linux_dsm_epyc7002/drivers/net/ethernet/cavium/liquidio/request_manager.c
Colin Ian King a666960d18 liquidio: remove redundant setting of inst_processed to zero
The zero value assigned to inst_processed at the end of each
iteration of the do-while loop is overwritten on the next iteration
and hence it is a redundant assignment and can be removed. Cleans
up clang warning:

drivers/net/ethernet/cavium/liquidio/request_manager.c:480:3:
warning: Value stored to 'inst_processed' is never read

Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-02 15:52:46 +09:00

870 lines
22 KiB
C

/**********************************************************************
* Author: Cavium, Inc.
*
* Contact: support@cavium.com
* Please include "LiquidIO" in the subject.
*
* Copyright (c) 2003-2016 Cavium, Inc.
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, Version 2, as
* published by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful, but
* AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
* NONINFRINGEMENT. See the GNU General Public License for more
* details.
**********************************************************************/
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/vmalloc.h>
#include "liquidio_common.h"
#include "octeon_droq.h"
#include "octeon_iq.h"
#include "response_manager.h"
#include "octeon_device.h"
#include "octeon_main.h"
#include "octeon_network.h"
#include "cn66xx_device.h"
#include "cn23xx_pf_device.h"
#include "cn23xx_vf_device.h"
struct iq_post_status {
int status;
int index;
};
static void check_db_timeout(struct work_struct *work);
static void __check_db_timeout(struct octeon_device *oct, u64 iq_no);
static void (*reqtype_free_fn[MAX_OCTEON_DEVICES][REQTYPE_LAST + 1]) (void *);
static inline int IQ_INSTR_MODE_64B(struct octeon_device *oct, int iq_no)
{
struct octeon_instr_queue *iq =
(struct octeon_instr_queue *)oct->instr_queue[iq_no];
return iq->iqcmd_64B;
}
#define IQ_INSTR_MODE_32B(oct, iq_no) (!IQ_INSTR_MODE_64B(oct, iq_no))
/* Define this to return the request status comaptible to old code */
/*#define OCTEON_USE_OLD_REQ_STATUS*/
/* Return 0 on success, 1 on failure */
int octeon_init_instr_queue(struct octeon_device *oct,
union oct_txpciq txpciq,
u32 num_descs)
{
struct octeon_instr_queue *iq;
struct octeon_iq_config *conf = NULL;
u32 iq_no = (u32)txpciq.s.q_no;
u32 q_size;
struct cavium_wq *db_wq;
int numa_node = dev_to_node(&oct->pci_dev->dev);
if (OCTEON_CN6XXX(oct))
conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn6xxx)));
else if (OCTEON_CN23XX_PF(oct))
conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn23xx_pf)));
else if (OCTEON_CN23XX_VF(oct))
conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn23xx_vf)));
if (!conf) {
dev_err(&oct->pci_dev->dev, "Unsupported Chip %x\n",
oct->chip_id);
return 1;
}
q_size = (u32)conf->instr_type * num_descs;
iq = oct->instr_queue[iq_no];
iq->oct_dev = oct;
iq->base_addr = lio_dma_alloc(oct, q_size, &iq->base_addr_dma);
if (!iq->base_addr) {
