linux_dsm_epyc7002/drivers/media/i2c/ov5640.c
Adam Ford 2e3df204f9 media: ov5640: Fix check for PLL1 exceeding max allowed rate
The variable _rate is by ov5640_compute_sys_clk() which returns
zero if the PLL exceeds 1GHz.  Unfortunately, the check to see
if the max PLL1 output is checking 'rate' and not '_rate' and
'rate' does not ever appear to be 0.

This patch changes the check against the returned value of
'_rate' to determine if the PLL1 output exceeds 1GHz.

Fixes: aa2882481c ("media: ov5640: Adjust the clock based on the expected rate")
Signed-off-by: Adam Ford <aford173@gmail.com>
Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
2020-01-04 08:08:58 +01:00

3140 lines
84 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2011-2013 Freescale Semiconductor, Inc. All Rights Reserved.
* Copyright (C) 2014-2017 Mentor Graphics Inc.
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/clkdev.h>
#include <linux/ctype.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <media/v4l2-async.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-event.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-subdev.h>
/* min/typical/max system clock (xclk) frequencies */
#define OV5640_XCLK_MIN 6000000
#define OV5640_XCLK_MAX 54000000
#define OV5640_DEFAULT_SLAVE_ID 0x3c
#define OV5640_REG_SYS_RESET02 0x3002
#define OV5640_REG_SYS_CLOCK_ENABLE02 0x3006
#define OV5640_REG_SYS_CTRL0 0x3008
#define OV5640_REG_CHIP_ID 0x300a
#define OV5640_REG_IO_MIPI_CTRL00 0x300e
#define OV5640_REG_PAD_OUTPUT_ENABLE01 0x3017
#define OV5640_REG_PAD_OUTPUT_ENABLE02 0x3018
#define OV5640_REG_PAD_OUTPUT00 0x3019
#define OV5640_REG_SYSTEM_CONTROL1 0x302e
#define OV5640_REG_SC_PLL_CTRL0 0x3034
#define OV5640_REG_SC_PLL_CTRL1 0x3035
#define OV5640_REG_SC_PLL_CTRL2 0x3036
#define OV5640_REG_SC_PLL_CTRL3 0x3037
#define OV5640_REG_SLAVE_ID 0x3100
#define OV5640_REG_SCCB_SYS_CTRL1 0x3103
#define OV5640_REG_SYS_ROOT_DIVIDER 0x3108
#define OV5640_REG_AWB_R_GAIN 0x3400
#define OV5640_REG_AWB_G_GAIN 0x3402
#define OV5640_REG_AWB_B_GAIN 0x3404
#define OV5640_REG_AWB_MANUAL_CTRL 0x3406
#define OV5640_REG_AEC_PK_EXPOSURE_HI 0x3500
#define OV5640_REG_AEC_PK_EXPOSURE_MED 0x3501
#define OV5640_REG_AEC_PK_EXPOSURE_LO 0x3502
#define OV5640_REG_AEC_PK_MANUAL 0x3503
#define OV5640_REG_AEC_PK_REAL_GAIN 0x350a
#define OV5640_REG_AEC_PK_VTS 0x350c
#define OV5640_REG_TIMING_DVPHO 0x3808
#define OV5640_REG_TIMING_DVPVO 0x380a
#define OV5640_REG_TIMING_HTS 0x380c
#define OV5640_REG_TIMING_VTS 0x380e
#define OV5640_REG_TIMING_TC_REG20 0x3820
#define OV5640_REG_TIMING_TC_REG21 0x3821
#define OV5640_REG_AEC_CTRL00 0x3a00
#define OV5640_REG_AEC_B50_STEP 0x3a08
#define OV5640_REG_AEC_B60_STEP 0x3a0a
#define OV5640_REG_AEC_CTRL0D 0x3a0d
#define OV5640_REG_AEC_CTRL0E 0x3a0e
#define OV5640_REG_AEC_CTRL0F 0x3a0f
#define OV5640_REG_AEC_CTRL10 0x3a10
#define OV5640_REG_AEC_CTRL11 0x3a11
#define OV5640_REG_AEC_CTRL1B 0x3a1b
#define OV5640_REG_AEC_CTRL1E 0x3a1e
#define OV5640_REG_AEC_CTRL1F 0x3a1f
#define OV5640_REG_HZ5060_CTRL00 0x3c00
#define OV5640_REG_HZ5060_CTRL01 0x3c01
#define OV5640_REG_SIGMADELTA_CTRL0C 0x3c0c
#define OV5640_REG_FRAME_CTRL01 0x4202
#define OV5640_REG_FORMAT_CONTROL00 0x4300
#define OV5640_REG_VFIFO_HSIZE 0x4602
#define OV5640_REG_VFIFO_VSIZE 0x4604
#define OV5640_REG_JPG_MODE_SELECT 0x4713
#define OV5640_REG_POLARITY_CTRL00 0x4740
#define OV5640_REG_MIPI_CTRL00 0x4800
#define OV5640_REG_DEBUG_MODE 0x4814
#define OV5640_REG_ISP_FORMAT_MUX_CTRL 0x501f
#define OV5640_REG_PRE_ISP_TEST_SET1 0x503d
#define OV5640_REG_SDE_CTRL0 0x5580
#define OV5640_REG_SDE_CTRL1 0x5581
#define OV5640_REG_SDE_CTRL3 0x5583
#define OV5640_REG_SDE_CTRL4 0x5584
#define OV5640_REG_SDE_CTRL5 0x5585
#define OV5640_REG_AVG_READOUT 0x56a1
enum ov5640_mode_id {
OV5640_MODE_QCIF_176_144 = 0,
OV5640_MODE_QVGA_320_240,
OV5640_MODE_VGA_640_480,
OV5640_MODE_NTSC_720_480,
OV5640_MODE_PAL_720_576,
OV5640_MODE_XGA_1024_768,
OV5640_MODE_720P_1280_720,
OV5640_MODE_1080P_1920_1080,
OV5640_MODE_QSXGA_2592_1944,
OV5640_NUM_MODES,
};
enum ov5640_frame_rate {
OV5640_15_FPS = 0,
OV5640_30_FPS,
OV5640_60_FPS,
OV5640_NUM_FRAMERATES,
};
enum ov5640_format_mux {
OV5640_FMT_MUX_YUV422 = 0,
OV5640_FMT_MUX_RGB,
OV5640_FMT_MUX_DITHER,
OV5640_FMT_MUX_RAW_DPC,
OV5640_FMT_MUX_SNR_RAW,
OV5640_FMT_MUX_RAW_CIP,
};
struct ov5640_pixfmt {
u32 code;
u32 colorspace;
};
static const struct ov5640_pixfmt ov5640_formats[] = {
{ MEDIA_BUS_FMT_JPEG_1X8, V4L2_COLORSPACE_JPEG, },
{ MEDIA_BUS_FMT_UYVY8_2X8, V4L2_COLORSPACE_SRGB, },
{ MEDIA_BUS_FMT_YUYV8_2X8, V4L2_COLORSPACE_SRGB, },
{ MEDIA_BUS_FMT_RGB565_2X8_LE, V4L2_COLORSPACE_SRGB, },
{ MEDIA_BUS_FMT_RGB565_2X8_BE, V4L2_COLORSPACE_SRGB, },
{ MEDIA_BUS_FMT_SBGGR8_1X8, V4L2_COLORSPACE_SRGB, },
{ MEDIA_BUS_FMT_SGBRG8_1X8, V4L2_COLORSPACE_SRGB, },
{ MEDIA_BUS_FMT_SGRBG8_1X8, V4L2_COLORSPACE_SRGB, },
{ MEDIA_BUS_FMT_SRGGB8_1X8, V4L2_COLORSPACE_SRGB, },
};
/*
* FIXME: remove this when a subdev API becomes available
* to set the MIPI CSI-2 virtual channel.
*/
static unsigned int virtual_channel;
module_param(virtual_channel, uint, 0444);
MODULE_PARM_DESC(virtual_channel,
"MIPI CSI-2 virtual channel (0..3), default 0");
static const int ov5640_framerates[] = {
[OV5640_15_FPS] = 15,
[OV5640_30_FPS] = 30,
[OV5640_60_FPS] = 60,
};
/* regulator supplies */
static const char * const ov5640_supply_name[] = {
"DOVDD", /* Digital I/O (1.8V) supply */
"AVDD", /* Analog (2.8V) supply */
"DVDD", /* Digital Core (1.5V) supply */
};
#define OV5640_NUM_SUPPLIES ARRAY_SIZE(ov5640_supply_name)
/*
* Image size under 1280 * 960 are SUBSAMPLING
* Image size upper 1280 * 960 are SCALING
*/
enum ov5640_downsize_mode {
SUBSAMPLING,
SCALING,
};
struct reg_value {
u16 reg_addr;
u8 val;
u8 mask;
u32 delay_ms;
};
struct ov5640_mode_info {
enum ov5640_mode_id id;
enum ov5640_downsize_mode dn_mode;
u32 hact;
u32 htot;
u32 vact;
u32 vtot;
const struct reg_value *reg_data;
u32 reg_data_size;
u32 max_fps;
};
struct ov5640_ctrls {
struct v4l2_ctrl_handler handler;
struct v4l2_ctrl *pixel_rate;
struct {
struct v4l2_ctrl *auto_exp;
struct v4l2_ctrl *exposure;
};
struct {
struct v4l2_ctrl *auto_wb;
struct v4l2_ctrl *blue_balance;
struct v4l2_ctrl *red_balance;
};
struct {
struct v4l2_ctrl *auto_gain;
struct v4l2_ctrl *gain;
};
struct v4l2_ctrl *brightness;
struct v4l2_ctrl *light_freq;
struct v4l2_ctrl *saturation;
struct v4l2_ctrl *contrast;
struct v4l2_ctrl *hue;
struct v4l2_ctrl *test_pattern;
struct v4l2_ctrl *hflip;
struct v4l2_ctrl *vflip;
};
struct ov5640_dev {
struct i2c_client *i2c_client;
struct v4l2_subdev sd;
struct media_pad pad;
struct v4l2_fwnode_endpoint ep; /* the parsed DT endpoint info */
struct clk *xclk; /* system clock to OV5640 */
u32 xclk_freq;
struct regulator_bulk_data supplies[OV5640_NUM_SUPPLIES];
struct gpio_desc *reset_gpio;
struct gpio_desc *pwdn_gpio;
bool upside_down;
/* lock to protect all members below */
struct mutex lock;
int power_count;
struct v4l2_mbus_framefmt fmt;
bool pending_fmt_change;
const struct ov5640_mode_info *current_mode;
const struct ov5640_mode_info *last_mode;
enum ov5640_frame_rate current_fr;
struct v4l2_fract frame_interval;
struct ov5640_ctrls ctrls;
u32 prev_sysclk, prev_hts;
u32 ae_low, ae_high, ae_target;
bool pending_mode_change;
bool streaming;
};
static inline struct ov5640_dev *to_ov5640_dev(struct v4l2_subdev *sd)
{
return container_of(sd, struct ov5640_dev, sd);
}
static inline struct v4l2_subdev *ctrl_to_sd(struct v4l2_ctrl *ctrl)
{
return &container_of(ctrl->handler, struct ov5640_dev,
ctrls.handler)->sd;
}
/*
* FIXME: all of these register tables are likely filled with
* entries that set the register to their power-on default values,
* and which are otherwise not touched by this driver. Those entries
* should be identified and removed to speed register load time
* over i2c.
