mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
432c833218
Kyle has reported occasional crashes when booting a kernel in 5-level paging mode with KASLR enabled: WARNING: CPU: 0 PID: 0 at arch/x86/mm/init_64.c:87 phys_p4d_init+0x1d4/0x1ea RIP: 0010:phys_p4d_init+0x1d4/0x1ea Call Trace: __kernel_physical_mapping_init+0x10a/0x35c kernel_physical_mapping_init+0xe/0x10 init_memory_mapping+0x1aa/0x3b0 init_range_memory_mapping+0xc8/0x116 init_mem_mapping+0x225/0x2eb setup_arch+0x6ff/0xcf5 start_kernel+0x64/0x53b ? copy_bootdata+0x1f/0xce x86_64_start_reservations+0x24/0x26 x86_64_start_kernel+0x8a/0x8d secondary_startup_64+0xb6/0xc0 which causes later: BUG: unable to handle page fault for address: ff484d019580eff8 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page BAD Oops: 0000 [#1] SMP NOPTI RIP: 0010:fill_pud+0x13/0x130 Call Trace: set_pte_vaddr_p4d+0x2e/0x50 set_pte_vaddr+0x6f/0xb0 __native_set_fixmap+0x28/0x40 native_set_fixmap+0x39/0x70 register_lapic_address+0x49/0xb6 early_acpi_boot_init+0xa5/0xde setup_arch+0x944/0xcf5 start_kernel+0x64/0x53b Kyle bisected the issue to commitb569c18434
("x86/mm/KASLR: Reduce randomization granularity for 5-level paging to 1GB") Before this commit PAGE_OFFSET was always aligned to P4D_SIZE when booting 5-level paging mode. But now only PUD_SIZE alignment is guaranteed. In the case I was able to reproduce the following vaddr/paddr values were observed in phys_p4d_init(): Iteration vaddr paddr 1 0xff4228027fe00000 0x033fe00000 2 0xff42287f40000000 0x8000000000 'vaddr' in both cases belongs to the same p4d entry. But due to the original assumption that PAGE_OFFSET is aligned to P4D_SIZE this overlap cannot be handled correctly. The code assumes strictly aligned entries and unconditionally increments the index into the P4D table, which creates false duplicate entries. Once the index reaches the end, the last entry in the page table is missing. Aside of that the 'paddr >= paddr_end' condition can evaluate wrong which causes an P4D entry to be cleared incorrectly. Change the loop in phys_p4d_init() to walk purely based on virtual addresses like __kernel_physical_mapping_init() does. This makes it work correctly with unaligned virtual addresses. Fixes:b569c18434
("x86/mm/KASLR: Reduce randomization granularity for 5-level paging to 1GB") Reported-by: Kyle Pelton <kyle.d.pelton@intel.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Kyle Pelton <kyle.d.pelton@intel.com> Acked-by: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: https://lkml.kernel.org/r/20190624123150.920-1-kirill.shutemov@linux.intel.com
1619 lines
40 KiB
C
1619 lines
40 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* linux/arch/x86_64/mm/init.c
|
|
*
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
* Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
|
|
* Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
|
|
*/
|
|
|
|
#include <linux/signal.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/types.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/init.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/poison.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/memory_hotplug.h>
|
|
#include <linux/memremap.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/kcore.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/bios_ebda.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/dma.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/e820/api.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/kdebug.h>
|
|
#include <asm/numa.h>
|
|
#include <asm/set_memory.h>
|
|
#include <asm/init.h>
|
|
#include <asm/uv/uv.h>
|
|
#include <asm/setup.h>
|
|
|
|
#include "mm_internal.h"
|
|
|
|
#include "ident_map.c"
|
|
|
|
#define DEFINE_POPULATE(fname, type1, type2, init) \
|
|
static inline void fname##_init(struct mm_struct *mm, \
|
|
type1##_t *arg1, type2##_t *arg2, bool init) \
|
|
{ \
|
|
if (init) \
|
|
fname##_safe(mm, arg1, arg2); \
|
|
else \
|
|
fname(mm, arg1, arg2); \
|
|
}
|
|
|
|
DEFINE_POPULATE(p4d_populate, p4d, pud, init)
|
|
DEFINE_POPULATE(pgd_populate, pgd, p4d, init)
|
|
DEFINE_POPULATE(pud_populate, pud, pmd, init)
|
|
DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init)
|
|
|
|
#define DEFINE_ENTRY(type1, type2, init) \
|
|
static inline void set_##type1##_init(type1##_t *arg1, \
|
|
type2##_t arg2, bool init) \
|
|
{ \
|
|
if (init) \
|
|
set_##type1##_safe(arg1, arg2); \
|
|
else \
|
|
set_##type1(arg1, arg2); \
|
|
}
|
|
|
|
DEFINE_ENTRY(p4d, p4d, init)
|
|
DEFINE_ENTRY(pud, pud, init)
|
|
DEFINE_ENTRY(pmd, pmd, init)
|
|
DEFINE_ENTRY(pte, pte, init)
|
|
|
|
|
|
/*
|
|
* NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
|
|
* physical space so we can cache the place of the first one and move
|
|
* around without checking the pgd every time.
|
|
*/
|
|
|
|
/* Bits supported by the hardware: */
|
|
pteval_t __supported_pte_mask __read_mostly = ~0;
|
|
/* Bits allowed in normal kernel mappings: */
|
|
pteval_t __default_kernel_pte_mask __read_mostly = ~0;
|
|
EXPORT_SYMBOL_GPL(__supported_pte_mask);
|
|
/* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
|
|
EXPORT_SYMBOL(__default_kernel_pte_mask);
|
|
|
|
int force_personality32;
|
|
|
|
/*
|
|
* noexec32=on|off
|
|
* Control non executable heap for 32bit processes.
|
|
* To control the stack too use noexec=off
|
|
*
|
|
* on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
|
|
* off PROT_READ implies PROT_EXEC
|
|
*/
|
|
static int __init nonx32_setup(char *str)
|
|
{
|
|
if (!strcmp(str, "on"))
|
|
force_personality32 &= ~READ_IMPLIES_EXEC;
|
|
else if (!strcmp(str, "off"))
|
|
force_personality32 |= READ_IMPLIES_EXEC;
|
|
return 1;
|
|
}
|
|
__setup("noexec32=", nonx32_setup);
|
|
|
|
static void sync_global_pgds_l5(unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long addr;
|
|
|
|
for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
|
|
const pgd_t *pgd_ref = pgd_offset_k(addr);
|
|
struct page *page;
|
|
|
|
/* Check for overflow */
|
|
if (addr < start)
|
|
break;
|
|
|
|
if (pgd_none(*pgd_ref))
|
|
continue;
|
|
|
|
spin_lock(&pgd_lock);
|
|
list_for_each_entry(page, &pgd_list, lru) {
|
|
pgd_t *pgd;
|
|
spinlock_t *pgt_lock;
|
|
|
|
pgd = (pgd_t *)page_address(page) + pgd_index(addr);
|
|
/* the pgt_lock only for Xen */
|
|
pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
|
|
spin_lock(pgt_lock);
|
|
|
|
if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
|
|
BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
|
|
|
|
if (pgd_none(*pgd))
|
|
set_pgd(pgd, *pgd_ref);
|
|
|
|
spin_unlock(pgt_lock);
|
|
}
|
|
spin_unlock(&pgd_lock);
|
|
}
|
|
}
|
|
|
|
static void sync_global_pgds_l4(unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long addr;
|
|
|
|
for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
|
|
pgd_t *pgd_ref = pgd_offset_k(addr);
|
|
const p4d_t *p4d_ref;
|
|
struct page *page;
|
|
|
|
/*
|
|
* With folded p4d, pgd_none() is always false, we need to
|
|
* handle synchonization on p4d level.
