mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-23 09:09:36 +07:00
68db0cf106
We are going to split <linux/sched/task_stack.h> out of <linux/sched.h>, which will have to be picked up from other headers and a couple of .c files. Create a trivial placeholder <linux/sched/task_stack.h> file that just maps to <linux/sched.h> to make this patch obviously correct and bisectable. Include the new header in the files that are going to need it. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
1153 lines
29 KiB
C
1153 lines
29 KiB
C
/*
|
|
* SMP related functions
|
|
*
|
|
* Copyright IBM Corp. 1999, 2012
|
|
* Author(s): Denis Joseph Barrow,
|
|
* Martin Schwidefsky <schwidefsky@de.ibm.com>,
|
|
* Heiko Carstens <heiko.carstens@de.ibm.com>,
|
|
*
|
|
* based on other smp stuff by
|
|
* (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
|
|
* (c) 1998 Ingo Molnar
|
|
*
|
|
* The code outside of smp.c uses logical cpu numbers, only smp.c does
|
|
* the translation of logical to physical cpu ids. All new code that
|
|
* operates on physical cpu numbers needs to go into smp.c.
|
|
*/
|
|
|
|
#define KMSG_COMPONENT "cpu"
|
|
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
|
|
|
|
#include <linux/workqueue.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/export.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/err.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irqflags.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sched/hotplug.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/crash_dump.h>
|
|
#include <linux/memblock.h>
|
|
#include <asm/asm-offsets.h>
|
|
#include <asm/diag.h>
|
|
#include <asm/switch_to.h>
|
|
#include <asm/facility.h>
|
|
#include <asm/ipl.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/vtimer.h>
|
|
#include <asm/lowcore.h>
|
|
#include <asm/sclp.h>
|
|
#include <asm/vdso.h>
|
|
#include <asm/debug.h>
|
|
#include <asm/os_info.h>
|
|
#include <asm/sigp.h>
|
|
#include <asm/idle.h>
|
|
#include "entry.h"
|
|
|
|
enum {
|
|
ec_schedule = 0,
|
|
ec_call_function_single,
|
|
ec_stop_cpu,
|
|
};
|
|
|
|
enum {
|
|
CPU_STATE_STANDBY,
|
|
CPU_STATE_CONFIGURED,
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct cpu *, cpu_device);
|
|
|
|
struct pcpu {
|
|
struct lowcore *lowcore; /* lowcore page(s) for the cpu */
|
|
unsigned long ec_mask; /* bit mask for ec_xxx functions */
|
|
unsigned long ec_clk; /* sigp timestamp for ec_xxx */
|
|
signed char state; /* physical cpu state */
|
|
signed char polarization; /* physical polarization */
|
|
u16 address; /* physical cpu address */
|
|
};
|
|
|
|
static u8 boot_core_type;
|
|
static struct pcpu pcpu_devices[NR_CPUS];
|
|
|
|
unsigned int smp_cpu_mt_shift;
|
|
EXPORT_SYMBOL(smp_cpu_mt_shift);
|
|
|
|
unsigned int smp_cpu_mtid;
|
|
EXPORT_SYMBOL(smp_cpu_mtid);
|
|
|
|
#ifdef CONFIG_CRASH_DUMP
|
|
__vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
|
|
#endif
|
|
|
|
static unsigned int smp_max_threads __initdata = -1U;
|
|
|
|
static int __init early_nosmt(char *s)
|
|
{
|
|
smp_max_threads = 1;
|
|
return 0;
|
|
}
|
|
early_param("nosmt", early_nosmt);
|
|
|
|
static int __init early_smt(char *s)
|
|
{
|
|
get_option(&s, &smp_max_threads);
|
|
return 0;
|
|
}
|
|
early_param("smt", early_smt);
|
|
|
|
/*
|
|
* The smp_cpu_state_mutex must be held when changing the state or polarization
|
|
* member of a pcpu data structure within the pcpu_devices arreay.
|
|
*/
|
|
DEFINE_MUTEX(smp_cpu_state_mutex);
|
|
|
|
/*
|
|
* Signal processor helper functions.
|
|
*/
|
|
static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
|
|
{
|
|
int cc;
|
|
|
|
while (1) {
|
|
cc = __pcpu_sigp(addr, order, parm, NULL);
|
|
if (cc != SIGP_CC_BUSY)
|
|
return cc;
|
|
cpu_relax();
|
|
}
|
|
}
|
|
|
|
static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
|
|
{
|
|
int cc, retry;
|
|
|
|
for (retry = 0; ; retry++) {
|
|
cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
|
|
if (cc != SIGP_CC_BUSY)
|
|
break;
|
|
if (retry >= 3)
|
|
udelay(10);
|
|
}
|
|
return cc;
|
|
}
|
|
|
|
static inline int pcpu_stopped(struct pcpu *pcpu)
|
|
{
|
|
u32 uninitialized_var(status);
|
|
|
|
if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
|
|
0, &status) != SIGP_CC_STATUS_STORED)
|
|
return 0;
|
|
return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
|
|
}
|
|
|
|
static inline int pcpu_running(struct pcpu *pcpu)
|
|
{
|
|
if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
|
|
0, NULL) != SIGP_CC_STATUS_STORED)
|
|
return 1;
|
|
/* Status stored condition code is equivalent to cpu not running. */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Find struct pcpu by cpu address.