*/
/* YUV422 UYVY VGA@30fps */
static const struct reg_value ov5640_init_setting_30fps_VGA[] = {
{0x3103, 0x11, 0, 0}, {0x3008, 0x82, 0, 5}, {0x3008, 0x42, 0, 0},
{0x3103, 0x03, 0, 0}, {0x3017, 0x00, 0, 0}, {0x3018, 0x00, 0, 0},
{0x3630, 0x36, 0, 0},
{0x3631, 0x0e, 0, 0}, {0x3632, 0xe2, 0, 0}, {0x3633, 0x12, 0, 0},
{0x3621, 0xe0, 0, 0}, {0x3704, 0xa0, 0, 0}, {0x3703, 0x5a, 0, 0},
{0x3715, 0x78, 0, 0}, {0x3717, 0x01, 0, 0}, {0x370b, 0x60, 0, 0},
{0x3705, 0x1a, 0, 0}, {0x3905, 0x02, 0, 0}, {0x3906, 0x10, 0, 0},
{0x3901, 0x0a, 0, 0}, {0x3731, 0x12, 0, 0}, {0x3600, 0x08, 0, 0},
{0x3601, 0x33, 0, 0}, {0x302d, 0x60, 0, 0}, {0x3620, 0x52, 0, 0},
{0x371b, 0x20, 0, 0}, {0x471c, 0x50, 0, 0}, {0x3a13, 0x43, 0, 0},
{0x3a18, 0x00, 0, 0}, {0x3a19, 0xf8, 0, 0}, {0x3635, 0x13, 0, 0},
{0x3636, 0x03, 0, 0}, {0x3634, 0x40, 0, 0}, {0x3622, 0x01, 0, 0},
{0x3c01, 0xa4, 0, 0}, {0x3c04, 0x28, 0, 0}, {0x3c05, 0x98, 0, 0},
{0x3c06, 0x00, 0, 0}, {0x3c07, 0x08, 0, 0}, {0x3c08, 0x00, 0, 0},
{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
{0x3820, 0x41, 0, 0}, {0x3821, 0x07, 0, 0}, {0x3814, 0x31, 0, 0},
{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
{0x3810, 0x00, 0, 0},
{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, {0x3000, 0x00, 0, 0},
{0x3002, 0x1c, 0, 0}, {0x3004, 0xff, 0, 0}, {0x3006, 0xc3, 0, 0},
{0x302e, 0x08, 0, 0}, {0x4300, 0x3f, 0, 0},
{0x501f, 0x00, 0, 0}, {0x4407, 0x04, 0, 0},
{0x440e, 0x00, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
{0x4837, 0x0a, 0, 0}, {0x3824, 0x02, 0, 0},
{0x5000, 0xa7, 0, 0}, {0x5001, 0xa3, 0, 0}, {0x5180, 0xff, 0, 0},
{0x5181, 0xf2, 0, 0}, {0x5182, 0x00, 0, 0}, {0x5183, 0x14, 0, 0},
{0x5184, 0x25, 0, 0}, {0x5185, 0x24, 0, 0}, {0x5186, 0x09, 0, 0},
{0x5187, 0x09, 0, 0}, {0x5188, 0x09, 0, 0}, {0x5189, 0x88, 0, 0},
{0x518a, 0x54, 0, 0}, {0x518b, 0xee, 0, 0}, {0x518c, 0xb2, 0, 0},
{0x518d, 0x50, 0, 0}, {0x518e, 0x34, 0, 0}, {0x518f, 0x6b, 0, 0},
{0x5190, 0x46, 0, 0}, {0x5191, 0xf8, 0, 0}, {0x5192, 0x04, 0, 0},
{0x5193, 0x70, 0, 0}, {0x5194, 0xf0, 0, 0}, {0x5195, 0xf0, 0, 0},
{0x5196, 0x03, 0, 0}, {0x5197, 0x01, 0, 0}, {0x5198, 0x04, 0, 0},
{0x5199, 0x6c, 0, 0}, {0x519a, 0x04, 0, 0}, {0x519b, 0x00, 0, 0},
{0x519c, 0x09, 0, 0}, {0x519d, 0x2b, 0, 0}, {0x519e, 0x38, 0, 0},
{0x5381, 0x1e, 0, 0}, {0x5382, 0x5b, 0, 0}, {0x5383, 0x08, 0, 0},
{0x5384, 0x0a, 0, 0}, {0x5385, 0x7e, 0, 0}, {0x5386, 0x88, 0, 0},
{0x5387, 0x7c, 0, 0}, {0x5388, 0x6c, 0, 0}, {0x5389, 0x10, 0, 0},
{0x538a, 0x01, 0, 0}, {0x538b, 0x98, 0, 0}, {0x5300, 0x08, 0, 0},
{0x5301, 0x30, 0, 0}, {0x5302, 0x10, 0, 0}, {0x5303, 0x00, 0, 0},
{0x5304, 0x08, 0, 0}, {0x5305, 0x30, 0, 0}, {0x5306, 0x08, 0, 0},
{0x5307, 0x16, 0, 0}, {0x5309, 0x08, 0, 0}, {0x530a, 0x30, 0, 0},
{0x530b, 0x04, 0, 0}, {0x530c, 0x06, 0, 0}, {0x5480, 0x01, 0, 0},
{0x5481, 0x08, 0, 0}, {0x5482, 0x14, 0, 0}, {0x5483, 0x28, 0, 0},
{0x5484, 0x51, 0, 0}, {0x5485, 0x65, 0, 0}, {0x5486, 0x71, 0, 0},
{0x5487, 0x7d, 0, 0}, {0x5488, 0x87, 0, 0}, {0x5489, 0x91, 0, 0},
{0x548a, 0x9a, 0, 0}, {0x548b, 0xaa, 0, 0}, {0x548c, 0xb8, 0, 0},
{0x548d, 0xcd, 0, 0}, {0x548e, 0xdd, 0, 0}, {0x548f, 0xea, 0, 0},
{0x5490, 0x1d, 0, 0}, {0x5580, 0x02, 0, 0}, {0x5583, 0x40, 0, 0},
{0x5584, 0x10, 0, 0}, {0x5589, 0x10, 0, 0}, {0x558a, 0x00, 0, 0},
{0x558b, 0xf8, 0, 0}, {0x5800, 0x23, 0, 0}, {0x5801, 0x14, 0, 0},
{0x5802, 0x0f, 0, 0}, {0x5803, 0x0f, 0, 0}, {0x5804, 0x12, 0, 0},
{0x5805, 0x26, 0, 0}, {0x5806, 0x0c, 0, 0}, {0x5807, 0x08, 0, 0},
{0x5808, 0x05, 0, 0}, {0x5809, 0x05, 0, 0}, {0x580a, 0x08, 0, 0},
{0x580b, 0x0d, 0, 0}, {0x580c, 0x08, 0, 0}, {0x580d, 0x03, 0, 0},
{0x580e, 0x00, 0, 0}, {0x580f, 0x00, 0, 0}, {0x5810, 0x03, 0, 0},
{0x5811, 0x09, 0, 0}, {0x5812, 0x07, 0, 0}, {0x5813, 0x03, 0, 0},
{0x5814, 0x00, 0, 0}, {0x5815, 0x01, 0, 0}, {0x5816, 0x03, 0, 0},
{0x5817, 0x08, 0, 0}, {0x5818, 0x0d, 0, 0}, {0x5819, 0x08, 0, 0},
{0x581a, 0x05, 0, 0}, {0x581b, 0x06, 0, 0}, {0x581c, 0x08, 0, 0},
{0x581d, 0x0e, 0, 0}, {0x581e, 0x29, 0, 0}, {0x581f, 0x17, 0, 0},
{0x5820, 0x11, 0, 0}, {0x5821, 0x11, 0, 0}, {0x5822, 0x15, 0, 0},
{0x5823, 0x28, 0, 0}, {0x5824, 0x46, 0, 0}, {0x5825, 0x26, 0, 0},
{0x5826, 0x08, 0, 0}, {0x5827, 0x26, 0, 0}, {0x5828, 0x64, 0, 0},
{0x5829, 0x26, 0, 0}, {0x582a, 0x24, 0, 0}, {0x582b, 0x22, 0, 0},
{0x582c, 0x24, 0, 0}, {0x582d, 0x24, 0, 0}, {0x582e, 0x06, 0, 0},
{0x582f, 0x22, 0, 0}, {0x5830, 0x40, 0, 0}, {0x5831, 0x42, 0, 0},
{0x5832, 0x24, 0, 0}, {0x5833, 0x26, 0, 0}, {0x5834, 0x24, 0, 0},
{0x5835, 0x22, 0, 0}, {0x5836, 0x22, 0, 0}, {0x5837, 0x26, 0, 0},
{0x5838, 0x44, 0, 0}, {0x5839, 0x24, 0, 0}, {0x583a, 0x26, 0, 0},
{0x583b, 0x28, 0, 0}, {0x583c, 0x42, 0, 0}, {0x583d, 0xce, 0, 0},
{0x5025, 0x00, 0, 0}, {0x3a0f, 0x30, 0, 0}, {0x3a10, 0x28, 0, 0},
{0x3a1b, 0x30, 0, 0}, {0x3a1e, 0x26, 0, 0}, {0x3a11, 0x60, 0, 0},
{0x3a1f, 0x14, 0, 0}, {0x3008, 0x02, 0, 0}, {0x3c00, 0x04, 0, 300},
};
static const struct reg_value ov5640_setting_VGA_640_480[] = {
{0x3c07, 0x08, 0, 0},
{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
{0x3814, 0x31, 0, 0},
{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
{0x3810, 0x00, 0, 0},
{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
};
static const struct reg_value ov5640_setting_XGA_1024_768[] = {
{0x3c07, 0x08, 0, 0},
{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
{0x3814, 0x31, 0, 0},
{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
{0x3810, 0x00, 0, 0},
{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
};
static const struct reg_value ov5640_setting_QVGA_320_240[] = {
{0x3c07, 0x08, 0, 0},
{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
{0x3814, 0x31, 0, 0},
{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
{0x3810, 0x00, 0, 0},
{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
};
static const struct reg_value ov5640_setting_QCIF_176_144[] = {
{0x3c07, 0x08, 0, 0},
{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
{0x3814, 0x31, 0, 0},
{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
{0x3810, 0x00, 0, 0},
{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
};
static const struct reg_value ov5640_setting_NTSC_720_480[] = {
{0x3c07, 0x08, 0, 0},
{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
{0x3814, 0x31, 0, 0},
{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
{0x3810, 0x00, 0, 0},
{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x3c, 0, 0},
{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
};
static const struct reg_value ov5640_setting_PAL_720_576[] = {
{0x3c07, 0x08, 0, 0},
{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
{0x3814, 0x31, 0, 0},
{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
{0x3802, 0x00, 0, 0}, {0x3803, 0x04, 0, 0}, {0x3804, 0x0a, 0, 0},