dev_err(&oct->pci_dev->dev, "Cannot allocate memory for instr queue %d\n",
iq_no);
return 1;
}
iq->max_count = num_descs;
/* Initialize a list to holds requests that have been posted to Octeon
* but has yet to be fetched by octeon
*/
iq->request_list = vmalloc_node((sizeof(*iq->request_list) * num_descs),
numa_node);
if (!iq->request_list)
iq->request_list = vmalloc(sizeof(*iq->request_list) *
num_descs);
if (!iq->request_list) {
lio_dma_free(oct, q_size, iq->base_addr, iq->base_addr_dma);
dev_err(&oct->pci_dev->dev, "Alloc failed for IQ[%d] nr free list\n",
iq_no);
return 1;
}
memset(iq->request_list, 0, sizeof(*iq->request_list) * num_descs);
dev_dbg(&oct->pci_dev->dev, "IQ[%d]: base: %p basedma: %llx count: %d\n",
iq_no, iq->base_addr, iq->base_addr_dma, iq->max_count);
iq->txpciq.u64 = txpciq.u64;
iq->fill_threshold = (u32)conf->db_min;
iq->fill_cnt = 0;
iq->host_write_index = 0;
iq->octeon_read_index = 0;
iq->flush_index = 0;
iq->last_db_time = 0;
iq->do_auto_flush = 1;
iq->db_timeout = (u32)conf->db_timeout;
atomic_set(&iq->instr_pending, 0);
/* Initialize the spinlock for this instruction queue */
spin_lock_init(&iq->lock);
spin_lock_init(&iq->post_lock);
spin_lock_init(&iq->iq_flush_running_lock);
oct->io_qmask.iq |= BIT_ULL(iq_no);
/* Set the 32B/64B mode for each input queue */
oct->io_qmask.iq64B |= ((conf->instr_type == 64) << iq_no);
iq->iqcmd_64B = (conf->instr_type == 64);
oct->fn_list.setup_iq_regs(oct, iq_no);
oct->check_db_wq[iq_no].wq = alloc_workqueue("check_iq_db",
WQ_MEM_RECLAIM,
0);
if (!oct->check_db_wq[iq_no].wq) {
vfree(iq->request_list);
iq->request_list = NULL;
lio_dma_free(oct, q_size, iq->base_addr, iq->base_addr_dma);
dev_err(&oct->pci_dev->dev, "check db wq create failed for iq %d\n",
iq_no);
return 1;
}
db_wq = &oct->check_db_wq[iq_no];
INIT_DELAYED_WORK(&db_wq->wk.work, check_db_timeout);
db_wq->wk.ctxptr = oct;
db_wq->wk.ctxul = iq_no;
queue_delayed_work(db_wq->wq, &db_wq->wk.work, msecs_to_jiffies(1));
return 0;
}
int octeon_delete_instr_queue(struct octeon_device *oct, u32 iq_no)
{
u64 desc_size = 0, q_size;
struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
cancel_delayed_work_sync(&oct->check_db_wq[iq_no].wk.work);
destroy_workqueue(oct->check_db_wq[iq_no].wq);
if (OCTEON_CN6XXX(oct))
desc_size =
CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn6xxx));
else if (OCTEON_CN23XX_PF(oct))
desc_size =
CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn23xx_pf));
else if (OCTEON_CN23XX_VF(oct))
desc_size =
CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn23xx_vf));
vfree(iq->request_list);
if (iq->base_addr) {
q_size = iq->max_count * desc_size;
lio_dma_free(oct, (u32)q_size, iq->base_addr,
iq->base_addr_dma);
oct->io_qmask.iq &= ~(1ULL << iq_no);
vfree(oct->instr_queue[iq_no]);
oct->instr_queue[iq_no] = NULL;
oct->num_iqs--;
return 0;
}
return 1;
}
/* Return 0 on success, 1 on failure */
int octeon_setup_iq(struct octeon_device *oct,
int ifidx,
int q_index,
union oct_txpciq txpciq,
u32 num_descs,
void *app_ctx)