|
|
*/
|
|
static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_cpu(cpu, mask)
|
|
if (pcpu_devices[cpu].address == address)
|
|
return pcpu_devices + cpu;
|
|
return NULL;
|
|
}
|
|
|
|
static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
|
|
{
|
|
int order;
|
|
|
|
if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
|
|
return;
|
|
order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
|
|
pcpu->ec_clk = get_tod_clock_fast();
|
|
pcpu_sigp_retry(pcpu, order, 0);
|
|
}
|
|
|
|
#define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
|
|
#define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
|
|
|
|
static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
|
|
{
|
|
unsigned long async_stack, panic_stack;
|
|
struct lowcore *lc;
|
|
|
|
if (pcpu != &pcpu_devices[0]) {
|
|
pcpu->lowcore = (struct lowcore *)
|
|
__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
|
|
async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
|
|
panic_stack = __get_free_page(GFP_KERNEL);
|
|
if (!pcpu->lowcore || !panic_stack || !async_stack)
|
|
goto out;
|
|
} else {
|
|
async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
|
|
panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
|
|
}
|
|
lc = pcpu->lowcore;
|
|
memcpy(lc, &S390_lowcore, 512);
|
|
memset((char *) lc + 512, 0, sizeof(*lc) - 512);
|
|
lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
|
|
lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
|
|
lc->cpu_nr = cpu;
|
|
lc->spinlock_lockval = arch_spin_lockval(cpu);
|
|
if (MACHINE_HAS_VX)
|
|
lc->vector_save_area_addr =
|
|
(unsigned long) &lc->vector_save_area;
|
|
if (vdso_alloc_per_cpu(lc))
|
|
goto out;
|
|
lowcore_ptr[cpu] = lc;
|
|
pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
|
|
return 0;
|
|
out:
|
|
if (pcpu != &pcpu_devices[0]) {
|
|
free_page(panic_stack);
|
|
free_pages(async_stack, ASYNC_ORDER);
|
|
free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
|
|
static void pcpu_free_lowcore(struct pcpu *pcpu)
|
|
{
|
|
pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
|
|
lowcore_ptr[pcpu - pcpu_devices] = NULL;
|
|
vdso_free_per_cpu(pcpu->lowcore);
|
|
if (pcpu == &pcpu_devices[0])
|
|
return;
|
|
free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
|
|
free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
|
|
free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
|
|
}
|
|
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
|
|
{
|
|
struct lowcore *lc = pcpu->lowcore;
|
|
|
|
cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
|
|
cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
|
|
lc->cpu_nr = cpu;
|
|
lc->spinlock_lockval = arch_spin_lockval(cpu);
|
|
lc->percpu_offset = __per_cpu_offset[cpu];
|
|
lc->kernel_asce = S390_lowcore.kernel_asce;
|
|
lc->machine_flags = S390_lowcore.machine_flags;
|
|
lc->user_timer = lc->system_timer = lc->steal_timer = 0;
|
|
__ctl_store(lc->cregs_save_area, 0, 15);
|
|
save_access_regs((unsigned int *) lc->access_regs_save_area);
|
|
memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
|
|
MAX_FACILITY_BIT/8);
|
|
}
|
|
|
|
static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
|
|
{
|
|
struct lowcore *lc = pcpu->lowcore;
|
|
|
|
lc->kernel_stack = (unsigned long) task_stack_page(tsk)
|
|
+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
|
|
lc->current_task = (unsigned long) tsk;
|
|
lc->lpp = LPP_MAGIC;
|
|
lc->current_pid = tsk->pid;
|
|
lc->user_timer = tsk->thread.user_timer;
|
|
lc->system_timer = tsk->thread.system_timer;
|
|
lc->steal_timer = 0;
|
|
}
|
|
|
|
static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
|
|
{
|
|
struct lowcore *lc = pcpu->lowcore;
|
|
|
|
lc->restart_stack = lc->kernel_stack;
|
|
lc->restart_fn = (unsigned long) func;
|
|
lc->restart_data = (unsigned long) data;
|
|
lc->restart_source = -1UL;
|
|
pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
|
|
}
|
|
|
|
/*
|
|
* Call function via PSW restart on pcpu and stop the current cpu.