{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9b, 0, 0},
{0x3810, 0x00, 0, 0},
{0x3811, 0x38, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x06, 0, 0},
{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0},
{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
{0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0},
};
static const struct reg_value ov5640_setting_720P_1280_720[] = {
{0x3c07, 0x07, 0, 0},
{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
{0x3814, 0x31, 0, 0},
{0x3815, 0x31, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
{0x3802, 0x00, 0, 0}, {0x3803, 0xfa, 0, 0}, {0x3804, 0x0a, 0, 0},
{0x3805, 0x3f, 0, 0}, {0x3806, 0x06, 0, 0}, {0x3807, 0xa9, 0, 0},
{0x3810, 0x00, 0, 0},
{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0},
{0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0},
{0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x02, 0, 0},
{0x3a03, 0xe4, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0xbc, 0, 0},
{0x3a0a, 0x01, 0, 0}, {0x3a0b, 0x72, 0, 0}, {0x3a0e, 0x01, 0, 0},
{0x3a0d, 0x02, 0, 0}, {0x3a14, 0x02, 0, 0}, {0x3a15, 0xe4, 0, 0},
{0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0},
{0x4407, 0x04, 0, 0}, {0x460b, 0x37, 0, 0}, {0x460c, 0x20, 0, 0},
{0x3824, 0x04, 0, 0}, {0x5001, 0x83, 0, 0},
};
static const struct reg_value ov5640_setting_1080P_1920_1080[] = {
{0x3c07, 0x08, 0, 0},
{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
{0x3814, 0x11, 0, 0},
{0x3815, 0x11, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
{0x3802, 0x00, 0, 0}, {0x3803, 0x00, 0, 0}, {0x3804, 0x0a, 0, 0},
{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9f, 0, 0},
{0x3810, 0x00, 0, 0},
{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0},
{0x3618, 0x04, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x21, 0, 0},
{0x3709, 0x12, 0, 0}, {0x370c, 0x00, 0, 0}, {0x3a02, 0x03, 0, 0},
{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
{0x4001, 0x02, 0, 0}, {0x4004, 0x06, 0, 0},
{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
{0x3824, 0x02, 0, 0}, {0x5001, 0x83, 0, 0},
{0x3c07, 0x07, 0, 0}, {0x3c08, 0x00, 0, 0},
{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
{0x3800, 0x01, 0, 0}, {0x3801, 0x50, 0, 0}, {0x3802, 0x01, 0, 0},
{0x3803, 0xb2, 0, 0}, {0x3804, 0x08, 0, 0}, {0x3805, 0xef, 0, 0},
{0x3806, 0x05, 0, 0}, {0x3807, 0xf1, 0, 0},
{0x3612, 0x2b, 0, 0}, {0x3708, 0x64, 0, 0},
{0x3a02, 0x04, 0, 0}, {0x3a03, 0x60, 0, 0}, {0x3a08, 0x01, 0, 0},
{0x3a09, 0x50, 0, 0}, {0x3a0a, 0x01, 0, 0}, {0x3a0b, 0x18, 0, 0},
{0x3a0e, 0x03, 0, 0}, {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x04, 0, 0},
{0x3a15, 0x60, 0, 0}, {0x4407, 0x04, 0, 0},
{0x460b, 0x37, 0, 0}, {0x460c, 0x20, 0, 0}, {0x3824, 0x04, 0, 0},
{0x4005, 0x1a, 0, 0},
};
static const struct reg_value ov5640_setting_QSXGA_2592_1944[] = {
{0x3c07, 0x08, 0, 0},
{0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0},
{0x3814, 0x11, 0, 0},
{0x3815, 0x11, 0, 0}, {0x3800, 0x00, 0, 0}, {0x3801, 0x00, 0, 0},
{0x3802, 0x00, 0, 0}, {0x3803, 0x00, 0, 0}, {0x3804, 0x0a, 0, 0},
{0x3805, 0x3f, 0, 0}, {0x3806, 0x07, 0, 0}, {0x3807, 0x9f, 0, 0},
{0x3810, 0x00, 0, 0},
{0x3811, 0x10, 0, 0}, {0x3812, 0x00, 0, 0}, {0x3813, 0x04, 0, 0},
{0x3618, 0x04, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x21, 0, 0},
{0x3709, 0x12, 0, 0}, {0x370c, 0x00, 0, 0}, {0x3a02, 0x03, 0, 0},
{0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0},
{0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0},
{0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0},
{0x4001, 0x02, 0, 0}, {0x4004, 0x06, 0, 0},
{0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0},
{0x3824, 0x02, 0, 0}, {0x5001, 0x83, 0, 70},
};
/* power-on sensor init reg table */
static const struct ov5640_mode_info ov5640_mode_init_data = {
0, SUBSAMPLING, 640, 1896, 480, 984,
ov5640_init_setting_30fps_VGA,
ARRAY_SIZE(ov5640_init_setting_30fps_VGA),
OV5640_30_FPS,
};
static const struct ov5640_mode_info
ov5640_mode_data[OV5640_NUM_MODES] = {
{OV5640_MODE_QCIF_176_144, SUBSAMPLING,
176, 1896, 144, 984,
ov5640_setting_QCIF_176_144,
ARRAY_SIZE(ov5640_setting_QCIF_176_144),
OV5640_30_FPS},
{OV5640_MODE_QVGA_320_240, SUBSAMPLING,
320, 1896, 240, 984,
ov5640_setting_QVGA_320_240,
ARRAY_SIZE(ov5640_setting_QVGA_320_240),
OV5640_30_FPS},
{OV5640_MODE_VGA_640_480, SUBSAMPLING,
640, 1896, 480, 1080,
ov5640_setting_VGA_640_480,
ARRAY_SIZE(ov5640_setting_VGA_640_480),
OV5640_60_FPS},
{OV5640_MODE_NTSC_720_480, SUBSAMPLING,
720, 1896, 480, 984,
ov5640_setting_NTSC_720_480,
ARRAY_SIZE(ov5640_setting_NTSC_720_480),
OV5640_30_FPS},
{OV5640_MODE_PAL_720_576, SUBSAMPLING,
720, 1896, 576, 984,
ov5640_setting_PAL_720_576,
ARRAY_SIZE(ov5640_setting_PAL_720_576),
OV5640_30_FPS},
{OV5640_MODE_XGA_1024_768, SUBSAMPLING,
1024, 1896, 768, 1080,
ov5640_setting_XGA_1024_768,
ARRAY_SIZE(ov5640_setting_XGA_1024_768),
OV5640_30_FPS},
{OV5640_MODE_720P_1280_720, SUBSAMPLING,
1280, 1892, 720, 740,
ov5640_setting_720P_1280_720,
ARRAY_SIZE(ov5640_setting_720P_1280_720),
OV5640_30_FPS},
{OV5640_MODE_1080P_1920_1080, SCALING,
1920, 2500, 1080, 1120,
ov5640_setting_1080P_1920_1080,
ARRAY_SIZE(ov5640_setting_1080P_1920_1080),
OV5640_30_FPS},
{OV5640_MODE_QSXGA_2592_1944, SCALING,
2592, 2844, 1944, 1968,
ov5640_setting_QSXGA_2592_1944,
ARRAY_SIZE(ov5640_setting_QSXGA_2592_1944),
OV5640_15_FPS},
};
static int ov5640_init_slave_id(struct ov5640_dev *sensor)
{
struct i2c_client *client = sensor->i2c_client;
struct i2c_msg msg;
u8 buf[3];
int ret;
if (client->addr == OV5640_DEFAULT_SLAVE_ID)
return 0;
buf[0] = OV5640_REG_SLAVE_ID >> 8;
buf[1] = OV5640_REG_SLAVE_ID & 0xff;
buf[2] = client->addr << 1;
msg.addr = OV5640_DEFAULT_SLAVE_ID;
msg.flags = 0;
msg.buf = buf;
msg.len = sizeof(buf);
ret = i2c_transfer(client->adapter, &msg, 1);
if (ret < 0) {
dev_err(&client->dev, "%s: failed with %d\n", __func__, ret);
return ret;
}
return 0;
}
static int ov5640_write_reg(struct ov5640_dev *sensor, u16 reg, u8 val)
{
struct i2c_client *client = sensor->i2c_client;
struct i2c_msg msg;
u8 buf[3];
int ret;
buf[0] = reg >> 8;
buf[1] = reg & 0xff;
buf[2] = val;
msg.addr = client->addr;
msg.flags = client->flags;
msg.buf = buf;
msg.len = sizeof(buf);
ret = i2c_transfer(client->adapter, &msg, 1);
if (ret < 0) {
dev_err(&client->dev, "%s: error: reg=%x, val=%x\n",
__func__, reg, val);
return ret;
}
return 0;
}
static int ov5640_read_reg(struct ov5640_dev *sensor, u16 reg, u8 *val)
{
struct i2c_client *client = sensor->i2c_client;
struct i2c_msg msg[2];
u8 buf[2];
int ret;
buf[0] = reg >> 8;
buf[1] = reg & 0xff;
msg[0].addr = client->addr;
msg[0].flags = client->flags;
msg[0].buf = buf;
msg[0].len = sizeof(buf);
msg[1].addr = client->addr;
msg[1].flags = client->flags | I2C_M_RD;