|
|
*/
|
|
MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
|
|
p4d_ref = p4d_offset(pgd_ref, addr);
|
|
|
|
if (p4d_none(*p4d_ref))
|
|
continue;
|
|
|
|
spin_lock(&pgd_lock);
|
|
list_for_each_entry(page, &pgd_list, lru) {
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
spinlock_t *pgt_lock;
|
|
|
|
pgd = (pgd_t *)page_address(page) + pgd_index(addr);
|
|
p4d = p4d_offset(pgd, addr);
|
|
/* the pgt_lock only for Xen */
|
|
pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
|
|
spin_lock(pgt_lock);
|
|
|
|
if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
|
|
BUG_ON(p4d_page_vaddr(*p4d)
|
|
!= p4d_page_vaddr(*p4d_ref));
|
|
|
|
if (p4d_none(*p4d))
|
|
set_p4d(p4d, *p4d_ref);
|
|
|
|
spin_unlock(pgt_lock);
|
|
}
|
|
spin_unlock(&pgd_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* When memory was added make sure all the processes MM have
|
|
* suitable PGD entries in the local PGD level page.
|
|
*/
|
|
void sync_global_pgds(unsigned long start, unsigned long end)
|
|
{
|
|
if (pgtable_l5_enabled())
|
|
sync_global_pgds_l5(start, end);
|
|
else
|
|
sync_global_pgds_l4(start, end);
|
|
}
|
|
|
|
/*
|
|
* NOTE: This function is marked __ref because it calls __init function
|
|
* (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
|
|
*/
|
|
static __ref void *spp_getpage(void)
|
|
{
|
|
void *ptr;
|
|
|
|
if (after_bootmem)
|
|
ptr = (void *) get_zeroed_page(GFP_ATOMIC);
|
|
else
|
|
ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
|
|
|
|
if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
|
|
panic("set_pte_phys: cannot allocate page data %s\n",
|
|
after_bootmem ? "after bootmem" : "");
|
|
}
|
|
|
|
pr_debug("spp_getpage %p\n", ptr);
|
|
|
|
return ptr;
|
|
}
|
|
|
|
static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
|
|
{
|
|
if (pgd_none(*pgd)) {
|
|
p4d_t *p4d = (p4d_t *)spp_getpage();
|
|
pgd_populate(&init_mm, pgd, p4d);
|
|
if (p4d != p4d_offset(pgd, 0))
|
|
printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
|
|
p4d, p4d_offset(pgd, 0));
|
|
}
|
|
return p4d_offset(pgd, vaddr);
|
|
}
|
|
|
|
static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
|
|
{
|
|
if (p4d_none(*p4d)) {
|
|
pud_t *pud = (pud_t *)spp_getpage();
|
|
p4d_populate(&init_mm, p4d, pud);
|
|
if (pud != pud_offset(p4d, 0))
|
|
printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
|
|
pud, pud_offset(p4d, 0));
|
|
}
|
|
return pud_offset(p4d, vaddr);
|
|
}
|
|
|
|
static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
|
|
{
|
|
if (pud_none(*pud)) {
|
|
pmd_t *pmd = (pmd_t *) spp_getpage();
|
|
pud_populate(&init_mm, pud, pmd);
|
|
if (pmd != pmd_offset(pud, 0))
|
|
printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
|
|
pmd, pmd_offset(pud, 0));
|
|
}
|
|
return pmd_offset(pud, vaddr);
|
|
}
|
|
|
|
static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
|
|
{
|
|
if (pmd_none(*pmd)) {
|
|
pte_t *pte = (pte_t *) spp_getpage();
|
|
pmd_populate_kernel(&init_mm, pmd, pte);
|
|
if (pte != pte_offset_kernel(pmd, 0))
|
|
printk(KERN_ERR "PAGETABLE BUG #03!\n");
|
|
}
|
|
return pte_offset_kernel(pmd, vaddr);
|
|
}
|
|
|
|
static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
|
|
{
|
|
pmd_t *pmd = fill_pmd(pud, vaddr);
|
|
pte_t *pte = fill_pte(pmd, vaddr);
|
|
|
|
set_pte(pte, new_pte);
|
|
|
|
/*
|
|
* It's enough to flush this one mapping.
|
|
* (PGE mappings get flushed as well)
|
|
*/
|
|
__flush_tlb_one_kernel(vaddr);
|
|
}
|
|
|
|
void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
|
|
{
|
|
p4d_t *p4d = p4d_page + p4d_index(vaddr);
|
|
pud_t *pud = fill_pud(p4d, vaddr);
|
|
|
|
__set_pte_vaddr(pud, vaddr, new_pte);
|
|
}
|
|
|
|
void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
|
|
{
|
|
pud_t *pud = pud_page + pud_index(vaddr);
|
|
|
|
__set_pte_vaddr(pud, vaddr, new_pte);
|
|
}
|
|
|
|
void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
|
|
{
|
|
pgd_t *pgd;
|
|
p4d_t *p4d_page;
|
|
|
|
pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
|
|
|
|
pgd = pgd_offset_k(vaddr);
|
|
if (pgd_none(*pgd)) {
|
|
printk(KERN_ERR
|
|
"PGD FIXMAP MISSING, it should be setup in head.S!\n");
|
|
return;
|
|
}
|
|
|
|
p4d_page = p4d_offset(pgd, 0);
|
|
set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
|
|
}
|
|
|
|
pmd_t * __init populate_extra_pmd(unsigned long vaddr)
|
|
{
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
|
|
pgd = pgd_offset_k(vaddr);
|
|
p4d = fill_p4d(pgd, vaddr);
|
|
pud = fill_pud(p4d, vaddr);
|
|
return fill_pmd(pud, vaddr);
|
|
}
|
|
|
|
pte_t * __init populate_extra_pte(unsigned long vaddr)
|
|
{
|
|
pmd_t *pmd;
|
|
|
|
pmd = populate_extra_pmd(vaddr);
|
|
return fill_pte(pmd, vaddr);
|
|
}
|
|
|
|
/*
|
|
* Create large page table mappings for a range of physical addresses.