{
u32 iq_no = (u32)txpciq.s.q_no;
int numa_node = dev_to_node(&oct->pci_dev->dev);
if (oct->instr_queue[iq_no]) {
dev_dbg(&oct->pci_dev->dev, "IQ is in use. Cannot create the IQ: %d again\n",
iq_no);
oct->instr_queue[iq_no]->txpciq.u64 = txpciq.u64;
oct->instr_queue[iq_no]->app_ctx = app_ctx;
return 0;
}
oct->instr_queue[iq_no] =
vmalloc_node(sizeof(struct octeon_instr_queue), numa_node);
if (!oct->instr_queue[iq_no])
oct->instr_queue[iq_no] =
vmalloc(sizeof(struct octeon_instr_queue));
if (!oct->instr_queue[iq_no])
return 1;
memset(oct->instr_queue[iq_no], 0,
sizeof(struct octeon_instr_queue));
oct->instr_queue[iq_no]->q_index = q_index;
oct->instr_queue[iq_no]->app_ctx = app_ctx;
oct->instr_queue[iq_no]->ifidx = ifidx;
if (octeon_init_instr_queue(oct, txpciq, num_descs)) {
vfree(oct->instr_queue[iq_no]);
oct->instr_queue[iq_no] = NULL;
return 1;
}
oct->num_iqs++;
if (oct->fn_list.enable_io_queues(oct))
return 1;
return 0;
}
int lio_wait_for_instr_fetch(struct octeon_device *oct)
{
int i, retry = 1000, pending, instr_cnt = 0;
do {
instr_cnt = 0;
for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
if (!(oct->io_qmask.iq & BIT_ULL(i)))
continue;
pending =
atomic_read(&oct->instr_queue[i]->instr_pending);
if (pending)
__check_db_timeout(oct, i);
instr_cnt += pending;
}
if (instr_cnt == 0)
break;
schedule_timeout_uninterruptible(1);
} while (retry-- && instr_cnt);
return instr_cnt;
}
static inline void
ring_doorbell(struct octeon_device *oct, struct octeon_instr_queue *iq)
{
if (atomic_read(&oct->status) == OCT_DEV_RUNNING) {
writel(iq->fill_cnt, iq->doorbell_reg);
/* make sure doorbell write goes through */
mmiowb();
iq->fill_cnt = 0;
iq->last_db_time = jiffies;
return;
}
}
void
octeon_ring_doorbell_locked(struct octeon_device *oct, u32 iq_no)
{
struct octeon_instr_queue *iq;
iq = oct->instr_queue[iq_no];
spin_lock(&iq->post_lock);
if (iq->fill_cnt)
ring_doorbell(oct, iq);
spin_unlock(&iq->post_lock);
}
static inline void __copy_cmd_into_iq(struct octeon_instr_queue *iq,
u8 *cmd)
{
u8 *iqptr, cmdsize;
cmdsize = ((iq->iqcmd_64B) ? 64 : 32);
iqptr = iq->base_addr + (cmdsize * iq->host_write_index);
memcpy(iqptr, cmd, cmdsize);
}
static inline struct iq_post_status
__post_command2(struct octeon_instr_queue *iq, u8 *cmd)
{
struct iq_post_status st;
st.status = IQ_SEND_OK;
/* This ensures that the read index does not wrap around to the same
* position if queue gets full before Octeon could fetch any instr.
*/
if (atomic_read(&iq->instr_pending) >= (s32)(iq->max_count - 1)) {
st.status = IQ_SEND_FAILED;
st.index = -1;
return st;
}
if (atomic_read(&iq->instr_pending) >= (s32)(iq->max_count - 2))
st.status = IQ_SEND_STOP;
__copy_cmd_into_iq(iq, cmd);
/* "index" is returned, host_write_index is modified. */
st.index = iq->host_write_index;
iq->host_write_index = incr_index(iq->host_write_index, 1,
iq->max_count);
iq->fill_cnt++;
/* Flush the command into memory. We need to be sure the data is in
* memory before indicating that the instruction is pending.