msg[1].buf = buf;
msg[1].len = 1;
ret = i2c_transfer(client->adapter, msg, 2);
if (ret < 0) {
dev_err(&client->dev, "%s: error: reg=%x\n",
__func__, reg);
return ret;
}
*val = buf[0];
return 0;
}
static int ov5640_read_reg16(struct ov5640_dev *sensor, u16 reg, u16 *val)
{
u8 hi, lo;
int ret;
ret = ov5640_read_reg(sensor, reg, &hi);
if (ret)
return ret;
ret = ov5640_read_reg(sensor, reg + 1, &lo);
if (ret)
return ret;
*val = ((u16)hi << 8) | (u16)lo;
return 0;
}
static int ov5640_write_reg16(struct ov5640_dev *sensor, u16 reg, u16 val)
{
int ret;
ret = ov5640_write_reg(sensor, reg, val >> 8);
if (ret)
return ret;
return ov5640_write_reg(sensor, reg + 1, val & 0xff);
}
static int ov5640_mod_reg(struct ov5640_dev *sensor, u16 reg,
u8 mask, u8 val)
{
u8 readval;
int ret;
ret = ov5640_read_reg(sensor, reg, &readval);
if (ret)
return ret;
readval &= ~mask;
val &= mask;
val |= readval;
return ov5640_write_reg(sensor, reg, val);
}
/*
* After trying the various combinations, reading various
* documentations spread around the net, and from the various
* feedback, the clock tree is probably as follows:
*
* +--------------+
* | Ext. Clock |
* +-+------------+
* | +----------+
* +->| PLL1 | - reg 0x3036, for the multiplier
* +-+--------+ - reg 0x3037, bits 0-3 for the pre-divider
* | +--------------+
* +->| System Clock | - reg 0x3035, bits 4-7
* +-+------------+
* | +--------------+
* +->| MIPI Divider | - reg 0x3035, bits 0-3
* | +-+------------+
* | +----------------> MIPI SCLK
* | + +-----+
* | +->| / 2 |-------> MIPI BIT CLK
* | +-----+
* | +--------------+
* +->| PLL Root Div | - reg 0x3037, bit 4
* +-+------------+
* | +---------+
* +->| Bit Div | - reg 0x3035, bits 0-3
* +-+-------+
* | +-------------+
* +->| SCLK Div | - reg 0x3108, bits 0-1
* | +-+-----------+
* | +---------------> SCLK
* | +-------------+
* +->| SCLK 2X Div | - reg 0x3108, bits 2-3
* | +-+-----------+
* | +---------------> SCLK 2X
* | +-------------+
* +->| PCLK Div | - reg 0x3108, bits 4-5
* ++------------+
* + +-----------+
* +->| P_DIV | - reg 0x3035, bits 0-3
* +-----+-----+
* +------------> PCLK
*
* This is deviating from the datasheet at least for the register
* 0x3108, since it's said here that the PCLK would be clocked from
* the PLL.
*
* There seems to be also (unverified) constraints:
* - the PLL pre-divider output rate should be in the 4-27MHz range
* - the PLL multiplier output rate should be in the 500-1000MHz range
* - PCLK >= SCLK * 2 in YUV, >= SCLK in Raw or JPEG
*
* In the two latter cases, these constraints are met since our
* factors are hardcoded. If we were to change that, we would need to
* take this into account. The only varying parts are the PLL
* multiplier and the system clock divider, which are shared between
* all these clocks so won't cause any issue.
*/
/*
* This is supposed to be ranging from 1 to 8, but the value is always
* set to 3 in the vendor kernels.
*/
#define OV5640_PLL_PREDIV 3
#define OV5640_PLL_MULT_MIN 4
#define OV5640_PLL_MULT_MAX 252
/*
* This is supposed to be ranging from 1 to 16, but the value is
* always set to either 1 or 2 in the vendor kernels.
*/
#define OV5640_SYSDIV_MIN 1
#define OV5640_SYSDIV_MAX 16
/*
* Hardcode these values for scaler and non-scaler modes.
* FIXME: to be re-calcualted for 1 data lanes setups
*/
#define OV5640_MIPI_DIV_PCLK 2
#define OV5640_MIPI_DIV_SCLK 1
/*
* This is supposed to be ranging from 1 to 2, but the value is always
* set to 2 in the vendor kernels.
*/
#define OV5640_PLL_ROOT_DIV 2
#define OV5640_PLL_CTRL3_PLL_ROOT_DIV_2 BIT(4)
/*
* We only supports 8-bit formats at the moment
*/
#define OV5640_BIT_DIV 2
#define OV5640_PLL_CTRL0_MIPI_MODE_8BIT 0x08
/*
* This is supposed to be ranging from 1 to 8, but the value is always
* set to 2 in the vendor kernels.
*/
#define OV5640_SCLK_ROOT_DIV 2
/*
* This is hardcoded so that the consistency is maintained between SCLK and
* SCLK 2x.
*/
#define OV5640_SCLK2X_ROOT_DIV (OV5640_SCLK_ROOT_DIV / 2)
/*
* This is supposed to be ranging from 1 to 8, but the value is always
* set to 1 in the vendor kernels.
*/
#define OV5640_PCLK_ROOT_DIV 1
#define OV5640_PLL_SYS_ROOT_DIVIDER_BYPASS 0x00
static unsigned long ov5640_compute_sys_clk(struct ov5640_dev *sensor,
u8 pll_prediv, u8 pll_mult,
u8 sysdiv)
{
unsigned long sysclk = sensor->xclk_freq / pll_prediv * pll_mult;
/* PLL1 output cannot exceed 1GHz. */
if (sysclk / 1000000 > 1000)
return 0;
return sysclk / sysdiv;
}
static unsigned long ov5640_calc_sys_clk(struct ov5640_dev *sensor,
unsigned long rate,
u8 *pll_prediv, u8 *pll_mult,
u8 *sysdiv)
{
unsigned long best = ~0;
u8 best_sysdiv = 1, best_mult = 1;
u8 _sysdiv, _pll_mult;
for (_sysdiv = OV5640_SYSDIV_MIN;
_sysdiv <= OV5640_SYSDIV_MAX;
_sysdiv++) {
for (_pll_mult = OV5640_PLL_MULT_MIN;
_pll_mult <= OV5640_PLL_MULT_MAX;
_pll_mult++) {
unsigned long _rate;
/*
* The PLL multiplier cannot be odd if above
* 127.
*/
if (_pll_mult > 127 && (_pll_mult % 2))
continue;
_rate = ov5640_compute_sys_clk(sensor,
OV5640_PLL_PREDIV,
_pll_mult, _sysdiv);
/*
* We have reached the maximum allowed PLL1 output,
* increase sysdiv.
*/
if (!_rate)
break;
/*
* Prefer rates above the expected clock rate than
* below, even if that means being less precise.
*/
if (_rate < rate)
continue;
if (abs(rate - _rate) < abs(rate - best)) {
best = _rate;
best_sysdiv = _sysdiv;
best_mult = _pll_mult;
}
if (_rate == rate)
goto out;
}
}
out:
*sysdiv = best_sysdiv;
*pll_prediv = OV5640_PLL_PREDIV;
*pll_mult = best_mult;
return best;
}
/*
* ov5640_set_mipi_pclk() - Calculate the clock tree configuration values
* for the MIPI CSI-2 output.
*
* @rate: The requested bandwidth per lane in bytes per second.
* 'Bandwidth Per Lane' is calculated as:
* bpl = HTOT * VTOT * FPS * bpp / num_lanes;
*
* This function use the requested bandwidth to calculate:
* - sample_rate = bpl / (bpp / num_lanes);
* = bpl / (PLL_RDIV * BIT_DIV * PCLK_DIV * MIPI_DIV / num_lanes);
*
* - mipi_sclk = bpl / MIPI_DIV / 2; ( / 2 is for CSI-2 DDR)
*
* with these fixed parameters:
* PLL_RDIV = 2;
* BIT_DIVIDER = 2; (MIPI_BIT_MODE == 8 ? 2 : 2,5);
* PCLK_DIV = 1;
*
* The MIPI clock generation differs for modes that use the scaler and modes
* that do not. In case the scaler is in use, the MIPI_SCLK generates the MIPI
* BIT CLk, and thus:
*
* - mipi_sclk = bpl / MIPI_DIV / 2;
* MIPI_DIV = 1;
*
* For modes that do not go through the scaler, the MIPI BIT CLOCK is generated
* from the pixel clock, and thus:
*
* - sample_rate = bpl / (bpp / num_lanes);
* = bpl / (2 * 2 * 1 * MIPI_DIV / num_lanes);
* = bpl / (4 * MIPI_DIV / num_lanes);
* - MIPI_DIV = bpp / (4 * num_lanes);
*
* FIXME: this have been tested with 16bpp and 2 lanes setup only.