|
|
*/
|
|
static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
|
|
void *data, unsigned long stack)
|
|
{
|
|
struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
|
|
unsigned long source_cpu = stap();
|
|
|
|
__load_psw_mask(PSW_KERNEL_BITS);
|
|
if (pcpu->address == source_cpu)
|
|
func(data); /* should not return */
|
|
/* Stop target cpu (if func returns this stops the current cpu). */
|
|
pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
|
|
/* Restart func on the target cpu and stop the current cpu. */
|
|
mem_assign_absolute(lc->restart_stack, stack);
|
|
mem_assign_absolute(lc->restart_fn, (unsigned long) func);
|
|
mem_assign_absolute(lc->restart_data, (unsigned long) data);
|
|
mem_assign_absolute(lc->restart_source, source_cpu);
|
|
asm volatile(
|
|
"0: sigp 0,%0,%2 # sigp restart to target cpu\n"
|
|
" brc 2,0b # busy, try again\n"
|
|
"1: sigp 0,%1,%3 # sigp stop to current cpu\n"
|
|
" brc 2,1b # busy, try again\n"
|
|
: : "d" (pcpu->address), "d" (source_cpu),
|
|
"K" (SIGP_RESTART), "K" (SIGP_STOP)
|
|
: "0", "1", "cc");
|
|
for (;;) ;
|
|
}
|
|
|
|
/*
|
|
* Enable additional logical cpus for multi-threading.
|
|
*/
|
|
static int pcpu_set_smt(unsigned int mtid)
|
|
{
|
|
int cc;
|
|
|
|
if (smp_cpu_mtid == mtid)
|
|
return 0;
|
|
cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
|
|
if (cc == 0) {
|
|
smp_cpu_mtid = mtid;
|
|
smp_cpu_mt_shift = 0;
|
|
while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
|
|
smp_cpu_mt_shift++;
|
|
pcpu_devices[0].address = stap();
|
|
}
|
|
return cc;
|
|
}
|
|
|
|
/*
|
|
* Call function on an online CPU.
|
|
*/
|
|
void smp_call_online_cpu(void (*func)(void *), void *data)
|
|
{
|
|
struct pcpu *pcpu;
|
|
|
|
/* Use the current cpu if it is online. */
|
|
pcpu = pcpu_find_address(cpu_online_mask, stap());
|
|
if (!pcpu)
|
|
/* Use the first online cpu. */
|
|
pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
|
|
pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
|
|
}
|
|
|
|
/*
|
|
* Call function on the ipl CPU.
|
|
*/
|
|
void smp_call_ipl_cpu(void (*func)(void *), void *data)
|
|
{
|
|
pcpu_delegate(&pcpu_devices[0], func, data,
|
|
pcpu_devices->lowcore->panic_stack -
|
|
PANIC_FRAME_OFFSET + PAGE_SIZE);
|
|
}
|
|
|
|
int smp_find_processor_id(u16 address)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_present_cpu(cpu)
|
|
if (pcpu_devices[cpu].address == address)
|
|
return cpu;
|
|
return -1;
|
|
}
|
|
|
|
bool arch_vcpu_is_preempted(int cpu)
|
|
{
|
|
if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
|
|
return false;
|
|
if (pcpu_running(pcpu_devices + cpu))
|
|
return false;
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL(arch_vcpu_is_preempted);
|
|
|
|
void smp_yield_cpu(int cpu)
|
|
{
|
|
if (MACHINE_HAS_DIAG9C) {
|
|
diag_stat_inc_norecursion(DIAG_STAT_X09C);
|
|
asm volatile("diag %0,0,0x9c"
|
|
: : "d" (pcpu_devices[cpu].address));
|
|
} else if (MACHINE_HAS_DIAG44) {
|
|
diag_stat_inc_norecursion(DIAG_STAT_X044);
|
|
asm volatile("diag 0,0,0x44");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Send cpus emergency shutdown signal. This gives the cpus the
|
|
* opportunity to complete outstanding interrupts.
|
|
*/
|
|
static void smp_emergency_stop(cpumask_t *cpumask)
|
|
{
|
|
u64 end;
|
|
int cpu;
|
|
|
|
end = get_tod_clock() + (1000000UL << 12);
|
|
for_each_cpu(cpu, cpumask) {
|
|
struct pcpu *pcpu = pcpu_devices + cpu;
|
|
set_bit(ec_stop_cpu, &pcpu->ec_mask);
|
|
while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
|
|
0, NULL) == SIGP_CC_BUSY &&
|
|
get_tod_clock() < end)
|
|
cpu_relax();
|
|
}
|
|
while (get_tod_clock() < end) {
|
|
for_each_cpu(cpu, cpumask)
|
|
if (pcpu_stopped(pcpu_devices + cpu))
|
|
cpumask_clear_cpu(cpu, cpumask);
|
|
if (cpumask_empty(cpumask))
|
|
break;
|
|
cpu_relax();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Stop all cpus but the current one.