*/
wmb();
atomic_inc(&iq->instr_pending);
return st;
}
int
octeon_register_reqtype_free_fn(struct octeon_device *oct, int reqtype,
void (*fn)(void *))
{
if (reqtype > REQTYPE_LAST) {
dev_err(&oct->pci_dev->dev, "%s: Invalid reqtype: %d\n",
__func__, reqtype);
return -EINVAL;
}
reqtype_free_fn[oct->octeon_id][reqtype] = fn;
return 0;
}
static inline void
__add_to_request_list(struct octeon_instr_queue *iq,
int idx, void *buf, int reqtype)
{
iq->request_list[idx].buf = buf;
iq->request_list[idx].reqtype = reqtype;
}
/* Can only run in process context */
int
lio_process_iq_request_list(struct octeon_device *oct,
struct octeon_instr_queue *iq, u32 napi_budget)
{
int reqtype;
void *buf;
u32 old = iq->flush_index;
u32 inst_count = 0;
unsigned int pkts_compl = 0, bytes_compl = 0;
struct octeon_soft_command *sc;
struct octeon_instr_irh *irh;
unsigned long flags;
while (old != iq->octeon_read_index) {
reqtype = iq->request_list[old].reqtype;
buf = iq->request_list[old].buf;
if (reqtype == REQTYPE_NONE)
goto skip_this;
octeon_update_tx_completion_counters(buf, reqtype, &pkts_compl,
&bytes_compl);
switch (reqtype) {
case REQTYPE_NORESP_NET:
case REQTYPE_NORESP_NET_SG:
case REQTYPE_RESP_NET_SG:
reqtype_free_fn[oct->octeon_id][reqtype](buf);
break;
case REQTYPE_RESP_NET:
case REQTYPE_SOFT_COMMAND:
sc = buf;
if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct))
irh = (struct octeon_instr_irh *)
&sc->cmd.cmd3.irh;
else
irh = (struct octeon_instr_irh *)
&sc->cmd.cmd2.irh;
if (irh->rflag) {
/* We're expecting a response from Octeon.
* It's up to lio_process_ordered_list() to
* process sc. Add sc to the ordered soft
* command response list because we expect
* a response from Octeon.
*/
spin_lock_irqsave
(&oct->response_list
[OCTEON_ORDERED_SC_LIST].lock,
flags);
atomic_inc(&oct->response_list
[OCTEON_ORDERED_SC_LIST].
pending_req_count);
list_add_tail(&sc->node, &oct->response_list
[OCTEON_ORDERED_SC_LIST].head);
spin_unlock_irqrestore
(&oct->response_list
[OCTEON_ORDERED_SC_LIST].lock,
flags);
} else {
if (sc->callback) {
/* This callback must not sleep */
sc->callback(oct, OCTEON_REQUEST_DONE,
sc->callback_arg);
}
}
break;
default:
dev_err(&oct->pci_dev->dev,
"%s Unknown reqtype: %d buf: %p at idx %d\n",
__func__, reqtype, buf, old);
}
iq->request_list[old].buf = NULL;
iq->request_list[old].reqtype = 0;
skip_this:
inst_count++;
old = incr_index(old, 1, iq->max_count);
if ((napi_budget) && (inst_count >= napi_budget))
break;
}
if (bytes_compl)
octeon_report_tx_completion_to_bql(iq->app_ctx, pkts_compl,
bytes_compl);
iq->flush_index = old;
return inst_count;
}
/* Can only be called from process context */
int
octeon_flush_iq(struct octeon_device *oct, struct octeon_instr_queue *iq,
u32 napi_budget)
{
u32 inst_processed = 0;
u32 tot_inst_processed = 0;
int tx_done = 1;
if (!spin_trylock(&iq->iq_flush_running_lock))
return tx_done;
spin_lock_bh(&iq->lock);
iq->octeon_read_index = oct->fn_list.update_iq_read_idx(iq);
do {
/* Process any outstanding IQ packets. */
if (iq->flush_index == iq->octeon_read_index)
break;
if (napi_budget)
inst_processed =
lio_process_iq_request_list(oct, iq,
napi_budget -
tot_inst_processed);
else
inst_processed =
lio_process_iq_request_list(oct, iq, 0);
if (inst_processed) {
atomic_sub(inst_processed, &iq->instr_pending);
iq->stats.instr_processed += inst_processed;
}
tot_inst_processed += inst_processed;
} while (tot_inst_processed < napi_budget);
if (napi_budget && (tot_inst_processed >= napi_budget))
tx_done = 0;
iq->last_db_time = jiffies;
spin_unlock_bh(&iq->lock);
spin_unlock(&iq->iq_flush_running_lock);
return tx_done;
}
/* Process instruction queue after timeout.