* MIPI_DIV is fixed to value 2, but it -might- be changed according to the
* above formula for setups with 1 lane or image formats with different bpp.
*
* FIXME: this deviates from the sensor manual documentation which is quite
* thin on the MIPI clock tree generation part.
*/
static int ov5640_set_mipi_pclk(struct ov5640_dev *sensor,
unsigned long rate)
{
const struct ov5640_mode_info *mode = sensor->current_mode;
u8 prediv, mult, sysdiv;
u8 mipi_div;
int ret;
/*
* 1280x720 is reported to use 'SUBSAMPLING' only,
* but according to the sensor manual it goes through the
* scaler before subsampling.
*/
if (mode->dn_mode == SCALING ||
(mode->id == OV5640_MODE_720P_1280_720))
mipi_div = OV5640_MIPI_DIV_SCLK;
else
mipi_div = OV5640_MIPI_DIV_PCLK;
ov5640_calc_sys_clk(sensor, rate, &prediv, &mult, &sysdiv);
ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL0,
0x0f, OV5640_PLL_CTRL0_MIPI_MODE_8BIT);
ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL1,
0xff, sysdiv << 4 | mipi_div);
if (ret)
return ret;
ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL2, 0xff, mult);
if (ret)
return ret;
ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL3,
0x1f, OV5640_PLL_CTRL3_PLL_ROOT_DIV_2 | prediv);
if (ret)
return ret;
return ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER,
0x30, OV5640_PLL_SYS_ROOT_DIVIDER_BYPASS);
}
static unsigned long ov5640_calc_pclk(struct ov5640_dev *sensor,
unsigned long rate,
u8 *pll_prediv, u8 *pll_mult, u8 *sysdiv,
u8 *pll_rdiv, u8 *bit_div, u8 *pclk_div)
{
unsigned long _rate = rate * OV5640_PLL_ROOT_DIV * OV5640_BIT_DIV *
OV5640_PCLK_ROOT_DIV;
_rate = ov5640_calc_sys_clk(sensor, _rate, pll_prediv, pll_mult,
sysdiv);
*pll_rdiv = OV5640_PLL_ROOT_DIV;
*bit_div = OV5640_BIT_DIV;
*pclk_div = OV5640_PCLK_ROOT_DIV;
return _rate / *pll_rdiv / *bit_div / *pclk_div;
}
static int ov5640_set_dvp_pclk(struct ov5640_dev *sensor, unsigned long rate)
{
u8 prediv, mult, sysdiv, pll_rdiv, bit_div, pclk_div;
int ret;
ov5640_calc_pclk(sensor, rate, &prediv, &mult, &sysdiv, &pll_rdiv,
&bit_div, &pclk_div);
if (bit_div == 2)
bit_div = 8;
ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL0,
0x0f, bit_div);
if (ret)
return ret;
/*
* We need to set sysdiv according to the clock, and to clear
* the MIPI divider.
*/
ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL1,
0xff, sysdiv << 4);
if (ret)
return ret;
ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL2,
0xff, mult);
if (ret)
return ret;
ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL3,
0x1f, prediv | ((pll_rdiv - 1) << 4));
if (ret)
return ret;
return ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 0x30,
(ilog2(pclk_div) << 4));
}
/* set JPEG framing sizes */
static int ov5640_set_jpeg_timings(struct ov5640_dev *sensor,
const struct ov5640_mode_info *mode)
{
int ret;
/*
* compression mode 3 timing
*
* Data is transmitted with programmable width (VFIFO_HSIZE).
* No padding done. Last line may have less data. Varying
* number of lines per frame, depending on amount of data.
*/
ret = ov5640_mod_reg(sensor, OV5640_REG_JPG_MODE_SELECT, 0x7, 0x3);
if (ret < 0)
return ret;
ret = ov5640_write_reg16(sensor, OV5640_REG_VFIFO_HSIZE, mode->hact);
if (ret < 0)
return ret;
return ov5640_write_reg16(sensor, OV5640_REG_VFIFO_VSIZE, mode->vact);
}
/* download ov5640 settings to sensor through i2c */
static int ov5640_set_timings(struct ov5640_dev *sensor,
const struct ov5640_mode_info *mode)
{
int ret;
if (sensor->fmt.code == MEDIA_BUS_FMT_JPEG_1X8) {
ret = ov5640_set_jpeg_timings(sensor, mode);
if (ret < 0)
return ret;
}
ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_DVPHO, mode->hact);
if (ret < 0)
return ret;
ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_DVPVO, mode->vact);
if (ret < 0)
return ret;
ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_HTS, mode->htot);
if (ret < 0)
return ret;
return ov5640_write_reg16(sensor, OV5640_REG_TIMING_VTS, mode->vtot);
}
static int ov5640_load_regs(struct ov5640_dev *sensor,
const struct ov5640_mode_info *mode)
{
const struct reg_value *regs = mode->reg_data;
unsigned int i;
u32 delay_ms;
u16 reg_addr;
u8 mask, val;
int ret = 0;
for (i = 0; i < mode->reg_data_size; ++i, ++regs) {
delay_ms = regs->delay_ms;
reg_addr = regs->reg_addr;
val = regs->val;
mask = regs->mask;
if (mask)
ret = ov5640_mod_reg(sensor, reg_addr, mask, val);
else
ret = ov5640_write_reg(sensor, reg_addr, val);
if (ret)
break;
if (delay_ms)
usleep_range(1000 * delay_ms, 1000 * delay_ms + 100);
}
return ov5640_set_timings(sensor, mode);
}
static int ov5640_set_autoexposure(struct ov5640_dev *sensor, bool on)
{
return ov5640_mod_reg(sensor, OV5640_REG_AEC_PK_MANUAL,
BIT(0), on ? 0 : BIT(0));
}
/* read exposure, in number of line periods */
static int ov5640_get_exposure(struct ov5640_dev *sensor)
{
int exp, ret;
u8 temp;
ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_HI, &temp);
if (ret)
return ret;
exp = ((int)temp & 0x0f) << 16;
ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_MED, &temp);
if (ret)
return ret;
exp |= ((int)temp << 8);
ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_LO, &temp);
if (ret)
return ret;
exp |= (int)temp;
return exp >> 4;
}
/* write exposure, given number of line periods */
static int ov5640_set_exposure(struct ov5640_dev *sensor, u32 exposure)
{
int ret;
exposure <<= 4;
ret = ov5640_write_reg(sensor,
OV5640_REG_AEC_PK_EXPOSURE_LO,
exposure & 0xff);
if (ret)
return ret;
ret = ov5640_write_reg(sensor,
OV5640_REG_AEC_PK_EXPOSURE_MED,
(exposure >> 8) & 0xff);
if (ret)
return ret;
return ov5640_write_reg(sensor,
OV5640_REG_AEC_PK_EXPOSURE_HI,
(exposure >> 16) & 0x0f);
}
static int ov5640_get_gain(struct ov5640_dev *sensor)
{
u16 gain;
int ret;
ret = ov5640_read_reg16(sensor, OV5640_REG_AEC_PK_REAL_GAIN, &gain);
if (ret)
return ret;
return gain & 0x3ff;
}
static int ov5640_set_gain(struct ov5640_dev *sensor, int gain)
{
return ov5640_write_reg16(sensor, OV5640_REG_AEC_PK_REAL_GAIN,
(u16)gain & 0x3ff);
}
static int ov5640_set_autogain(struct ov5640_dev *sensor, bool on)
{
return ov5640_mod_reg(sensor, OV5640_REG_AEC_PK_MANUAL,
BIT(1), on ? 0 : BIT(1));
}
static int ov5640_set_stream_dvp(struct ov5640_dev *sensor, bool on)
{
int ret;
unsigned int flags = sensor->ep.bus.parallel.flags;
u8 pclk_pol = 0;
u8 hsync_pol = 0;
u8 vsync_pol = 0;
/*
* Note about parallel port configuration.
*
* When configured in parallel mode, the OV5640 will
* output 10 bits data on DVP data lines [9:0].
* If only 8 bits data are wanted, the 8 bits data lines
* of the camera interface must be physically connected
* on the DVP data lines [9:2].
*
* Control lines polarity can be configured through
* devicetree endpoint control lines properties.
* If no endpoint control lines properties are set,
* polarity will be as below:
* - VSYNC: active high
* - HREF: active low
* - PCLK: active low
*/
if (on) {
/*
* configure parallel port control lines polarity
*
* POLARITY CTRL0
* - [5]: PCLK polarity (0: active low, 1: active high)
* - [1]: HREF polarity (0: active low, 1: active high)
* - [0]: VSYNC polarity (mismatch here between
* datasheet and hardware, 0 is active high
* and 1 is active low...)
*/
if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
pclk_pol = 1;
if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
hsync_pol = 1;
if (flags & V4L2_MBUS_VSYNC_ACTIVE_LOW)
vsync_pol = 1;
ret = ov5640_write_reg(sensor,
OV5640_REG_POLARITY_CTRL00,
(pclk_pol << 5) |
(hsync_pol << 1) |
vsync_pol);
if (ret)
return ret;
}
/*
* powerdown MIPI TX/RX PHY & disable MIPI
*
* MIPI CONTROL 00
* 4: PWDN PHY TX
* 3: PWDN PHY RX
* 2: MIPI enable
*/
ret = ov5640_write_reg(sensor,
OV5640_REG_IO_MIPI_CTRL00, on ? 0x18 : 0);
if (ret)
return ret;
/*
* enable VSYNC/HREF/PCLK DVP control lines
* & D[9:6] DVP data lines
*
* PAD OUTPUT ENABLE 01
* - 6: VSYNC output enable
* - 5: HREF output enable
* - 4: PCLK output enable
* - [3:0]: D[9:6] output enable
*/
ret = ov5640_write_reg(sensor,
OV5640_REG_PAD_OUTPUT_ENABLE01,
on ? 0x7f : 0);
if (ret)
return ret;
/*
* enable D[5:0] DVP data lines
*
* PAD OUTPUT ENABLE 02
* - [7:2]: D[5:0] output enable
*/
return ov5640_write_reg(sensor,
OV5640_REG_PAD_OUTPUT_ENABLE02,
on ? 0xfc : 0);
}
static int ov5640_set_stream_mipi(struct ov5640_dev *sensor, bool on)
{
int ret;
/*
* Enable/disable the MIPI interface
*
* 0x300e = on ? 0x45 : 0x40
*
* FIXME: the sensor manual (version 2.03) reports
* [7:5] = 000 : 1 data lane mode
* [7:5] = 001 : 2 data lanes mode
* But this settings do not work, while the following ones
* have been validated for 2 data lanes mode.