|
|
*/
|
|
void smp_send_stop(void)
|
|
{
|
|
cpumask_t cpumask;
|
|
int cpu;
|
|
|
|
/* Disable all interrupts/machine checks */
|
|
__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
|
|
trace_hardirqs_off();
|
|
|
|
debug_set_critical();
|
|
cpumask_copy(&cpumask, cpu_online_mask);
|
|
cpumask_clear_cpu(smp_processor_id(), &cpumask);
|
|
|
|
if (oops_in_progress)
|
|
smp_emergency_stop(&cpumask);
|
|
|
|
/* stop all processors */
|
|
for_each_cpu(cpu, &cpumask) {
|
|
struct pcpu *pcpu = pcpu_devices + cpu;
|
|
pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
|
|
while (!pcpu_stopped(pcpu))
|
|
cpu_relax();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is the main routine where commands issued by other
|
|
* cpus are handled.
|
|
*/
|
|
static void smp_handle_ext_call(void)
|
|
{
|
|
unsigned long bits;
|
|
|
|
/* handle bit signal external calls */
|
|
bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
|
|
if (test_bit(ec_stop_cpu, &bits))
|
|
smp_stop_cpu();
|
|
if (test_bit(ec_schedule, &bits))
|
|
scheduler_ipi();
|
|
if (test_bit(ec_call_function_single, &bits))
|
|
generic_smp_call_function_single_interrupt();
|
|
}
|
|
|
|
static void do_ext_call_interrupt(struct ext_code ext_code,
|
|
unsigned int param32, unsigned long param64)
|
|
{
|
|
inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
|
|
smp_handle_ext_call();
|
|
}
|
|
|
|
void arch_send_call_function_ipi_mask(const struct cpumask *mask)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_cpu(cpu, mask)
|
|
pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
|
|
}
|
|
|
|
void arch_send_call_function_single_ipi(int cpu)
|
|
{
|
|
pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
|
|
}
|
|
|
|
/*
|
|
* this function sends a 'reschedule' IPI to another CPU.
|
|
* it goes straight through and wastes no time serializing
|
|
* anything. Worst case is that we lose a reschedule ...
|
|
*/
|
|
void smp_send_reschedule(int cpu)
|
|
{
|
|
pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
|
|
}
|
|
|
|
/*
|
|
* parameter area for the set/clear control bit callbacks
|
|
*/
|
|
struct ec_creg_mask_parms {
|
|
unsigned long orval;
|
|
unsigned long andval;
|
|
int cr;
|
|
};
|
|
|
|
/*
|
|
* callback for setting/clearing control bits
|
|
*/
|
|
static void smp_ctl_bit_callback(void *info)
|
|
{
|
|
struct ec_creg_mask_parms *pp = info;
|
|
unsigned long cregs[16];
|
|
|
|
__ctl_store(cregs, 0, 15);
|
|
cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
|
|
__ctl_load(cregs, 0, 15);
|
|
}
|
|
|
|
/*
|
|
* Set a bit in a control register of all cpus
|
|
*/
|
|
void smp_ctl_set_bit(int cr, int bit)
|
|
{
|
|
struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
|
|
|
|
on_each_cpu(smp_ctl_bit_callback, &parms, 1);
|
|
}
|
|
EXPORT_SYMBOL(smp_ctl_set_bit);
|
|
|
|
/*
|
|
* Clear a bit in a control register of all cpus
|
|
*/
|
|
void smp_ctl_clear_bit(int cr, int bit)
|
|
{
|
|
struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
|
|
|
|
on_each_cpu(smp_ctl_bit_callback, &parms, 1);
|
|
}
|
|
EXPORT_SYMBOL(smp_ctl_clear_bit);
|
|
|
|
#ifdef CONFIG_CRASH_DUMP
|
|
|
|
int smp_store_status(int cpu)
|
|
{
|
|
struct pcpu *pcpu = pcpu_devices + cpu;
|
|
unsigned long pa;
|
|
|
|
pa = __pa(&pcpu->lowcore->floating_pt_save_area);
|
|
if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
|
|
pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
|
|
return -EIO;
|
|
if (!MACHINE_HAS_VX)
|
|
return 0;
|
|
pa = __pa(pcpu->lowcore->vector_save_area_addr);
|
|
if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
|
|
pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
|
|
return -EIO;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Collect CPU state of the previous, crashed system.
|
|
* There are four cases:
|
|
* 1) standard zfcp dump
|
|
* condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
|
|
* The state for all CPUs except the boot CPU needs to be collected
|
|
* with sigp stop-and-store-status. The boot CPU state is located in
|
|
* the absolute lowcore of the memory stored in the HSA. The zcore code
|
|
* will copy the boot CPU state from the HSA.
|
|
* 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
|
|
* condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
|
|
* The state for all CPUs except the boot CPU needs to be collected
|
|
* with sigp stop-and-store-status. The firmware or the boot-loader
|
|
* stored the registers of the boot CPU in the absolute lowcore in the
|
|
* memory of the old system.