|
|
*/
|
|
static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
|
|
enum page_cache_mode cache)
|
|
{
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pgprot_t prot;
|
|
|
|
pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
|
|
pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
|
|
BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
|
|
for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
|
|
pgd = pgd_offset_k((unsigned long)__va(phys));
|
|
if (pgd_none(*pgd)) {
|
|
p4d = (p4d_t *) spp_getpage();
|
|
set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
|
|
_PAGE_USER));
|
|
}
|
|
p4d = p4d_offset(pgd, (unsigned long)__va(phys));
|
|
if (p4d_none(*p4d)) {
|
|
pud = (pud_t *) spp_getpage();
|
|
set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
|
|
_PAGE_USER));
|
|
}
|
|
pud = pud_offset(p4d, (unsigned long)__va(phys));
|
|
if (pud_none(*pud)) {
|
|
pmd = (pmd_t *) spp_getpage();
|
|
set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
|
|
_PAGE_USER));
|
|
}
|
|
pmd = pmd_offset(pud, phys);
|
|
BUG_ON(!pmd_none(*pmd));
|
|
set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
|
|
}
|
|
}
|
|
|
|
void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
|
|
{
|
|
__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
|
|
}
|
|
|
|
void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
|
|
{
|
|
__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
|
|
}
|
|
|
|
/*
|
|
* The head.S code sets up the kernel high mapping:
|
|
*
|
|
* from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
|
|
*
|
|
* phys_base holds the negative offset to the kernel, which is added
|
|
* to the compile time generated pmds. This results in invalid pmds up
|
|
* to the point where we hit the physaddr 0 mapping.
|
|
*
|
|
* We limit the mappings to the region from _text to _brk_end. _brk_end
|
|
* is rounded up to the 2MB boundary. This catches the invalid pmds as
|
|
* well, as they are located before _text:
|
|
*/
|
|
void __init cleanup_highmap(void)
|
|
{
|
|
unsigned long vaddr = __START_KERNEL_map;
|
|
unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
|
|
unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
|
|
pmd_t *pmd = level2_kernel_pgt;
|
|
|
|
/*
|
|
* Native path, max_pfn_mapped is not set yet.
|
|
* Xen has valid max_pfn_mapped set in
|
|
* arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
|
|
*/
|
|
if (max_pfn_mapped)
|
|
vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
|
|
|
|
for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
|
|
if (pmd_none(*pmd))
|
|
continue;
|
|
if (vaddr < (unsigned long) _text || vaddr > end)
|
|
set_pmd(pmd, __pmd(0));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create PTE level page table mapping for physical addresses.
|
|
* It returns the last physical address mapped.
|
|
*/
|
|
static unsigned long __meminit
|
|
phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
|
|
pgprot_t prot, bool init)
|
|
{
|
|
unsigned long pages = 0, paddr_next;
|
|
unsigned long paddr_last = paddr_end;
|
|
pte_t *pte;
|
|
int i;
|
|
|
|
pte = pte_page + pte_index(paddr);
|
|
i = pte_index(paddr);
|
|
|
|
for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
|
|
paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
|
|
if (paddr >= paddr_end) {
|
|
if (!after_bootmem &&
|
|
!e820__mapped_any(paddr & PAGE_MASK, paddr_next,
|
|
E820_TYPE_RAM) &&
|
|
!e820__mapped_any(paddr & PAGE_MASK, paddr_next,
|
|
E820_TYPE_RESERVED_KERN))
|
|
set_pte_init(pte, __pte(0), init);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* We will re-use the existing mapping.
|
|
* Xen for example has some special requirements, like mapping
|
|
* pagetable pages as RO. So assume someone who pre-setup
|
|
* these mappings are more intelligent.
|
|
*/
|
|
if (!pte_none(*pte)) {
|
|
if (!after_bootmem)
|
|
pages++;
|
|
continue;
|
|
}
|
|
|
|
if (0)
|
|
pr_info(" pte=%p addr=%lx pte=%016lx\n", pte, paddr,
|
|
pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
|
|
pages++;
|
|
set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init);
|
|
paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
|
|
}
|
|
|
|
update_page_count(PG_LEVEL_4K, pages);
|
|
|
|
return paddr_last;
|
|
}
|
|
|
|
/*
|
|
* Create PMD level page table mapping for physical addresses. The virtual
|
|
* and physical address have to be aligned at this level.
|
|
* It returns the last physical address mapped.
|
|
*/
|
|
static unsigned long __meminit
|
|
phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
|
|
unsigned long page_size_mask, pgprot_t prot, bool init)
|
|
{
|
|
unsigned long pages = 0, paddr_next;
|
|
unsigned long paddr_last = paddr_end;
|
|
|
|
int i = pmd_index(paddr);
|
|
|
|
for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
|
|
pmd_t *pmd = pmd_page + pmd_index(paddr);
|
|
pte_t *pte;
|
|
pgprot_t new_prot = prot;
|
|
|
|
paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
|
|
if (paddr >= paddr_end) {
|
|
if (!after_bootmem &&
|
|
!e820__mapped_any(paddr & PMD_MASK, paddr_next,
|
|
E820_TYPE_RAM) &&
|
|
!e820__mapped_any(paddr & PMD_MASK, paddr_next,
|
|
E820_TYPE_RESERVED_KERN))
|
|
set_pmd_init(pmd, __pmd(0), init);
|
|
continue;
|
|
}
|
|
|
|
if (!pmd_none(*pmd)) {
|
|
if (!pmd_large(*pmd)) {
|
|
spin_lock(&init_mm.page_table_lock);
|
|
pte = (pte_t *)pmd_page_vaddr(*pmd);
|
|
paddr_last = phys_pte_init(pte, paddr,
|
|
paddr_end, prot,
|
|
init);
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
continue;
|
|
}
|
|
/*
|
|
* If we are ok with PG_LEVEL_2M mapping, then we will
|
|
* use the existing mapping,
|
|
*
|
|
* Otherwise, we will split the large page mapping but
|
|
* use the same existing protection bits except for
|
|
* large page, so that we don't violate Intel's TLB
|
|
* Application note (317080) which says, while changing
|
|
* the page sizes, new and old translations should
|
|
* not differ with respect to page frame and
|
|
* attributes.