* This routine gets called from a workqueue or when removing the module.
*/
static void __check_db_timeout(struct octeon_device *oct, u64 iq_no)
{
struct octeon_instr_queue *iq;
u64 next_time;
if (!oct)
return;
iq = oct->instr_queue[iq_no];
if (!iq)
return;
/* return immediately, if no work pending */
if (!atomic_read(&iq->instr_pending))
return;
/* If jiffies - last_db_time < db_timeout do nothing */
next_time = iq->last_db_time + iq->db_timeout;
if (!time_after(jiffies, (unsigned long)next_time))
return;
iq->last_db_time = jiffies;
/* Flush the instruction queue */
octeon_flush_iq(oct, iq, 0);
lio_enable_irq(NULL, iq);
}
/* Called by the Poll thread at regular intervals to check the instruction
* queue for commands to be posted and for commands that were fetched by Octeon.
*/
static void check_db_timeout(struct work_struct *work)
{
struct cavium_wk *wk = (struct cavium_wk *)work;
struct octeon_device *oct = (struct octeon_device *)wk->ctxptr;
u64 iq_no = wk->ctxul;
struct cavium_wq *db_wq = &oct->check_db_wq[iq_no];
u32 delay = 10;
__check_db_timeout(oct, iq_no);
queue_delayed_work(db_wq->wq, &db_wq->wk.work, msecs_to_jiffies(delay));
}
int
octeon_send_command(struct octeon_device *oct, u32 iq_no,
u32 force_db, void *cmd, void *buf,
u32 datasize, u32 reqtype)
{
int xmit_stopped;
struct iq_post_status st;
struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
/* Get the lock and prevent other tasks and tx interrupt handler from
* running.
*/
spin_lock_bh(&iq->post_lock);
st = __post_command2(iq, cmd);
if (st.status != IQ_SEND_FAILED) {
xmit_stopped = octeon_report_sent_bytes_to_bql(buf, reqtype);
__add_to_request_list(iq, st.index, buf, reqtype);
INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, bytes_sent, datasize);
INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_posted, 1);
if (iq->fill_cnt >= MAX_OCTEON_FILL_COUNT || force_db ||
xmit_stopped || st.status == IQ_SEND_STOP)
ring_doorbell(oct, iq);
} else {
INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_dropped, 1);
}
spin_unlock_bh(&iq->post_lock);
/* This is only done here to expedite packets being flushed
* for cases where there are no IQ completion interrupts.
*/
return st.status;
}
void
octeon_prepare_soft_command(struct octeon_device *oct,
struct octeon_soft_command *sc,
u8 opcode,
u8 subcode,
u32 irh_ossp,
u64 ossp0,
u64 ossp1)
{
struct octeon_config *oct_cfg;
struct octeon_instr_ih2 *ih2;
struct octeon_instr_ih3 *ih3;
struct octeon_instr_pki_ih3 *pki_ih3;
struct octeon_instr_irh *irh;
struct octeon_instr_rdp *rdp;
WARN_ON(opcode > 15);
WARN_ON(subcode > 127);
oct_cfg = octeon_get_conf(oct);
if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct)) {
ih3 = (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3;