|
|
* 3) kdump and the old kernel did not store the CPU state,
|
|
* or stand-alone kdump for DASD
|
|
* condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
|
|
* The state for all CPUs except the boot CPU needs to be collected
|
|
* with sigp stop-and-store-status. The kexec code or the boot-loader
|
|
* stored the registers of the boot CPU in the memory of the old system.
|
|
* 4) kdump and the old kernel stored the CPU state
|
|
* condition: OLDMEM_BASE != NULL && is_kdump_kernel()
|
|
* This case does not exist for s390 anymore, setup_arch explicitly
|
|
* deactivates the elfcorehdr= kernel parameter
|
|
*/
|
|
static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
|
|
bool is_boot_cpu, unsigned long page)
|
|
{
|
|
__vector128 *vxrs = (__vector128 *) page;
|
|
|
|
if (is_boot_cpu)
|
|
vxrs = boot_cpu_vector_save_area;
|
|
else
|
|
__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
|
|
save_area_add_vxrs(sa, vxrs);
|
|
}
|
|
|
|
static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
|
|
bool is_boot_cpu, unsigned long page)
|
|
{
|
|
void *regs = (void *) page;
|
|
|
|
if (is_boot_cpu)
|
|
copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
|
|
else
|
|
__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
|
|
save_area_add_regs(sa, regs);
|
|
}
|
|
|
|
void __init smp_save_dump_cpus(void)
|
|
{
|
|
int addr, boot_cpu_addr, max_cpu_addr;
|
|
struct save_area *sa;
|
|
unsigned long page;
|
|
bool is_boot_cpu;
|
|
|
|
if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
|
|
/* No previous system present, normal boot. */
|
|
return;
|
|
/* Allocate a page as dumping area for the store status sigps */
|
|
page = memblock_alloc_base(PAGE_SIZE, PAGE_SIZE, 1UL << 31);
|
|
/* Set multi-threading state to the previous system. */
|
|
pcpu_set_smt(sclp.mtid_prev);
|
|
boot_cpu_addr = stap();
|
|
max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
|
|
for (addr = 0; addr <= max_cpu_addr; addr++) {
|
|
if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
|
|
SIGP_CC_NOT_OPERATIONAL)
|
|
continue;
|
|
is_boot_cpu = (addr == boot_cpu_addr);
|
|
/* Allocate save area */
|
|
sa = save_area_alloc(is_boot_cpu);
|
|
if (!sa)
|
|
panic("could not allocate memory for save area\n");
|
|
if (MACHINE_HAS_VX)
|
|
/* Get the vector registers */
|
|
smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
|
|
/*
|
|
* For a zfcp dump OLDMEM_BASE == NULL and the registers
|
|
* of the boot CPU are stored in the HSA. To retrieve
|
|
* these registers an SCLP request is required which is
|
|
* done by drivers/s390/char/zcore.c:init_cpu_info()
|
|
*/
|
|
if (!is_boot_cpu || OLDMEM_BASE)
|
|
/* Get the CPU registers */
|
|
smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
|
|
}
|
|
memblock_free(page, PAGE_SIZE);
|
|
diag308_reset();
|
|
pcpu_set_smt(0);
|
|
}
|
|
#endif /* CONFIG_CRASH_DUMP */
|
|
|
|
void smp_cpu_set_polarization(int cpu, int val)
|
|
{
|
|
pcpu_devices[cpu].polarization = val;
|
|
}
|
|
|
|
int smp_cpu_get_polarization(int cpu)
|
|
{
|
|
return pcpu_devices[cpu].polarization;
|
|
}
|
|
|
|
static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
|
|
{
|
|
static int use_sigp_detection;
|
|
int address;
|
|
|
|
if (use_sigp_detection || sclp_get_core_info(info, early)) {
|
|
use_sigp_detection = 1;
|
|
for (address = 0;
|
|
address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
|
|
address += (1U << smp_cpu_mt_shift)) {
|
|
if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
|
|
SIGP_CC_NOT_OPERATIONAL)
|
|
continue;
|
|
info->core[info->configured].core_id =
|
|
address >> smp_cpu_mt_shift;
|
|
info->configured++;
|
|
}
|
|
info->combined = info->configured;
|
|
}
|
|
}
|
|
|
|
static int smp_add_present_cpu(int cpu);
|
|
|
|
static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
|
|
{
|
|
struct pcpu *pcpu;
|
|
cpumask_t avail;
|
|
int cpu, nr, i, j;
|
|
u16 address;
|
|
|
|
nr = 0;
|
|
cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
|
|
cpu = cpumask_first(&avail);
|
|
for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
|
|
if (sclp.has_core_type && info->core[i].type != boot_core_type)
|
|
continue;
|
|
address = info->core[i].core_id << smp_cpu_mt_shift;
|
|
for (j = 0; j <= smp_cpu_mtid; j++) {
|
|
if (pcpu_find_address(cpu_present_mask, address + j))
|
|
continue;
|
|
pcpu = pcpu_devices + cpu;
|
|
pcpu->address = address + j;
|
|
pcpu->state =
|
|
(cpu >= info->configured*(smp_cpu_mtid + 1)) ?