|
|
*/
|
|
if (page_size_mask & (1 << PG_LEVEL_2M)) {
|
|
if (!after_bootmem)
|
|
pages++;
|
|
paddr_last = paddr_next;
|
|
continue;
|
|
}
|
|
new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
|
|
}
|
|
|
|
if (page_size_mask & (1<<PG_LEVEL_2M)) {
|
|
pages++;
|
|
spin_lock(&init_mm.page_table_lock);
|
|
set_pte_init((pte_t *)pmd,
|
|
pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
|
|
__pgprot(pgprot_val(prot) | _PAGE_PSE)),
|
|
init);
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
paddr_last = paddr_next;
|
|
continue;
|
|
}
|
|
|
|
pte = alloc_low_page();
|
|
paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init);
|
|
|
|
spin_lock(&init_mm.page_table_lock);
|
|
pmd_populate_kernel_init(&init_mm, pmd, pte, init);
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
}
|
|
update_page_count(PG_LEVEL_2M, pages);
|
|
return paddr_last;
|
|
}
|
|
|
|
/*
|
|
* Create PUD level page table mapping for physical addresses. The virtual
|
|
* and physical address do not have to be aligned at this level. KASLR can
|
|
* randomize virtual addresses up to this level.
|
|
* It returns the last physical address mapped.
|
|
*/
|
|
static unsigned long __meminit
|
|
phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
|
|
unsigned long page_size_mask, bool init)
|
|
{
|
|
unsigned long pages = 0, paddr_next;
|
|
unsigned long paddr_last = paddr_end;
|
|
unsigned long vaddr = (unsigned long)__va(paddr);
|
|
int i = pud_index(vaddr);
|
|
|
|
for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pgprot_t prot = PAGE_KERNEL;
|
|
|
|
vaddr = (unsigned long)__va(paddr);
|
|
pud = pud_page + pud_index(vaddr);
|
|
paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
|
|
|
|
if (paddr >= paddr_end) {
|
|
if (!after_bootmem &&
|
|
!e820__mapped_any(paddr & PUD_MASK, paddr_next,
|
|
E820_TYPE_RAM) &&
|
|
!e820__mapped_any(paddr & PUD_MASK, paddr_next,
|
|
E820_TYPE_RESERVED_KERN))
|
|
set_pud_init(pud, __pud(0), init);
|
|
continue;
|
|
}
|
|
|
|
if (!pud_none(*pud)) {
|
|
if (!pud_large(*pud)) {
|
|
pmd = pmd_offset(pud, 0);
|
|
paddr_last = phys_pmd_init(pmd, paddr,
|
|
paddr_end,
|
|
page_size_mask,
|
|
prot, init);
|
|
continue;
|
|
}
|
|
/*
|
|
* If we are ok with PG_LEVEL_1G mapping, then we will
|
|
* use the existing mapping.
|
|
*
|
|
* Otherwise, we will split the gbpage mapping but use
|
|
* the same existing protection bits except for large
|
|
* page, so that we don't violate Intel's TLB
|
|
* Application note (317080) which says, while changing
|
|
* the page sizes, new and old translations should
|
|
* not differ with respect to page frame and
|
|
* attributes.
|
|
*/
|
|
if (page_size_mask & (1 << PG_LEVEL_1G)) {
|
|
if (!after_bootmem)
|
|
pages++;
|
|
paddr_last = paddr_next;
|
|
continue;
|
|
}
|
|
prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
|
|
}
|
|
|
|
if (page_size_mask & (1<<PG_LEVEL_1G)) {
|
|
pages++;
|
|
spin_lock(&init_mm.page_table_lock);
|
|
set_pte_init((pte_t *)pud,
|
|
pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
|
|
PAGE_KERNEL_LARGE),
|
|
init);
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
paddr_last = paddr_next;
|
|
continue;
|
|
}
|
|
|
|
pmd = alloc_low_page();
|
|
paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
|
|
page_size_mask, prot, init);
|
|
|
|
spin_lock(&init_mm.page_table_lock);
|
|
pud_populate_init(&init_mm, pud, pmd, init);
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
}
|
|
|
|
update_page_count(PG_LEVEL_1G, pages);
|
|
|
|
return paddr_last;
|
|
}
|
|
|
|
static unsigned long __meminit
|
|
phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
|
|
unsigned long page_size_mask, bool init)
|
|
{
|
|
unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last;
|
|
|
|
paddr_last = paddr_end;
|
|
vaddr = (unsigned long)__va(paddr);
|
|
vaddr_end = (unsigned long)__va(paddr_end);
|
|
|
|
if (!pgtable_l5_enabled())
|
|
return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end,
|
|
page_size_mask, init);
|
|
|
|
for (; vaddr < vaddr_end; vaddr = vaddr_next) {
|
|
p4d_t *p4d = p4d_page + p4d_index(vaddr);
|
|
pud_t *pud;
|
|
|
|
vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE;
|
|
paddr = __pa(vaddr);
|
|
|
|
if (paddr >= paddr_end) {
|
|
paddr_next = __pa(vaddr_next);
|
|
if (!after_bootmem &&
|
|
!e820__mapped_any(paddr & P4D_MASK, paddr_next,
|
|
E820_TYPE_RAM) &&
|
|
!e820__mapped_any(paddr & P4D_MASK, paddr_next,
|
|
E820_TYPE_RESERVED_KERN))
|
|
set_p4d_init(p4d, __p4d(0), init);
|
|
continue;
|
|
}
|
|
|
|
if (!p4d_none(*p4d)) {
|
|
pud = pud_offset(p4d, 0);
|
|
paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
|
|
page_size_mask, init);
|
|
continue;
|
|
}
|
|
|
|
pud = alloc_low_page();
|
|
paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
|
|
page_size_mask, init);
|
|
|
|
spin_lock(&init_mm.page_table_lock);
|
|
p4d_populate_init(&init_mm, p4d, pud, init);
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
}
|
|
|
|
return paddr_last;
|
|
}
|
|
|
|
static unsigned long __meminit
|
|
__kernel_physical_mapping_init(unsigned long paddr_start,
|
|
unsigned long paddr_end,
|
|
unsigned long page_size_mask,
|
|
bool init)
|
|
{
|
|
bool pgd_changed = false;
|
|
unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
|
|
|
|
paddr_last = paddr_end;
|
|
vaddr = (unsigned long)__va(paddr_start);
|
|
vaddr_end = (unsigned long)__va(paddr_end);
|
|
vaddr_start = vaddr;
|
|
|
|
for (; vaddr < vaddr_end; vaddr = vaddr_next) {
|
|
pgd_t *pgd = pgd_offset_k(vaddr);
|
|
p4d_t *p4d;
|
|
|
|
vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
|
|
|
|
if (pgd_val(*pgd)) {
|
|
p4d = (p4d_t *)pgd_page_vaddr(*pgd);
|
|
paddr_last = phys_p4d_init(p4d, __pa(vaddr),
|
|
__pa(vaddr_end),
|
|
page_size_mask,
|
|
init);
|
|
continue;
|
|
}
|
|
|
|
p4d = alloc_low_page();
|
|
paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
|
|
page_size_mask, init);
|
|
|
|
spin_lock(&init_mm.page_table_lock);
|
|
if (pgtable_l5_enabled())
|
|
pgd_populate_init(&init_mm, pgd, p4d, init);
|
|
else
|
|
p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr),
|
|
(pud_t *) p4d, init);
|
|
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
pgd_changed = true;
|
|
}
|
|
|
|
if (pgd_changed)
|
|
sync_global_pgds(vaddr_start, vaddr_end - 1);
|
|
|
|
return paddr_last;
|
|
}
|
|
|
|
|
|
/*
|
|
* Create page table mapping for the physical memory for specific physical
|
|
* addresses. Note that it can only be used to populate non-present entries.