*
* [7:5] = 010 : 2 data lanes mode
* [4] = 0 : Power up MIPI HS Tx
* [3] = 0 : Power up MIPI LS Rx
* [2] = 1/0 : MIPI interface enable/disable
* [1:0] = 01/00: FIXME: 'debug'
*/
ret = ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00,
on ? 0x45 : 0x40);
if (ret)
return ret;
return ov5640_write_reg(sensor, OV5640_REG_FRAME_CTRL01,
on ? 0x00 : 0x0f);
}
static int ov5640_get_sysclk(struct ov5640_dev *sensor)
{
/* calculate sysclk */
u32 xvclk = sensor->xclk_freq / 10000;
u32 multiplier, prediv, VCO, sysdiv, pll_rdiv;
u32 sclk_rdiv_map[] = {1, 2, 4, 8};
u32 bit_div2x = 1, sclk_rdiv, sysclk;
u8 temp1, temp2;
int ret;
ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL0, &temp1);
if (ret)
return ret;
temp2 = temp1 & 0x0f;
if (temp2 == 8 || temp2 == 10)
bit_div2x = temp2 / 2;
ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL1, &temp1);
if (ret)
return ret;
sysdiv = temp1 >> 4;
if (sysdiv == 0)
sysdiv = 16;
ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL2, &temp1);
if (ret)
return ret;
multiplier = temp1;
ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL3, &temp1);
if (ret)
return ret;
prediv = temp1 & 0x0f;
pll_rdiv = ((temp1 >> 4) & 0x01) + 1;
ret = ov5640_read_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, &temp1);
if (ret)
return ret;
temp2 = temp1 & 0x03;
sclk_rdiv = sclk_rdiv_map[temp2];
if (!prediv || !sysdiv || !pll_rdiv || !bit_div2x)
return -EINVAL;
VCO = xvclk * multiplier / prediv;
sysclk = VCO / sysdiv / pll_rdiv * 2 / bit_div2x / sclk_rdiv;
return sysclk;
}
static int ov5640_set_night_mode(struct ov5640_dev *sensor)
{
/* read HTS from register settings */
u8 mode;
int ret;
ret = ov5640_read_reg(sensor, OV5640_REG_AEC_CTRL00, &mode);
if (ret)
return ret;
mode &= 0xfb;
return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL00, mode);
}
static int ov5640_get_hts(struct ov5640_dev *sensor)
{
/* read HTS from register settings */
u16 hts;
int ret;
ret = ov5640_read_reg16(sensor, OV5640_REG_TIMING_HTS, &hts);
if (ret)
return ret;
return hts;
}
static int ov5640_get_vts(struct ov5640_dev *sensor)
{
u16 vts;
int ret;
ret = ov5640_read_reg16(sensor, OV5640_REG_TIMING_VTS, &vts);
if (ret)
return ret;
return vts;
}
static int ov5640_set_vts(struct ov5640_dev *sensor, int vts)
{
return ov5640_write_reg16(sensor, OV5640_REG_TIMING_VTS, vts);
}
static int ov5640_get_light_freq(struct ov5640_dev *sensor)
{
/* get banding filter value */
int ret, light_freq = 0;
u8 temp, temp1;
ret = ov5640_read_reg(sensor, OV5640_REG_HZ5060_CTRL01, &temp);
if (ret)
return ret;
if (temp & 0x80) {
/* manual */
ret = ov5640_read_reg(sensor, OV5640_REG_HZ5060_CTRL00,
&temp1);
if (ret)
return ret;
if (temp1 & 0x04) {
/* 50Hz */
light_freq = 50;
} else {
/* 60Hz */
light_freq = 60;
}
} else {
/* auto */
ret = ov5640_read_reg(sensor, OV5640_REG_SIGMADELTA_CTRL0C,
&temp1);
if (ret)
return ret;
if (temp1 & 0x01) {
/* 50Hz */
light_freq = 50;
} else {
/* 60Hz */
}
}
return light_freq;
}
static int ov5640_set_bandingfilter(struct ov5640_dev *sensor)
{
u32 band_step60, max_band60, band_step50, max_band50, prev_vts;
int ret;
/* read preview PCLK */
ret = ov5640_get_sysclk(sensor);
if (ret < 0)
return ret;
if (ret == 0)
return -EINVAL;
sensor->prev_sysclk = ret;
/* read preview HTS */
ret = ov5640_get_hts(sensor);
if (ret < 0)
return ret;
if (ret == 0)
return -EINVAL;
sensor->prev_hts = ret;
/* read preview VTS */
ret = ov5640_get_vts(sensor);
if (ret < 0)
return ret;
prev_vts = ret;
/* calculate banding filter */
/* 60Hz */
band_step60 = sensor->prev_sysclk * 100 / sensor->prev_hts * 100 / 120;
ret = ov5640_write_reg16(sensor, OV5640_REG_AEC_B60_STEP, band_step60);
if (ret)
return ret;
if (!band_step60)
return -EINVAL;
max_band60 = (int)((prev_vts - 4) / band_step60);
ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0D, max_band60);
if (ret)
return ret;
/* 50Hz */
band_step50 = sensor->prev_sysclk * 100 / sensor->prev_hts;
ret = ov5640_write_reg16(sensor, OV5640_REG_AEC_B50_STEP, band_step50);
if (ret)
return ret;
if (!band_step50)
return -EINVAL;
max_band50 = (int)((prev_vts - 4) / band_step50);
return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0E, max_band50);
}
static int ov5640_set_ae_target(struct ov5640_dev *sensor, int target)
{
/* stable in high */
u32 fast_high, fast_low;
int ret;
sensor->ae_low = target * 23 / 25; /* 0.92 */
sensor->ae_high = target * 27 / 25; /* 1.08 */
fast_high = sensor->ae_high << 1;
if (fast_high > 255)
fast_high = 255;
fast_low = sensor->ae_low >> 1;
ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0F, sensor->ae_high);
if (ret)
return ret;
ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL10, sensor->ae_low);
if (ret)
return ret;
ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1B, sensor->ae_high);
if (ret)
return ret;
ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1E, sensor->ae_low);
if (ret)
return ret;
ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL11, fast_high);
if (ret)
return ret;
return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1F, fast_low);
}
static int ov5640_get_binning(struct ov5640_dev *sensor)
{
u8 temp;
int ret;
ret = ov5640_read_reg(sensor, OV5640_REG_TIMING_TC_REG21, &temp);
if (ret)
return ret;
return temp & BIT(0);
}
static int ov5640_set_binning(struct ov5640_dev *sensor, bool enable)
{
int ret;
/*
* TIMING TC REG21:
* - [0]: Horizontal binning enable
*/
ret = ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21,
BIT(0), enable ? BIT(0) : 0);
if (ret)
return ret;
/*
* TIMING TC REG20:
* - [0]: Undocumented, but hardcoded init sequences
* are always setting REG21/REG20 bit 0 to same value...