|
|
CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
|
|
smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
|
|
set_cpu_present(cpu, true);
|
|
if (sysfs_add && smp_add_present_cpu(cpu) != 0)
|
|
set_cpu_present(cpu, false);
|
|
else
|
|
nr++;
|
|
cpu = cpumask_next(cpu, &avail);
|
|
if (cpu >= nr_cpu_ids)
|
|
break;
|
|
}
|
|
}
|
|
return nr;
|
|
}
|
|
|
|
void __init smp_detect_cpus(void)
|
|
{
|
|
unsigned int cpu, mtid, c_cpus, s_cpus;
|
|
struct sclp_core_info *info;
|
|
u16 address;
|
|
|
|
/* Get CPU information */
|
|
info = memblock_virt_alloc(sizeof(*info), 8);
|
|
smp_get_core_info(info, 1);
|
|
/* Find boot CPU type */
|
|
if (sclp.has_core_type) {
|
|
address = stap();
|
|
for (cpu = 0; cpu < info->combined; cpu++)
|
|
if (info->core[cpu].core_id == address) {
|
|
/* The boot cpu dictates the cpu type. */
|
|
boot_core_type = info->core[cpu].type;
|
|
break;
|
|
}
|
|
if (cpu >= info->combined)
|
|
panic("Could not find boot CPU type");
|
|
}
|
|
|
|
/* Set multi-threading state for the current system */
|
|
mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
|
|
mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
|
|
pcpu_set_smt(mtid);
|
|
|
|
/* Print number of CPUs */
|
|
c_cpus = s_cpus = 0;
|
|
for (cpu = 0; cpu < info->combined; cpu++) {
|
|
if (sclp.has_core_type &&
|
|
info->core[cpu].type != boot_core_type)
|
|
continue;
|
|
if (cpu < info->configured)
|
|
c_cpus += smp_cpu_mtid + 1;
|
|
else
|
|
s_cpus += smp_cpu_mtid + 1;
|
|
}
|
|
pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
|
|
|
|
/* Add CPUs present at boot */
|
|
get_online_cpus();
|
|
__smp_rescan_cpus(info, 0);
|
|
put_online_cpus();
|
|
memblock_free_early((unsigned long)info, sizeof(*info));
|
|
}
|
|
|
|
/*
|
|
* Activate a secondary processor.
|
|
*/
|
|
static void smp_start_secondary(void *cpuvoid)
|
|
{
|
|
S390_lowcore.last_update_clock = get_tod_clock();
|
|
S390_lowcore.restart_stack = (unsigned long) restart_stack;
|
|
S390_lowcore.restart_fn = (unsigned long) do_restart;
|
|
S390_lowcore.restart_data = 0;
|
|
S390_lowcore.restart_source = -1UL;
|
|
restore_access_regs(S390_lowcore.access_regs_save_area);
|
|
__ctl_load(S390_lowcore.cregs_save_area, 0, 15);
|
|
__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
|
|
cpu_init();
|
|
preempt_disable();
|
|
init_cpu_timer();
|
|
vtime_init();
|
|
pfault_init();
|
|
notify_cpu_starting(smp_processor_id());
|
|
set_cpu_online(smp_processor_id(), true);
|
|
inc_irq_stat(CPU_RST);
|
|
local_irq_enable();
|
|
cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
|
|
}
|
|
|
|
/* Upping and downing of CPUs */
|
|
int __cpu_up(unsigned int cpu, struct task_struct *tidle)
|
|
{
|
|
struct pcpu *pcpu;
|
|
int base, i, rc;
|
|
|
|
pcpu = pcpu_devices + cpu;
|
|
if (pcpu->state != CPU_STATE_CONFIGURED)
|
|
return -EIO;
|
|
base = smp_get_base_cpu(cpu);
|
|
for (i = 0; i <= smp_cpu_mtid; i++) {
|
|
if (base + i < nr_cpu_ids)
|
|
if (cpu_online(base + i))
|
|
break;
|
|
}
|
|
/*
|
|
* If this is the first CPU of the core to get online
|
|
* do an initial CPU reset.