|
|
* The virtual and physical addresses have to be aligned on PMD level
|
|
* down. It returns the last physical address mapped.
|
|
*/
|
|
unsigned long __meminit
|
|
kernel_physical_mapping_init(unsigned long paddr_start,
|
|
unsigned long paddr_end,
|
|
unsigned long page_size_mask)
|
|
{
|
|
return __kernel_physical_mapping_init(paddr_start, paddr_end,
|
|
page_size_mask, true);
|
|
}
|
|
|
|
/*
|
|
* This function is similar to kernel_physical_mapping_init() above with the
|
|
* exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe()
|
|
* when updating the mapping. The caller is responsible to flush the TLBs after
|
|
* the function returns.
|
|
*/
|
|
unsigned long __meminit
|
|
kernel_physical_mapping_change(unsigned long paddr_start,
|
|
unsigned long paddr_end,
|
|
unsigned long page_size_mask)
|
|
{
|
|
return __kernel_physical_mapping_init(paddr_start, paddr_end,
|
|
page_size_mask, false);
|
|
}
|
|
|
|
#ifndef CONFIG_NUMA
|
|
void __init initmem_init(void)
|
|
{
|
|
memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
|
|
}
|
|
#endif
|
|
|
|
void __init paging_init(void)
|
|
{
|
|
sparse_memory_present_with_active_regions(MAX_NUMNODES);
|
|
sparse_init();
|
|
|
|
/*
|
|
* clear the default setting with node 0
|
|
* note: don't use nodes_clear here, that is really clearing when
|
|
* numa support is not compiled in, and later node_set_state
|
|
* will not set it back.
|
|
*/
|
|
node_clear_state(0, N_MEMORY);
|
|
if (N_MEMORY != N_NORMAL_MEMORY)
|
|
node_clear_state(0, N_NORMAL_MEMORY);
|
|
|
|
zone_sizes_init();
|
|
}
|
|
|
|
/*
|
|
* Memory hotplug specific functions
|
|
*/
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
/*
|
|
* After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
|
|
* updating.
|
|
*/
|
|
static void update_end_of_memory_vars(u64 start, u64 size)
|
|
{
|
|
unsigned long end_pfn = PFN_UP(start + size);
|
|
|
|
if (end_pfn > max_pfn) {
|
|
max_pfn = end_pfn;
|
|
max_low_pfn = end_pfn;
|
|
high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
|
|
}
|
|
}
|
|
|
|
int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
|
|
struct mhp_restrictions *restrictions)
|
|
{
|
|
int ret;
|
|
|
|
ret = __add_pages(nid, start_pfn, nr_pages, restrictions);
|
|
WARN_ON_ONCE(ret);
|
|
|
|
/* update max_pfn, max_low_pfn and high_memory */
|
|
update_end_of_memory_vars(start_pfn << PAGE_SHIFT,
|
|
nr_pages << PAGE_SHIFT);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int arch_add_memory(int nid, u64 start, u64 size,
|
|
struct mhp_restrictions *restrictions)
|
|
{
|
|
unsigned long start_pfn = start >> PAGE_SHIFT;
|
|
unsigned long nr_pages = size >> PAGE_SHIFT;
|
|
|
|
init_memory_mapping(start, start + size);
|
|
|
|
return add_pages(nid, start_pfn, nr_pages, restrictions);
|
|
}
|
|
|
|
#define PAGE_INUSE 0xFD
|
|
|
|
static void __meminit free_pagetable(struct page *page, int order)
|
|
{
|
|
unsigned long magic;
|
|
unsigned int nr_pages = 1 << order;
|
|
|
|
/* bootmem page has reserved flag */
|
|
if (PageReserved(page)) {
|
|
__ClearPageReserved(page);
|
|
|
|
magic = (unsigned long)page->freelist;
|
|
if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
|
|
while (nr_pages--)
|
|
put_page_bootmem(page++);
|
|
} else
|
|
while (nr_pages--)
|
|
free_reserved_page(page++);
|
|
} else
|
|
free_pages((unsigned long)page_address(page), order);
|
|
}
|
|
|
|
static void __meminit free_hugepage_table(struct page *page,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
if (altmap)
|
|
vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
|
|
else
|
|
free_pagetable(page, get_order(PMD_SIZE));
|
|
}
|
|
|
|
static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
|
|
{
|
|
pte_t *pte;
|
|
int i;
|
|
|
|
for (i = 0; i < PTRS_PER_PTE; i++) {
|
|
pte = pte_start + i;
|
|
if (!pte_none(*pte))
|
|
return;
|
|
}
|
|
|
|
/* free a pte talbe */
|
|
free_pagetable(pmd_page(*pmd), 0);
|
|
spin_lock(&init_mm.page_table_lock);
|
|
pmd_clear(pmd);
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
}
|
|
|
|
static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
|
|
{
|
|
pmd_t *pmd;
|
|
int i;
|
|
|
|
for (i = 0; i < PTRS_PER_PMD; i++) {
|
|
pmd = pmd_start + i;
|
|
if (!pmd_none(*pmd))
|
|
return;
|
|
}
|
|
|
|
/* free a pmd talbe */
|
|
free_pagetable(pud_page(*pud), 0);
|
|
spin_lock(&init_mm.page_table_lock);
|
|
pud_clear(pud);
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
}
|
|
|
|
static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
|
|
{
|
|
pud_t *pud;
|
|
int i;
|
|
|
|
for (i = 0; i < PTRS_PER_PUD; i++) {
|
|
pud = pud_start + i;
|
|
if (!pud_none(*pud))
|
|
return;
|
|
}
|
|
|
|
/* free a pud talbe */
|
|
free_pagetable(p4d_page(*p4d), 0);
|
|
spin_lock(&init_mm.page_table_lock);
|
|
p4d_clear(p4d);
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
}
|
|
|
|
static void __meminit
|
|
remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
|
|
bool direct)
|
|
{
|
|
unsigned long next, pages = 0;
|
|
pte_t *pte;
|
|
void *page_addr;
|
|
phys_addr_t phys_addr;
|
|
|
|
pte = pte_start + pte_index(addr);
|
|
for (; addr < end; addr = next, pte++) {
|
|
next = (addr + PAGE_SIZE) & PAGE_MASK;
|
|
if (next > end)
|
|
next = end;
|
|
|
|
if (!pte_present(*pte))
|
|
continue;
|
|
|
|
/*
|
|
* We mapped [0,1G) memory as identity mapping when
|
|
* initializing, in arch/x86/kernel/head_64.S. These
|
|
* pagetables cannot be removed.