ih3->pkind = oct->instr_queue[sc->iq_no]->txpciq.s.pkind;
pki_ih3 = (struct octeon_instr_pki_ih3 *)&sc->cmd.cmd3.pki_ih3;
pki_ih3->w = 1;
pki_ih3->raw = 1;
pki_ih3->utag = 1;
pki_ih3->uqpg =
oct->instr_queue[sc->iq_no]->txpciq.s.use_qpg;
pki_ih3->utt = 1;
pki_ih3->tag = LIO_CONTROL;
pki_ih3->tagtype = ATOMIC_TAG;
pki_ih3->qpg =
oct->instr_queue[sc->iq_no]->txpciq.s.qpg;
pki_ih3->pm = 0x7;
pki_ih3->sl = 8;
if (sc->datasize)
ih3->dlengsz = sc->datasize;
irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh;
irh->opcode = opcode;
irh->subcode = subcode;
/* opcode/subcode specific parameters (ossp) */
irh->ossp = irh_ossp;
sc->cmd.cmd3.ossp[0] = ossp0;
sc->cmd.cmd3.ossp[1] = ossp1;
if (sc->rdatasize) {
rdp = (struct octeon_instr_rdp *)&sc->cmd.cmd3.rdp;
rdp->pcie_port = oct->pcie_port;
rdp->rlen = sc->rdatasize;
irh->rflag = 1;
/*PKI IH3*/
/* pki_ih3 irh+ossp[0]+ossp[1]+rdp+rptr = 48 bytes */
ih3->fsz = LIO_SOFTCMDRESP_IH3;
} else {
irh->rflag = 0;
/*PKI IH3*/
/* pki_h3 + irh + ossp[0] + ossp[1] = 32 bytes */
ih3->fsz = LIO_PCICMD_O3;
}
} else {
ih2 = (struct octeon_instr_ih2 *)&sc->cmd.cmd2.ih2;
ih2->tagtype = ATOMIC_TAG;
ih2->tag = LIO_CONTROL;
ih2->raw = 1;
ih2->grp = CFG_GET_CTRL_Q_GRP(oct_cfg);
if (sc->datasize) {
ih2->dlengsz = sc->datasize;
ih2->rs = 1;
}
irh = (struct octeon_instr_irh *)&sc->cmd.cmd2.irh;
irh->opcode = opcode;
irh->subcode = subcode;
/* opcode/subcode specific parameters (ossp) */
irh->ossp = irh_ossp;
sc->cmd.cmd2.ossp[0] = ossp0;
sc->cmd.cmd2.ossp[1] = ossp1;
if (sc->rdatasize) {
rdp = (struct octeon_instr_rdp *)&sc->cmd.cmd2.rdp;
rdp->pcie_port = oct->pcie_port;
rdp->rlen = sc->rdatasize;
irh->rflag = 1;
/* irh+ossp[0]+ossp[1]+rdp+rptr = 40 bytes */
ih2->fsz = LIO_SOFTCMDRESP_IH2;
} else {
irh->rflag = 0;
/* irh + ossp[0] + ossp[1] = 24 bytes */
ih2->fsz = LIO_PCICMD_O2;
}
}
}
int octeon_send_soft_command(struct octeon_device *oct,
struct octeon_soft_command *sc)
{
struct octeon_instr_ih2 *ih2;
struct octeon_instr_ih3 *ih3;
struct octeon_instr_irh *irh;
u32 len;
if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct)) {
ih3 = (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3;
if (ih3->dlengsz) {
WARN_ON(!sc->dmadptr);
sc->cmd.cmd3.dptr = sc->dmadptr;
}
irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh;
if (irh->rflag) {
WARN_ON(!sc->dmarptr);
WARN_ON(!sc->status_word);
*sc->status_word = COMPLETION_WORD_INIT;
sc->cmd.cmd3.rptr = sc->dmarptr;
}
len = (u32)ih3->dlengsz;
} else {
ih2 = (struct octeon_instr_ih2 *)&sc->cmd.cmd2.ih2;
if (ih2->dlengsz) {
WARN_ON(!sc->dmadptr);
sc->cmd.cmd2.dptr = sc->dmadptr;
}
irh = (struct octeon_instr_irh *)&sc->cmd.cmd2.irh;
if (irh->rflag) {
WARN_ON(!sc->dmarptr);
WARN_ON(!sc->status_word);
*sc->status_word = COMPLETION_WORD_INIT;
sc->cmd.cmd2.rptr = sc->dmarptr;
}