|
|
*/
|
|
if (i > smp_cpu_mtid &&
|
|
pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
|
|
SIGP_CC_ORDER_CODE_ACCEPTED)
|
|
return -EIO;
|
|
|
|
rc = pcpu_alloc_lowcore(pcpu, cpu);
|
|
if (rc)
|
|
return rc;
|
|
pcpu_prepare_secondary(pcpu, cpu);
|
|
pcpu_attach_task(pcpu, tidle);
|
|
pcpu_start_fn(pcpu, smp_start_secondary, NULL);
|
|
/* Wait until cpu puts itself in the online & active maps */
|
|
while (!cpu_online(cpu))
|
|
cpu_relax();
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int setup_possible_cpus __initdata;
|
|
|
|
static int __init _setup_possible_cpus(char *s)
|
|
{
|
|
get_option(&s, &setup_possible_cpus);
|
|
return 0;
|
|
}
|
|
early_param("possible_cpus", _setup_possible_cpus);
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
|
|
int __cpu_disable(void)
|
|
{
|
|
unsigned long cregs[16];
|
|
|
|
/* Handle possible pending IPIs */
|
|
smp_handle_ext_call();
|
|
set_cpu_online(smp_processor_id(), false);
|
|
/* Disable pseudo page faults on this cpu. */
|
|
pfault_fini();
|
|
/* Disable interrupt sources via control register. */
|
|
__ctl_store(cregs, 0, 15);
|
|
cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */
|
|
cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */
|
|
cregs[14] &= ~0x1f000000UL; /* disable most machine checks */
|
|
__ctl_load(cregs, 0, 15);
|
|
clear_cpu_flag(CIF_NOHZ_DELAY);
|
|
return 0;
|
|
}
|
|
|
|
void __cpu_die(unsigned int cpu)
|
|
{
|
|
struct pcpu *pcpu;
|
|
|
|
/* Wait until target cpu is down */
|
|
pcpu = pcpu_devices + cpu;
|
|
while (!pcpu_stopped(pcpu))
|
|
cpu_relax();
|
|
pcpu_free_lowcore(pcpu);
|
|
cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
|
|
cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
|
|
}
|
|
|
|
void __noreturn cpu_die(void)
|
|
{
|
|
idle_task_exit();
|
|
pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
|
|
for (;;) ;
|
|
}
|
|
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
void __init smp_fill_possible_mask(void)
|
|
{
|
|
unsigned int possible, sclp_max, cpu;
|
|
|
|
sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
|
|
sclp_max = min(smp_max_threads, sclp_max);
|
|
sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
|
|
possible = setup_possible_cpus ?: nr_cpu_ids;
|
|
possible = min(possible, sclp_max);
|
|
for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
|
|
set_cpu_possible(cpu, true);
|
|
}
|
|
|
|
void __init smp_prepare_cpus(unsigned int max_cpus)
|
|
{
|
|
/* request the 0x1201 emergency signal external interrupt */
|
|
if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
|
|
panic("Couldn't request external interrupt 0x1201");
|
|
/* request the 0x1202 external call external interrupt */
|
|
if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
|
|
panic("Couldn't request external interrupt 0x1202");
|
|
}
|
|
|
|
void __init smp_prepare_boot_cpu(void)
|
|
{
|
|
struct pcpu *pcpu = pcpu_devices;
|
|
|
|
pcpu->state = CPU_STATE_CONFIGURED;
|
|
pcpu->address = stap();
|
|
pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
|
|
S390_lowcore.percpu_offset = __per_cpu_offset[0];
|
|
smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
|
|
set_cpu_present(0, true);
|
|
set_cpu_online(0, true);
|
|
}
|
|
|
|
void __init smp_cpus_done(unsigned int max_cpus)
|
|
{
|
|
}
|
|
|
|
void __init smp_setup_processor_id(void)
|
|
{
|
|
S390_lowcore.cpu_nr = 0;
|
|
S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
|
|
}
|
|
|
|
/*
|
|
* the frequency of the profiling timer can be changed
|
|
* by writing a multiplier value into /proc/profile.