|
|
*/
|
|
phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
|
|
if (phys_addr < (phys_addr_t)0x40000000)
|
|
return;
|
|
|
|
if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
|
|
/*
|
|
* Do not free direct mapping pages since they were
|
|
* freed when offlining, or simplely not in use.
|
|
*/
|
|
if (!direct)
|
|
free_pagetable(pte_page(*pte), 0);
|
|
|
|
spin_lock(&init_mm.page_table_lock);
|
|
pte_clear(&init_mm, addr, pte);
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
|
|
/* For non-direct mapping, pages means nothing. */
|
|
pages++;
|
|
} else {
|
|
/*
|
|
* If we are here, we are freeing vmemmap pages since
|
|
* direct mapped memory ranges to be freed are aligned.
|
|
*
|
|
* If we are not removing the whole page, it means
|
|
* other page structs in this page are being used and
|
|
* we canot remove them. So fill the unused page_structs
|
|
* with 0xFD, and remove the page when it is wholly
|
|
* filled with 0xFD.
|
|
*/
|
|
memset((void *)addr, PAGE_INUSE, next - addr);
|
|
|
|
page_addr = page_address(pte_page(*pte));
|
|
if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
|
|
free_pagetable(pte_page(*pte), 0);
|
|
|
|
spin_lock(&init_mm.page_table_lock);
|
|
pte_clear(&init_mm, addr, pte);
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Call free_pte_table() in remove_pmd_table(). */
|
|
flush_tlb_all();
|
|
if (direct)
|
|
update_page_count(PG_LEVEL_4K, -pages);
|
|
}
|
|
|
|
static void __meminit
|
|
remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
|
|
bool direct, struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long next, pages = 0;
|
|
pte_t *pte_base;
|
|
pmd_t *pmd;
|
|
void *page_addr;
|
|
|
|
pmd = pmd_start + pmd_index(addr);
|
|
for (; addr < end; addr = next, pmd++) {
|
|
next = pmd_addr_end(addr, end);
|
|
|
|
if (!pmd_present(*pmd))
|
|
continue;
|
|
|
|
if (pmd_large(*pmd)) {
|
|
if (IS_ALIGNED(addr, PMD_SIZE) &&
|
|
IS_ALIGNED(next, PMD_SIZE)) {
|
|
if (!direct)
|
|
free_hugepage_table(pmd_page(*pmd),
|
|
altmap);
|
|
|
|
spin_lock(&init_mm.page_table_lock);
|
|
pmd_clear(pmd);
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
pages++;
|
|
} else {
|
|
/* If here, we are freeing vmemmap pages. */
|
|
memset((void *)addr, PAGE_INUSE, next - addr);
|
|
|
|
page_addr = page_address(pmd_page(*pmd));
|
|
if (!memchr_inv(page_addr, PAGE_INUSE,
|
|
PMD_SIZE)) {
|
|
free_hugepage_table(pmd_page(*pmd),
|
|
altmap);
|
|
|
|
spin_lock(&init_mm.page_table_lock);
|
|
pmd_clear(pmd);
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
}
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
pte_base = (pte_t *)pmd_page_vaddr(*pmd);
|
|
remove_pte_table(pte_base, addr, next, direct);
|
|
free_pte_table(pte_base, pmd);
|
|
}
|
|
|
|
/* Call free_pmd_table() in remove_pud_table(). */
|
|
if (direct)
|
|
update_page_count(PG_LEVEL_2M, -pages);
|
|
}
|
|
|
|
static void __meminit
|
|
remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
|
|
struct vmem_altmap *altmap, bool direct)
|
|
{
|
|
unsigned long next, pages = 0;
|
|
pmd_t *pmd_base;
|
|
pud_t *pud;
|
|
void *page_addr;
|
|
|
|
pud = pud_start + pud_index(addr);
|
|
for (; addr < end; addr = next, pud++) {
|
|
next = pud_addr_end(addr, end);
|
|
|
|
if (!pud_present(*pud))
|
|
continue;
|
|
|
|
if (pud_large(*pud)) {
|
|
if (IS_ALIGNED(addr, PUD_SIZE) &&
|
|
IS_ALIGNED(next, PUD_SIZE)) {
|
|
if (!direct)
|
|
free_pagetable(pud_page(*pud),
|
|
get_order(PUD_SIZE));
|
|
|
|
spin_lock(&init_mm.page_table_lock);
|
|
pud_clear(pud);
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
pages++;
|
|
} else {
|
|
/* If here, we are freeing vmemmap pages. */
|
|
memset((void *)addr, PAGE_INUSE, next - addr);
|
|
|
|
page_addr = page_address(pud_page(*pud));
|
|
if (!memchr_inv(page_addr, PAGE_INUSE,
|
|
PUD_SIZE)) {
|
|
free_pagetable(pud_page(*pud),
|
|
get_order(PUD_SIZE));
|
|
|
|
spin_lock(&init_mm.page_table_lock);
|
|
pud_clear(pud);
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
}
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
pmd_base = pmd_offset(pud, 0);
|
|
remove_pmd_table(pmd_base, addr, next, direct, altmap);
|
|
free_pmd_table(pmd_base, pud);
|
|
}
|
|
|
|
if (direct)
|
|
update_page_count(PG_LEVEL_1G, -pages);
|
|
}
|
|
|
|
static void __meminit
|
|
remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
|
|
struct vmem_altmap *altmap, bool direct)
|
|
{
|
|
unsigned long next, pages = 0;
|
|
pud_t *pud_base;
|
|
p4d_t *p4d;
|
|
|
|
p4d = p4d_start + p4d_index(addr);
|
|
for (; addr < end; addr = next, p4d++) {
|
|
next = p4d_addr_end(addr, end);
|
|
|
|
if (!p4d_present(*p4d))
|
|
continue;
|
|
|
|
BUILD_BUG_ON(p4d_large(*p4d));
|
|
|
|
pud_base = pud_offset(p4d, 0);
|
|
remove_pud_table(pud_base, addr, next, altmap, direct);
|
|
/*
|
|
* For 4-level page tables we do not want to free PUDs, but in the
|
|
* 5-level case we should free them. This code will have to change
|
|
* to adapt for boot-time switching between 4 and 5 level page tables.