*/
return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG20,
BIT(0), enable ? BIT(0) : 0);
}
static int ov5640_set_virtual_channel(struct ov5640_dev *sensor)
{
struct i2c_client *client = sensor->i2c_client;
u8 temp, channel = virtual_channel;
int ret;
if (channel > 3) {
dev_err(&client->dev,
"%s: wrong virtual_channel parameter, expected (0..3), got %d\n",
__func__, channel);
return -EINVAL;
}
ret = ov5640_read_reg(sensor, OV5640_REG_DEBUG_MODE, &temp);
if (ret)
return ret;
temp &= ~(3 << 6);
temp |= (channel << 6);
return ov5640_write_reg(sensor, OV5640_REG_DEBUG_MODE, temp);
}
static const struct ov5640_mode_info *
ov5640_find_mode(struct ov5640_dev *sensor, enum ov5640_frame_rate fr,
int width, int height, bool nearest)
{
const struct ov5640_mode_info *mode;
mode = v4l2_find_nearest_size(ov5640_mode_data,
ARRAY_SIZE(ov5640_mode_data),
hact, vact,
width, height);
if (!mode ||
(!nearest && (mode->hact != width || mode->vact != height)))
return NULL;
/* Check to see if the current mode exceeds the max frame rate */
if (ov5640_framerates[fr] > ov5640_framerates[mode->max_fps])
return NULL;
return mode;
}
static u64 ov5640_calc_pixel_rate(struct ov5640_dev *sensor)
{
u64 rate;
rate = sensor->current_mode->vtot * sensor->current_mode->htot;
rate *= ov5640_framerates[sensor->current_fr];
return rate;
}
/*
* sensor changes between scaling and subsampling, go through
* exposure calculation
*/
static int ov5640_set_mode_exposure_calc(struct ov5640_dev *sensor,
const struct ov5640_mode_info *mode)
{
u32 prev_shutter, prev_gain16;
u32 cap_shutter, cap_gain16;
u32 cap_sysclk, cap_hts, cap_vts;
u32 light_freq, cap_bandfilt, cap_maxband;
u32 cap_gain16_shutter;
u8 average;
int ret;
if (!mode->reg_data)
return -EINVAL;
/* read preview shutter */
ret = ov5640_get_exposure(sensor);
if (ret < 0)
return ret;
prev_shutter = ret;
ret = ov5640_get_binning(sensor);
if (ret < 0)
return ret;
if (ret && mode->id != OV5640_MODE_720P_1280_720 &&
mode->id != OV5640_MODE_1080P_1920_1080)
prev_shutter *= 2;
/* read preview gain */
ret = ov5640_get_gain(sensor);
if (ret < 0)
return ret;
prev_gain16 = ret;
/* get average */
ret = ov5640_read_reg(sensor, OV5640_REG_AVG_READOUT, &average);
if (ret)
return ret;
/* turn off night mode for capture */
ret = ov5640_set_night_mode(sensor);
if (ret < 0)
return ret;
/* Write capture setting */
ret = ov5640_load_regs(sensor, mode);
if (ret < 0)
return ret;
/* read capture VTS */
ret = ov5640_get_vts(sensor);
if (ret < 0)
return ret;
cap_vts = ret;
ret = ov5640_get_hts(sensor);
if (ret < 0)
return ret;
if (ret == 0)
return -EINVAL;
cap_hts = ret;
ret = ov5640_get_sysclk(sensor);
if (ret < 0)
return ret;
if (ret == 0)
return -EINVAL;
cap_sysclk = ret;
/* calculate capture banding filter */
ret = ov5640_get_light_freq(sensor);
if (ret < 0)
return ret;
light_freq = ret;
if (light_freq == 60) {
/* 60Hz */
cap_bandfilt = cap_sysclk * 100 / cap_hts * 100 / 120;
} else {
/* 50Hz */
cap_bandfilt = cap_sysclk * 100 / cap_hts;
}
if (!sensor->prev_sysclk) {
ret = ov5640_get_sysclk(sensor);
if (ret < 0)
return ret;
if (ret == 0)
return -EINVAL;
sensor->prev_sysclk = ret;
}
if (!cap_bandfilt)
return -EINVAL;
cap_maxband = (int)((cap_vts - 4) / cap_bandfilt);
/* calculate capture shutter/gain16 */
if (average > sensor->ae_low && average < sensor->ae_high) {
/* in stable range */
cap_gain16_shutter =
prev_gain16 * prev_shutter *
cap_sysclk / sensor->prev_sysclk *
sensor->prev_hts / cap_hts *
sensor->ae_target / average;
} else {
cap_gain16_shutter =
prev_gain16 * prev_shutter *
cap_sysclk / sensor->prev_sysclk *
sensor->prev_hts / cap_hts;
}
/* gain to shutter */
if (cap_gain16_shutter < (cap_bandfilt * 16)) {
/* shutter < 1/100 */
cap_shutter = cap_gain16_shutter / 16;
if (cap_shutter < 1)
cap_shutter = 1;
cap_gain16 = cap_gain16_shutter / cap_shutter;
if (cap_gain16 < 16)
cap_gain16 = 16;
} else {
if (cap_gain16_shutter > (cap_bandfilt * cap_maxband * 16)) {
/* exposure reach max */
cap_shutter = cap_bandfilt * cap_maxband;
if (!cap_shutter)
return -EINVAL;
cap_gain16 = cap_gain16_shutter / cap_shutter;
} else {
/* 1/100 < (cap_shutter = n/100) =< max */
cap_shutter =
((int)(cap_gain16_shutter / 16 / cap_bandfilt))
* cap_bandfilt;
if (!cap_shutter)
return -EINVAL;
cap_gain16 = cap_gain16_shutter / cap_shutter;
}
}
/* set capture gain */
ret = ov5640_set_gain(sensor, cap_gain16);
if (ret)
return ret;
/* write capture shutter */
if (cap_shutter > (cap_vts - 4)) {
cap_vts = cap_shutter + 4;
ret = ov5640_set_vts(sensor, cap_vts);
if (ret < 0)
return ret;
}
/* set exposure */
return ov5640_set_exposure(sensor, cap_shutter);
}
/*
* if sensor changes inside scaling or subsampling
* change mode directly
*/
static int ov5640_set_mode_direct(struct ov5640_dev *sensor,
const struct ov5640_mode_info *mode)
{
if (!mode->reg_data)
return -EINVAL;
/* Write capture setting */
return ov5640_load_regs(sensor, mode);
}
static int ov5640_set_mode(struct ov5640_dev *sensor)
{
const struct ov5640_mode_info *mode = sensor->current_mode;
const struct ov5640_mode_info *orig_mode = sensor->last_mode;
enum ov5640_downsize_mode dn_mode, orig_dn_mode;
bool auto_gain = sensor->ctrls.auto_gain->val == 1;
bool auto_exp = sensor->ctrls.auto_exp->val == V4L2_EXPOSURE_AUTO;
unsigned long rate;
int ret;
dn_mode = mode->dn_mode;
orig_dn_mode = orig_mode->dn_mode;
/* auto gain and exposure must be turned off when changing modes */
if (auto_gain) {
ret = ov5640_set_autogain(sensor, false);
if (ret)
return ret;
}
if (auto_exp) {
ret = ov5640_set_autoexposure(sensor, false);
if (ret)
goto restore_auto_gain;
}
/*
* All the formats we support have 16 bits per pixel, seems to require
* the same rate than YUV, so we can just use 16 bpp all the time.
*/
rate = ov5640_calc_pixel_rate(sensor) * 16;
if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) {
rate = rate / sensor->ep.bus.mipi_csi2.num_data_lanes;
ret = ov5640_set_mipi_pclk(sensor, rate);
} else {
rate = rate / sensor->ep.bus.parallel.bus_width;
ret = ov5640_set_dvp_pclk(sensor, rate);
}
if (ret < 0)
return 0;
if ((dn_mode == SUBSAMPLING && orig_dn_mode == SCALING) ||
(dn_mode == SCALING && orig_dn_mode == SUBSAMPLING)) {
/*
* change between subsampling and scaling
* go through exposure calculation
*/
ret = ov5640_set_mode_exposure_calc(sensor, mode);
} else {
/*
* change inside subsampling or scaling
* download firmware directly
*/
ret = ov5640_set_mode_direct(sensor, mode);
}
if (ret < 0)
goto restore_auto_exp_gain;
/* restore auto gain and exposure */
if (auto_gain)
ov5640_set_autogain(sensor, true);
if (auto_exp)
ov5640_set_autoexposure(sensor, true);
ret = ov5640_set_binning(sensor, dn_mode != SCALING);
if (ret < 0)
return ret;
ret = ov5640_set_ae_target(sensor, sensor->ae_target);
if (ret < 0)
return ret;
ret = ov5640_get_light_freq(sensor);
if (ret < 0)
return ret;
ret = ov5640_set_bandingfilter(sensor);
if (ret < 0)
return ret;
ret = ov5640_set_virtual_channel(sensor);
if (ret < 0)
return ret;
sensor->pending_mode_change = false;
sensor->last_mode = mode;
return 0;
restore_auto_exp_gain:
if (auto_exp)
ov5640_set_autoexposure(sensor, true);
restore_auto_gain:
if (auto_gain)
ov5640_set_autogain(sensor, true);
return ret;
}
static int ov5640_set_framefmt(struct ov5640_dev *sensor,
struct v4l2_mbus_framefmt *format);
/* restore the last set video mode after chip power-on */
static int ov5640_restore_mode(struct ov5640_dev *sensor)
{
int ret;
/* first load the initial register values */
ret = ov5640_load_regs(sensor, &ov5640_mode_init_data);
if (ret < 0)
return ret;
sensor->last_mode = &ov5640_mode_init_data;
ret = ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 0x3f,
(ilog2(OV5640_SCLK2X_ROOT_DIV) << 2) |
ilog2(OV5640_SCLK_ROOT_DIV));
if (ret)
return ret;
/* now restore the last capture mode */
ret = ov5640_set_mode(sensor);
if (ret < 0)
return ret;
return ov5640_set_framefmt(sensor, &sensor->fmt);
}
static void ov5640_power(struct ov5640_dev *sensor, bool enable)
{
gpiod_set_value_cansleep(sensor->pwdn_gpio, enable ? 0 : 1);
}
static void ov5640_reset(struct ov5640_dev *sensor)
{
if (!sensor->reset_gpio)
return;
gpiod_set_value_cansleep(sensor->reset_gpio, 0);
/* camera power cycle */
ov5640_power(sensor, false);
usleep_range(5000, 10000);
ov5640_power(sensor, true);
usleep_range(5000, 10000);
gpiod_set_value_cansleep(sensor->reset_gpio, 1);
usleep_range(1000, 2000);
gpiod_set_value_cansleep(sensor->reset_gpio, 0);
usleep_range(20000, 25000);
}
static int ov5640_set_power_on(struct ov5640_dev *sensor)
{
struct i2c_client *client = sensor->i2c_client;
int ret;
ret = clk_prepare_enable(sensor->xclk);
if (ret) {
dev_err(&client->dev, "%s: failed to enable clock\n",
__func__);
return ret;
}
ret = regulator_bulk_enable(OV5640_NUM_SUPPLIES,
sensor->supplies);
if (ret) {
dev_err(&client->dev, "%s: failed to enable regulators\n",
__func__);
goto xclk_off;
}
ov5640_reset(sensor);
ov5640_power(sensor, true);
ret = ov5640_init_slave_id(sensor);
if (ret)
goto power_off;
return 0;
power_off:
ov5640_power(sensor, false);
regulator_bulk_disable(OV5640_NUM_SUPPLIES, sensor->supplies);
xclk_off:
clk_disable_unprepare(sensor->xclk);
return ret;
}
static void ov5640_set_power_off(struct ov5640_dev *sensor)
{
ov5640_power(sensor, false);
regulator_bulk_disable(OV5640_NUM_SUPPLIES, sensor->supplies);
clk_disable_unprepare(sensor->xclk);
}
static int ov5640_set_power(struct ov5640_dev *sensor, bool on)
{
int ret = 0;
if (on) {
ret = ov5640_set_power_on(sensor);
if (ret)
return ret;
ret = ov5640_restore_mode(sensor);
if (ret)
goto power_off;
/* We're done here for DVP bus, while CSI-2 needs setup. */
if (sensor->ep.bus_type != V4L2_MBUS_CSI2_DPHY)
return 0;
/*
* Power up MIPI HS Tx and LS Rx; 2 data lanes mode
*
* 0x300e = 0x40
* [7:5] = 010 : 2 data lanes mode (see FIXME note in
* "ov5640_set_stream_mipi()")
* [4] = 0 : Power up MIPI HS Tx
* [3] = 0 : Power up MIPI LS Rx
* [2] = 0 : MIPI interface disabled
*/
ret = ov5640_write_reg(sensor,
OV5640_REG_IO_MIPI_CTRL00, 0x40);
if (ret)
goto power_off;
/*
* Gate clock and set LP11 in 'no packets mode' (idle)
*
* 0x4800 = 0x24
* [5] = 1 : Gate clock when 'no packets'
* [2] = 1 : MIPI bus in LP11 when 'no packets'
*/
ret = ov5640_write_reg(sensor,
OV5640_REG_MIPI_CTRL00, 0x24);
if (ret)
goto power_off;
/*
* Set data lanes and clock in LP11 when 'sleeping'
*
* 0x3019 = 0x70
* [6] = 1 : MIPI data lane 2 in LP11 when 'sleeping'
* [5] = 1 : MIPI data lane 1 in LP11 when 'sleeping'
* [4] = 1 : MIPI clock lane in LP11 when 'sleeping'
*/
ret = ov5640_write_reg(sensor,
OV5640_REG_PAD_OUTPUT00, 0x70);
if (ret)
goto power_off;
/* Give lanes some time to coax into LP11 state. */
usleep_range(500, 1000);
} else {
if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) {
/* Reset MIPI bus settings to their default values. */
ov5640_write_reg(sensor,
OV5640_REG_IO_MIPI_CTRL00, 0x58);
ov5640_write_reg(sensor,
OV5640_REG_MIPI_CTRL00, 0x04);
ov5640_write_reg(sensor,
OV5640_REG_PAD_OUTPUT00, 0x00);
}
ov5640_set_power_off(sensor);
}
return 0;
power_off:
ov5640_set_power_off(sensor);
return ret;
}
/* --------------- Subdev Operations --------------- */
static int ov5640_s_power(struct v4l2_subdev *sd, int on)
{
struct ov5640_dev *sensor = to_ov5640_dev(sd);
int ret = 0;
mutex_lock(&sensor->lock);
/*
* If the power count is modified from 0 to != 0 or from != 0 to 0,
* update the power state.