len = (u32)ih2->dlengsz;
}
if (sc->wait_time)
sc->timeout = jiffies + sc->wait_time;
return (octeon_send_command(oct, sc->iq_no, 1, &sc->cmd, sc,
len, REQTYPE_SOFT_COMMAND));
}
int octeon_setup_sc_buffer_pool(struct octeon_device *oct)
{
int i;
u64 dma_addr;
struct octeon_soft_command *sc;
INIT_LIST_HEAD(&oct->sc_buf_pool.head);
spin_lock_init(&oct->sc_buf_pool.lock);
atomic_set(&oct->sc_buf_pool.alloc_buf_count, 0);
for (i = 0; i < MAX_SOFT_COMMAND_BUFFERS; i++) {
sc = (struct octeon_soft_command *)
lio_dma_alloc(oct,
SOFT_COMMAND_BUFFER_SIZE,
(dma_addr_t *)&dma_addr);
if (!sc) {
octeon_free_sc_buffer_pool(oct);
return 1;
}
sc->dma_addr = dma_addr;
sc->size = SOFT_COMMAND_BUFFER_SIZE;
list_add_tail(&sc->node, &oct->sc_buf_pool.head);
}
return 0;
}
int octeon_free_sc_buffer_pool(struct octeon_device *oct)
{
struct list_head *tmp, *tmp2;
struct octeon_soft_command *sc;
spin_lock_bh(&oct->sc_buf_pool.lock);
list_for_each_safe(tmp, tmp2, &oct->sc_buf_pool.head) {
list_del(tmp);
sc = (struct octeon_soft_command *)tmp;
lio_dma_free(oct, sc->size, sc, sc->dma_addr);
}
INIT_LIST_HEAD(&oct->sc_buf_pool.head);
spin_unlock_bh(&oct->sc_buf_pool.lock);
return 0;
}
struct octeon_soft_command *octeon_alloc_soft_command(struct octeon_device *oct,
u32 datasize,
u32 rdatasize,
u32 ctxsize)
{
u64 dma_addr;
u32 size;
u32 offset = sizeof(struct octeon_soft_command);
struct octeon_soft_command *sc = NULL;
struct list_head *tmp;
WARN_ON((offset + datasize + rdatasize + ctxsize) >
SOFT_COMMAND_BUFFER_SIZE);
spin_lock_bh(&oct->sc_buf_pool.lock);
if (list_empty(&oct->sc_buf_pool.head)) {
spin_unlock_bh(&oct->sc_buf_pool.lock);
return NULL;
}
list_for_each(tmp, &oct->sc_buf_pool.head)
break;
list_del(tmp);
atomic_inc(&oct->sc_buf_pool.alloc_buf_count);
spin_unlock_bh(&oct->sc_buf_pool.lock);
sc = (struct octeon_soft_command *)tmp;
dma_addr = sc->dma_addr;
size = sc->size;
memset(sc, 0, sc->size);
sc->dma_addr = dma_addr;
sc->size = size;
if (ctxsize) {
sc->ctxptr = (u8 *)sc + offset;
sc->ctxsize = ctxsize;
}
/* Start data at 128 byte boundary */
offset = (offset + ctxsize + 127) & 0xffffff80;
if (datasize) {
sc->virtdptr = (u8 *)sc + offset;
sc->dmadptr = dma_addr + offset;
sc->datasize = datasize;
}
/* Start rdata at 128 byte boundary */
offset = (offset + datasize + 127) & 0xffffff80;
if (rdatasize) {
WARN_ON(rdatasize < 16);
sc->virtrptr = (u8 *)sc + offset;
sc->dmarptr = dma_addr + offset;
sc->rdatasize = rdatasize;
sc->status_word = (u64 *)((u8 *)(sc->virtrptr) + rdatasize - 8);
}
return sc;
}
void octeon_free_soft_command(struct octeon_device *oct,
struct octeon_soft_command *sc)
{
spin_lock_bh(&oct->sc_buf_pool.lock);
list_add_tail(&sc->node, &oct->sc_buf_pool.head);
atomic_dec(&oct->sc_buf_pool.alloc_buf_count);
spin_unlock_bh(&oct->sc_buf_pool.lock);
}