|
|
*/
|
|
if (pgtable_l5_enabled())
|
|
free_pud_table(pud_base, p4d);
|
|
}
|
|
|
|
if (direct)
|
|
update_page_count(PG_LEVEL_512G, -pages);
|
|
}
|
|
|
|
/* start and end are both virtual address. */
|
|
static void __meminit
|
|
remove_pagetable(unsigned long start, unsigned long end, bool direct,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long next;
|
|
unsigned long addr;
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
|
|
for (addr = start; addr < end; addr = next) {
|
|
next = pgd_addr_end(addr, end);
|
|
|
|
pgd = pgd_offset_k(addr);
|
|
if (!pgd_present(*pgd))
|
|
continue;
|
|
|
|
p4d = p4d_offset(pgd, 0);
|
|
remove_p4d_table(p4d, addr, next, altmap, direct);
|
|
}
|
|
|
|
flush_tlb_all();
|
|
}
|
|
|
|
void __ref vmemmap_free(unsigned long start, unsigned long end,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
remove_pagetable(start, end, false, altmap);
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTREMOVE
|
|
static void __meminit
|
|
kernel_physical_mapping_remove(unsigned long start, unsigned long end)
|
|
{
|
|
start = (unsigned long)__va(start);
|
|
end = (unsigned long)__va(end);
|
|
|
|
remove_pagetable(start, end, true, NULL);
|
|
}
|
|
|
|
void __ref arch_remove_memory(int nid, u64 start, u64 size,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long start_pfn = start >> PAGE_SHIFT;
|
|
unsigned long nr_pages = size >> PAGE_SHIFT;
|
|
struct page *page = pfn_to_page(start_pfn);
|
|
struct zone *zone;
|
|
|
|
/* With altmap the first mapped page is offset from @start */
|
|
if (altmap)
|
|
page += vmem_altmap_offset(altmap);
|
|
zone = page_zone(page);
|
|
__remove_pages(zone, start_pfn, nr_pages, altmap);
|
|
kernel_physical_mapping_remove(start, start + size);
|
|
}
|
|
#endif
|
|
#endif /* CONFIG_MEMORY_HOTPLUG */
|
|
|
|
static struct kcore_list kcore_vsyscall;
|
|
|
|
static void __init register_page_bootmem_info(void)
|
|
{
|
|
#ifdef CONFIG_NUMA
|
|
int i;
|
|
|
|
for_each_online_node(i)
|
|
register_page_bootmem_info_node(NODE_DATA(i));
|
|
#endif
|
|
}
|
|
|
|
void __init mem_init(void)
|
|
{
|
|
pci_iommu_alloc();
|
|
|
|
/* clear_bss() already clear the empty_zero_page */
|
|
|
|
/* this will put all memory onto the freelists */
|
|
memblock_free_all();
|
|
after_bootmem = 1;
|
|
x86_init.hyper.init_after_bootmem();
|
|
|
|
/*
|
|
* Must be done after boot memory is put on freelist, because here we
|
|
* might set fields in deferred struct pages that have not yet been
|
|
* initialized, and memblock_free_all() initializes all the reserved
|
|
* deferred pages for us.
|
|
*/
|
|
register_page_bootmem_info();
|
|
|
|
/* Register memory areas for /proc/kcore */
|
|
if (get_gate_vma(&init_mm))
|
|
kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
|
|
|
|
mem_init_print_info(NULL);
|
|
}
|
|
|
|
int kernel_set_to_readonly;
|
|
|
|
void set_kernel_text_rw(void)
|
|
{
|
|
unsigned long start = PFN_ALIGN(_text);
|
|
unsigned long end = PFN_ALIGN(__stop___ex_table);
|
|
|
|
if (!kernel_set_to_readonly)
|
|
return;
|
|
|
|
pr_debug("Set kernel text: %lx - %lx for read write\n",
|
|
start, end);
|
|
|
|
/*
|
|
* Make the kernel identity mapping for text RW. Kernel text
|
|
* mapping will always be RO. Refer to the comment in
|
|
* static_protections() in pageattr.c
|
|
*/
|
|
set_memory_rw(start, (end - start) >> PAGE_SHIFT);
|
|
}
|
|
|
|
void set_kernel_text_ro(void)
|
|
{
|
|
unsigned long start = PFN_ALIGN(_text);
|
|
unsigned long end = PFN_ALIGN(__stop___ex_table);
|
|
|
|
if (!kernel_set_to_readonly)
|
|
return;
|
|
|
|
pr_debug("Set kernel text: %lx - %lx for read only\n",
|
|
start, end);
|
|
|
|
/*
|
|
* Set the kernel identity mapping for text RO.
|
|
*/
|
|
set_memory_ro(start, (end - start) >> PAGE_SHIFT);
|
|
}
|
|
|
|
void mark_rodata_ro(void)
|
|
{
|
|
unsigned long start = PFN_ALIGN(_text);
|
|
unsigned long rodata_start = PFN_ALIGN(__start_rodata);
|
|
unsigned long end = (unsigned long) &__end_rodata_hpage_align;
|
|
unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
|
|
unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
|
|
unsigned long all_end;
|
|
|
|
printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
|
|
(end - start) >> 10);
|
|
set_memory_ro(start, (end - start) >> PAGE_SHIFT);
|
|
|
|
kernel_set_to_readonly = 1;
|
|
|
|
/*
|
|
* The rodata/data/bss/brk section (but not the kernel text!)
|
|
* should also be not-executable.
|
|
*
|
|
* We align all_end to PMD_SIZE because the existing mapping
|
|
* is a full PMD. If we would align _brk_end to PAGE_SIZE we
|
|
* split the PMD and the reminder between _brk_end and the end
|
|
* of the PMD will remain mapped executable.
|
|
*
|
|
* Any PMD which was setup after the one which covers _brk_end
|
|
* has been zapped already via cleanup_highmem().
|
|
*/
|
|
all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
|
|
set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
|
|
|
|
#ifdef CONFIG_CPA_DEBUG
|
|
printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
|
|
set_memory_rw(start, (end-start) >> PAGE_SHIFT);
|
|
|
|
printk(KERN_INFO "Testing CPA: again\n");
|
|
set_memory_ro(start, (end-start) >> PAGE_SHIFT);
|
|
#endif
|
|
|
|
free_kernel_image_pages((void *)text_end, (void *)rodata_start);
|
|
free_kernel_image_pages((void *)rodata_end, (void *)_sdata);
|
|
|
|
debug_checkwx();
|
|
}
|
|
|
|
int kern_addr_valid(unsigned long addr)
|
|
{
|
|
unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
if (above != 0 && above != -1UL)
|
|
return 0;
|
|
|
|
pgd = pgd_offset_k(addr);
|
|
if (pgd_none(*pgd))
|
|
return 0;
|
|
|
|
p4d = p4d_offset(pgd, addr);
|
|
if (p4d_none(*p4d))
|
|
return 0;
|
|
|
|
pud = pud_offset(p4d, addr);
|
|
if (pud_none(*pud))
|
|
return 0;
|
|
|
|
if (pud_large(*pud))
|
|
return pfn_valid(pud_pfn(*pud));
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
if (pmd_none(*pmd))
|
|
return 0;
|
|
|
|
if (pmd_large(*pmd))
|
|
return pfn_valid(pmd_pfn(*pmd));
|
|
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
if (pte_none(*pte))
|
|
return 0;
|
|
|
|
return pfn_valid(pte_pfn(*pte));
|
|
}
|
|
|
|
/*
|
|
* Block size is the minimum amount of memory which can be hotplugged or
|
|
* hotremoved. It must be power of two and must be equal or larger than
|
|
* MIN_MEMORY_BLOCK_SIZE.
