return false;
|
|
}
|
|
|
|
fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
|
|
if (fa) {
|
|
ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
|
|
xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
|
|
ifp ? ifp->if_u1.if_data : NULL,
|
|
ifp ? ifp->if_bytes : 0, fa);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_iflush_int(
|
|
struct xfs_inode *ip,
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_inode_log_item *iip = ip->i_itemp;
|
|
struct xfs_dinode *dip;
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
|
|
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
|
|
ASSERT(xfs_isiflocked(ip));
|
|
ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
|
|
ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
|
|
ASSERT(iip != NULL && iip->ili_fields != 0);
|
|
|
|
/* set *dip = inode's place in the buffer */
|
|
dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
|
|
|
|
if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
|
|
mp, XFS_ERRTAG_IFLUSH_1)) {
|
|
xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
|
|
"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
|
|
__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
|
|
goto corrupt_out;
|
|
}
|
|
if (S_ISREG(VFS_I(ip)->i_mode)) {
|
|
if (XFS_TEST_ERROR(
|
|
(ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
|
|
(ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
|
|
mp, XFS_ERRTAG_IFLUSH_3)) {
|
|
xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
|
|
"%s: Bad regular inode %Lu, ptr "PTR_FMT,
|
|
__func__, ip->i_ino, ip);
|
|
goto corrupt_out;
|
|
}
|
|
} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
|
|
if (XFS_TEST_ERROR(
|
|
(ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
|
|
(ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
|
|
(ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
|
|
mp, XFS_ERRTAG_IFLUSH_4)) {
|
|
xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
|
|
"%s: Bad directory inode %Lu, ptr "PTR_FMT,
|
|
__func__, ip->i_ino, ip);
|
|
goto corrupt_out;
|
|
}
|
|
}
|
|
if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
|
|
ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
|
|
xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
|
|
"%s: detected corrupt incore inode %Lu, "
|
|
"total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
|
|
__func__, ip->i_ino,
|
|
ip->i_d.di_nextents + ip->i_d.di_anextents,
|
|
ip->i_d.di_nblocks, ip);
|
|
goto corrupt_out;
|
|
}
|
|
if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
|
|
mp, XFS_ERRTAG_IFLUSH_6)) {
|
|
xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
|
|
"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
|
|
__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
|
|
goto corrupt_out;
|
|
}
|
|
|
|
/*
|
|
* Inode item log recovery for v2 inodes are dependent on the
|
|
* di_flushiter count for correct sequencing. We bump the flush
|
|
* iteration count so we can detect flushes which postdate a log record
|
|
* during recovery. This is redundant as we now log every change and
|
|
* hence this can't happen but we need to still do it to ensure
|
|
* backwards compatibility with old kernels that predate logging all
|
|
* inode changes.
|
|
*/
|
|
if (!xfs_sb_version_has_v3inode(&mp->m_sb))
|
|
ip->i_d.di_flushiter++;
|
|
|
|
/* Check the inline fork data before we write out. */
|
|
if (!xfs_inode_verify_forks(ip))
|
|
goto corrupt_out;
|
|
|
|
/*
|
|
* Copy the dirty parts of the inode into the on-disk inode. We always
|
|
* copy out the core of the inode, because if the inode is dirty at all
|
|
* the core must be.
|
|
*/
|
|
xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
|
|
|
|
/* Wrap, we never let the log put out DI_MAX_FLUSH */
|
|
if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
|
|
ip->i_d.di_flushiter = 0;
|
|
|
|
xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
|
|
if (XFS_IFORK_Q(ip))
|
|
xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
|
|
xfs_inobp_check(mp, bp);
|
|
|
|
/*
|
|
* We've recorded everything logged in the inode, so we'd like to clear
|
|
* the ili_fields bits so we don't log and flush things unnecessarily.
|
|
* However, we can't stop logging all this information until the data
|
|
* we've copied into the disk buffer is written to disk. If we did we
|
|
* might overwrite the copy of the inode in the log with all the data
|
|
* after re-logging only part of it, and in the face of a crash we
|
|
* wouldn't have all the data we need to recover.
|
|
*
|
|
* What we do is move the bits to the ili_last_fields field. When
|
|
* logging the inode, these bits are moved back to the ili_fields field.
|
|
* In the xfs_iflush_done() routine we clear ili_last_fields, since we
|
|
* know that the information those bits represent is permanently on
|
|
* disk. As long as the flush completes before the inode is logged
|
|
* again, then both ili_fields and ili_last_fields will be cleared.
|
|
*
|
|
* We can play with the ili_fields bits here, because the inode lock
|
|
* must be held exclusively in order to set bits there and the flush
|
|
* lock protects the ili_last_fields bits. Set ili_logged so the flush
|
|
* done routine can tell whether or not to look in the AIL. Also, store
|
|
* the current LSN of the inode so that we can tell whether the item has
|
|
* moved in the AIL from xfs_iflush_done(). In order to read the lsn we
|
|
* need the AIL lock, because it is a 64 bit value that cannot be read
|
|
* atomically.
|
|
*/
|
|
iip->ili_last_fields = iip->ili_fields;
|
|
iip->ili_fields = 0;
|
|
iip->ili_fsync_fields = 0;
|
|
iip->ili_logged = 1;
|
|
|
|
xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
|
|
&iip->ili_item.li_lsn);
|
|
|
|
/*
|
|
* Attach the function xfs_iflush_done to the inode's
|
|
* buffer. This will remove the inode from the AIL
|
|
* and unlock the inode's flush lock when the inode is
|
|
* completely written to disk.
|
|
*/
|
|
xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
|
|
|
|
/* generate the checksum. */
|
|
xfs_dinode_calc_crc(mp, dip);
|
|
|
|
ASSERT(!list_empty(&bp->b_li_list));
|
|
ASSERT(bp->b_iodone != NULL);
|
|
return 0;
|
|
|
|
corrupt_out:
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
/* Release an inode. */
|
|
void
|
|
xfs_irele(
|
|
struct xfs_inode *ip)
|
|
{
|
|
trace_xfs_irele(ip, _RET_IP_);
|
|
iput(VFS_I(ip));
|
|
}
|
|
|
|
/*
|
|
* Ensure all commited transactions touching the inode are written to the log.
|
|
*/
|
|
int
|
|
xfs_log_force_inode(
|
|
struct xfs_inode *ip)
|
|
{
|
|
xfs_lsn_t lsn = 0;
|
|
|
|
xfs_ilock(ip, XFS_ILOCK_SHARED);
|
|
if (xfs_ipincount(ip))
|
|
lsn = ip->i_itemp->ili_last_lsn;
|
|
xfs_iunlock(ip, XFS_ILOCK_SHARED);
|
|
|
|
if (!lsn)
|
|
return 0;
|
|
return xfs_log_force_lsn(ip->i_mount, lsn, XFS_LOG_SYNC, NULL);
|
|
}
|