|
|
*
|
|
* usually you want to run this on all CPUs ;)
|
|
*/
|
|
int setup_profiling_timer(unsigned int multiplier)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
static ssize_t cpu_configure_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
ssize_t count;
|
|
|
|
mutex_lock(&smp_cpu_state_mutex);
|
|
count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
|
|
mutex_unlock(&smp_cpu_state_mutex);
|
|
return count;
|
|
}
|
|
|
|
static ssize_t cpu_configure_store(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct pcpu *pcpu;
|
|
int cpu, val, rc, i;
|
|
char delim;
|
|
|
|
if (sscanf(buf, "%d %c", &val, &delim) != 1)
|
|
return -EINVAL;
|
|
if (val != 0 && val != 1)
|
|
return -EINVAL;
|
|
get_online_cpus();
|
|
mutex_lock(&smp_cpu_state_mutex);
|
|
rc = -EBUSY;
|
|
/* disallow configuration changes of online cpus and cpu 0 */
|
|
cpu = dev->id;
|
|
cpu = smp_get_base_cpu(cpu);
|
|
if (cpu == 0)
|
|
goto out;
|
|
for (i = 0; i <= smp_cpu_mtid; i++)
|
|
if (cpu_online(cpu + i))
|
|
goto out;
|
|
pcpu = pcpu_devices + cpu;
|
|
rc = 0;
|
|
switch (val) {
|
|
case 0:
|
|
if (pcpu->state != CPU_STATE_CONFIGURED)
|
|
break;
|
|
rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
|
|
if (rc)
|
|
break;
|
|
for (i = 0; i <= smp_cpu_mtid; i++) {
|
|
if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
|
|
continue;
|
|
pcpu[i].state = CPU_STATE_STANDBY;
|
|
smp_cpu_set_polarization(cpu + i,
|
|
POLARIZATION_UNKNOWN);
|
|
}
|
|
topology_expect_change();
|
|
break;
|
|
case 1:
|
|
if (pcpu->state != CPU_STATE_STANDBY)
|
|
break;
|
|
rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
|
|
if (rc)
|
|
break;
|
|
for (i = 0; i <= smp_cpu_mtid; i++) {
|
|
if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
|
|
continue;
|
|
pcpu[i].state = CPU_STATE_CONFIGURED;
|
|
smp_cpu_set_polarization(cpu + i,
|
|
POLARIZATION_UNKNOWN);
|
|
}
|
|
topology_expect_change();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
out:
|
|
mutex_unlock(&smp_cpu_state_mutex);
|
|
put_online_cpus();
|
|
return rc ? rc : count;
|
|
}
|
|
static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
static ssize_t show_cpu_address(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
|
|
}
|
|
static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
|
|
|
|
static struct attribute *cpu_common_attrs[] = {
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
&dev_attr_configure.attr,
|
|
#endif
|
|
&dev_attr_address.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group cpu_common_attr_group = {
|
|
.attrs = cpu_common_attrs,
|
|
};
|
|
|
|
static struct attribute *cpu_online_attrs[] = {
|
|
&dev_attr_idle_count.attr,
|
|
&dev_attr_idle_time_us.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group cpu_online_attr_group = {
|
|
.attrs = cpu_online_attrs,
|
|
};
|
|
|
|
static int smp_cpu_online(unsigned int cpu)
|
|
{
|
|
struct device *s = &per_cpu(cpu_device, cpu)->dev;
|
|
|
|
return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
|
|
}
|
|
static int smp_cpu_pre_down(unsigned int cpu)
|
|
{
|
|
struct device *s = &per_cpu(cpu_device, cpu)->dev;
|
|
|
|
sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
|
|
return 0;
|
|
}
|
|
|
|
static int smp_add_present_cpu(int cpu)
|
|
{
|
|
struct device *s;
|
|
struct cpu *c;
|
|
int rc;
|
|
|
|
c = kzalloc(sizeof(*c), GFP_KERNEL);
|
|
if (!c)
|
|
return -ENOMEM;
|
|
per_cpu(cpu_device, cpu) = c;
|
|
s = &c->dev;
|
|
c->hotpluggable = 1;
|
|
rc = register_cpu(c, cpu);
|
|
if (rc)
|
|
goto out;
|
|
rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
|
|
if (rc)
|
|
goto out_cpu;
|
|
rc = topology_cpu_init(c);
|
|
if (rc)
|
|
goto out_topology;
|
|
return 0;
|
|
|
|
out_topology:
|
|
sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
|
|
out_cpu:
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
unregister_cpu(c);
|
|
#endif
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
|
|
int __ref smp_rescan_cpus(void)
|
|
{
|
|
struct sclp_core_info *info;
|
|
int nr;
|
|
|
|
info = kzalloc(sizeof(*info), GFP_KERNEL);
|
|
if (!info)
|
|
return -ENOMEM;
|
|
smp_get_core_info(info, 0);
|
|
get_online_cpus();
|
|
mutex_lock(&smp_cpu_state_mutex);
|
|
nr = __smp_rescan_cpus(info, 1);
|
|
mutex_unlock(&smp_cpu_state_mutex);
|
|
put_online_cpus();
|
|
kfree(info);
|
|
if (nr)
|
|
topology_schedule_update();
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t __ref rescan_store(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf,
|
|
size_t count)
|
|
{
|
|
int rc;
|
|
|
|
rc = smp_rescan_cpus();
|
|
return rc ? rc : count;
|
|
}
|
|
static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
static int __init s390_smp_init(void)
|
|
{
|
|
int cpu, rc = 0;
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
|
|
if (rc)
|
|
return rc;
|
|
#endif
|
|
for_each_present_cpu(cpu) {
|
|
rc = smp_add_present_cpu(cpu);
|
|
if (rc)
|
|
goto out;
|
|
}
|
|
|
|
rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
|
|
smp_cpu_online, smp_cpu_pre_down);
|
|
out:
|
|
return rc;
|
|
}
|
|
subsys_initcall(s390_smp_init);
|