|
|
*/
|
|
#define MAX_BLOCK_SIZE (2UL << 30)
|
|
|
|
/* Amount of ram needed to start using large blocks */
|
|
#define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
|
|
|
|
/* Adjustable memory block size */
|
|
static unsigned long set_memory_block_size;
|
|
int __init set_memory_block_size_order(unsigned int order)
|
|
{
|
|
unsigned long size = 1UL << order;
|
|
|
|
if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
set_memory_block_size = size;
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long probe_memory_block_size(void)
|
|
{
|
|
unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
|
|
unsigned long bz;
|
|
|
|
/* If memory block size has been set, then use it */
|
|
bz = set_memory_block_size;
|
|
if (bz)
|
|
goto done;
|
|
|
|
/* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
|
|
if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
|
|
bz = MIN_MEMORY_BLOCK_SIZE;
|
|
goto done;
|
|
}
|
|
|
|
/* Find the largest allowed block size that aligns to memory end */
|
|
for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
|
|
if (IS_ALIGNED(boot_mem_end, bz))
|
|
break;
|
|
}
|
|
done:
|
|
pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
|
|
|
|
return bz;
|
|
}
|
|
|
|
static unsigned long memory_block_size_probed;
|
|
unsigned long memory_block_size_bytes(void)
|
|
{
|
|
if (!memory_block_size_probed)
|
|
memory_block_size_probed = probe_memory_block_size();
|
|
|
|
return memory_block_size_probed;
|
|
}
|
|
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
/*
|
|
* Initialise the sparsemem vmemmap using huge-pages at the PMD level.
|
|
*/
|
|
static long __meminitdata addr_start, addr_end;
|
|
static void __meminitdata *p_start, *p_end;
|
|
static int __meminitdata node_start;
|
|
|
|
static int __meminit vmemmap_populate_hugepages(unsigned long start,
|
|
unsigned long end, int node, struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long addr;
|
|
unsigned long next;
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
for (addr = start; addr < end; addr = next) {
|
|
next = pmd_addr_end(addr, end);
|
|
|
|
pgd = vmemmap_pgd_populate(addr, node);
|
|
if (!pgd)
|
|
return -ENOMEM;
|
|
|
|
p4d = vmemmap_p4d_populate(pgd, addr, node);
|
|
if (!p4d)
|
|
return -ENOMEM;
|
|
|
|
pud = vmemmap_pud_populate(p4d, addr, node);
|
|
if (!pud)
|
|
return -ENOMEM;
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
if (pmd_none(*pmd)) {
|
|
void *p;
|
|
|
|
if (altmap)
|
|
p = altmap_alloc_block_buf(PMD_SIZE, altmap);
|
|
else
|
|
p = vmemmap_alloc_block_buf(PMD_SIZE, node);
|
|
if (p) {
|
|
pte_t entry;
|
|
|
|
entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
|
|
PAGE_KERNEL_LARGE);
|
|
set_pmd(pmd, __pmd(pte_val(entry)));
|
|
|
|
/* check to see if we have contiguous blocks */
|
|
if (p_end != p || node_start != node) {
|
|
if (p_start)
|
|
pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
|
|
addr_start, addr_end-1, p_start, p_end-1, node_start);
|
|
addr_start = addr;
|
|
node_start = node;
|
|
p_start = p;
|
|
}
|
|
|
|
addr_end = addr + PMD_SIZE;
|
|
p_end = p + PMD_SIZE;
|
|
continue;
|
|
} else if (altmap)
|
|
return -ENOMEM; /* no fallback */
|
|
} else if (pmd_large(*pmd)) {
|
|
vmemmap_verify((pte_t *)pmd, node, addr, next);
|
|
continue;
|
|
}
|
|
if (vmemmap_populate_basepages(addr, next, node))
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
int err;
|
|
|
|
if (boot_cpu_has(X86_FEATURE_PSE))
|
|
err = vmemmap_populate_hugepages(start, end, node, altmap);
|
|
else if (altmap) {
|
|
pr_err_once("%s: no cpu support for altmap allocations\n",
|
|
__func__);
|
|
err = -ENOMEM;
|
|
} else
|
|
err = vmemmap_populate_basepages(start, end, node);
|
|
if (!err)
|
|
sync_global_pgds(start, end - 1);
|
|
return err;
|
|
}
|
|
|
|
#if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
|
|
void register_page_bootmem_memmap(unsigned long section_nr,
|
|
struct page *start_page, unsigned long nr_pages)
|
|
{
|
|
unsigned long addr = (unsigned long)start_page;
|
|
unsigned long end = (unsigned long)(start_page + nr_pages);
|
|
unsigned long next;
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
unsigned int nr_pmd_pages;
|
|
struct page *page;
|
|
|
|
for (; addr < end; addr = next) {
|
|
pte_t *pte = NULL;
|
|
|
|
pgd = pgd_offset_k(addr);
|
|
if (pgd_none(*pgd)) {
|
|
next = (addr + PAGE_SIZE) & PAGE_MASK;
|
|
continue;
|
|
}
|
|
get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
|
|
|
|
p4d = p4d_offset(pgd, addr);
|
|
if (p4d_none(*p4d)) {
|
|
next = (addr + PAGE_SIZE) & PAGE_MASK;
|
|
continue;
|
|
}
|
|
get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
|
|
|
|
pud = pud_offset(p4d, addr);
|
|
if (pud_none(*pud)) {
|
|
next = (addr + PAGE_SIZE) & PAGE_MASK;
|
|
continue;
|
|
}
|
|
get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_PSE)) {
|
|
next = (addr + PAGE_SIZE) & PAGE_MASK;
|
|
pmd = pmd_offset(pud, addr);
|
|
if (pmd_none(*pmd))
|
|
continue;
|
|
get_page_bootmem(section_nr, pmd_page(*pmd),
|
|
MIX_SECTION_INFO);
|
|
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
if (pte_none(*pte))
|
|
continue;
|
|
get_page_bootmem(section_nr, pte_page(*pte),
|
|
SECTION_INFO);
|
|
} else {
|
|
next = pmd_addr_end(addr, end);
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
if (pmd_none(*pmd))
|
|
continue;
|
|
|
|
nr_pmd_pages = 1 << get_order(PMD_SIZE);
|
|
page = pmd_page(*pmd);
|
|
while (nr_pmd_pages--)
|
|
get_page_bootmem(section_nr, page++,
|
|
SECTION_INFO);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void __meminit vmemmap_populate_print_last(void)
|
|
{
|
|
if (p_start) {
|
|
pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
|
|
addr_start, addr_end-1, p_start, p_end-1, node_start);
|
|
p_start = NULL;
|
|
p_end = NULL;
|
|
node_start = 0;
|
|
}
|
|
}
|
|
#endif
|