*/
if (sensor->power_count == !on) {
ret = ov5640_set_power(sensor, !!on);
if (ret)
goto out;
}
/* Update the power count. */
sensor->power_count += on ? 1 : -1;
WARN_ON(sensor->power_count < 0);
out:
mutex_unlock(&sensor->lock);
if (on && !ret && sensor->power_count == 1) {
/* restore controls */
ret = v4l2_ctrl_handler_setup(&sensor->ctrls.handler);
}
return ret;
}
static int ov5640_try_frame_interval(struct ov5640_dev *sensor,
struct v4l2_fract *fi,
u32 width, u32 height)
{
const struct ov5640_mode_info *mode;
enum ov5640_frame_rate rate = OV5640_15_FPS;
int minfps, maxfps, best_fps, fps;
int i;
minfps = ov5640_framerates[OV5640_15_FPS];
maxfps = ov5640_framerates[OV5640_60_FPS];
if (fi->numerator == 0) {
fi->denominator = maxfps;
fi->numerator = 1;
rate = OV5640_60_FPS;
goto find_mode;
}
fps = clamp_val(DIV_ROUND_CLOSEST(fi->denominator, fi->numerator),
minfps, maxfps);
best_fps = minfps;
for (i = 0; i < ARRAY_SIZE(ov5640_framerates); i++) {
int curr_fps = ov5640_framerates[i];
if (abs(curr_fps - fps) < abs(best_fps - fps)) {
best_fps = curr_fps;
rate = i;
}
}
fi->numerator = 1;
fi->denominator = best_fps;
find_mode:
mode = ov5640_find_mode(sensor, rate, width, height, false);
return mode ? rate : -EINVAL;
}
static int ov5640_get_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *format)
{
struct ov5640_dev *sensor = to_ov5640_dev(sd);
struct v4l2_mbus_framefmt *fmt;
if (format->pad != 0)
return -EINVAL;
mutex_lock(&sensor->lock);
if (format->which == V4L2_SUBDEV_FORMAT_TRY)
fmt = v4l2_subdev_get_try_format(&sensor->sd, cfg,
format->pad);
else
fmt = &sensor->fmt;
format->format = *fmt;
mutex_unlock(&sensor->lock);
return 0;
}
static int ov5640_try_fmt_internal(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt,
enum ov5640_frame_rate fr,
const struct ov5640_mode_info **new_mode)
{
struct ov5640_dev *sensor = to_ov5640_dev(sd);
const struct ov5640_mode_info *mode;
int i;
mode = ov5640_find_mode(sensor, fr, fmt->width, fmt->height, true);
if (!mode)
return -EINVAL;
fmt->width = mode->hact;
fmt->height = mode->vact;
if (new_mode)
*new_mode = mode;
for (i = 0; i < ARRAY_SIZE(ov5640_formats); i++)
if (ov5640_formats[i].code == fmt->code)
break;
if (i >= ARRAY_SIZE(ov5640_formats))
i = 0;
fmt->code = ov5640_formats[i].code;
fmt->colorspace = ov5640_formats[i].colorspace;
fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt->colorspace);
fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE;
fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt->colorspace);
return 0;
}
static int ov5640_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *format)
{
struct ov5640_dev *sensor = to_ov5640_dev(sd);
const struct ov5640_mode_info *new_mode;
struct v4l2_mbus_framefmt *mbus_fmt = &format->format;
struct v4l2_mbus_framefmt *fmt;
int ret;
if (format->pad != 0)
return -EINVAL;
mutex_lock(&sensor->lock);
if (sensor->streaming) {
ret = -EBUSY;
goto out;
}
ret = ov5640_try_fmt_internal(sd, mbus_fmt,
sensor->current_fr, &new_mode);
if (ret)
goto out;
if (format->which == V4L2_SUBDEV_FORMAT_TRY)
fmt = v4l2_subdev_get_try_format(sd, cfg, 0);
else
fmt = &sensor->fmt;
*fmt = *mbus_fmt;
if (new_mode != sensor->current_mode) {
sensor->current_mode = new_mode;
sensor->pending_mode_change = true;
}
if (mbus_fmt->code != sensor->fmt.code)
sensor->pending_fmt_change = true;
__v4l2_ctrl_s_ctrl_int64(sensor->ctrls.pixel_rate,
ov5640_calc_pixel_rate(sensor));
out:
mutex_unlock(&sensor->lock);
return ret;
}
static int ov5640_set_framefmt(struct ov5640_dev *sensor,
struct v4l2_mbus_framefmt *format)
{
int ret = 0;
bool is_jpeg = false;
u8 fmt, mux;
switch (format->code) {
case MEDIA_BUS_FMT_UYVY8_2X8:
/* YUV422, UYVY */
fmt = 0x3f;
mux = OV5640_FMT_MUX_YUV422;
break;
case MEDIA_BUS_FMT_YUYV8_2X8:
/* YUV422, YUYV */
fmt = 0x30;
mux = OV5640_FMT_MUX_YUV422;
break;
case MEDIA_BUS_FMT_RGB565_2X8_LE:
/* RGB565 {g[2:0],b[4:0]},{r[4:0],g[5:3]} */
fmt = 0x6F;
mux = OV5640_FMT_MUX_RGB;
break;
case MEDIA_BUS_FMT_RGB565_2X8_BE:
/* RGB565 {r[4:0],g[5:3]},{g[2:0],b[4:0]} */
fmt = 0x61;
mux = OV5640_FMT_MUX_RGB;
break;
case MEDIA_BUS_FMT_JPEG_1X8:
/* YUV422, YUYV */
fmt = 0x30;
mux = OV5640_FMT_MUX_YUV422;
is_jpeg = true;
break;
case MEDIA_BUS_FMT_SBGGR8_1X8:
/* Raw, BGBG... / GRGR... */
fmt = 0x00;
mux = OV5640_FMT_MUX_RAW_DPC;
break;
case MEDIA_BUS_FMT_SGBRG8_1X8:
/* Raw bayer, GBGB... / RGRG... */
fmt = 0x01;
mux = OV5640_FMT_MUX_RAW_DPC;
break;
case MEDIA_BUS_FMT_SGRBG8_1X8:
/* Raw bayer, GRGR... / BGBG... */
fmt = 0x02;
mux = OV5640_FMT_MUX_RAW_DPC;
break;
case MEDIA_BUS_FMT_SRGGB8_1X8:
/* Raw bayer, RGRG... / GBGB... */
fmt = 0x03;
mux = OV5640_FMT_MUX_RAW_DPC;
break;
default:
return -EINVAL;
}
/* FORMAT CONTROL00: YUV and RGB formatting */
ret = ov5640_write_reg(sensor, OV5640_REG_FORMAT_CONTROL00, fmt);
if (ret)
return ret;
/* FORMAT MUX CONTROL: ISP YUV or RGB */
ret = ov5640_write_reg(sensor, OV5640_REG_ISP_FORMAT_MUX_CTRL, mux);
if (ret)
return ret;
/*
* TIMING TC REG21:
* - [5]: JPEG enable
*/
ret = ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21,
BIT(5), is_jpeg ? BIT(5) : 0);
if (ret)
return ret;
/*
* SYSTEM RESET02:
* - [4]: Reset JFIFO
* - [3]: Reset SFIFO
* - [2]: Reset JPEG
*/
ret = ov5640_mod_reg(sensor, OV5640_REG_SYS_RESET02,
BIT(4) | BIT(3) | BIT(2),
is_jpeg ? 0 : (BIT(4) | BIT(3) | BIT(2)));
if (ret)
return ret;
/*
* CLOCK ENABLE02:
* - [5]: Enable JPEG 2x clock
* - [3]: Enable JPEG clock
*/
return ov5640_mod_reg(sensor, OV5640_REG_SYS_CLOCK_ENABLE02,
BIT(5) | BIT(3),
is_jpeg ? (BIT(5) | BIT(3)) : 0);
}
/*
* Sensor Controls.
*/
static int ov5640_set_ctrl_hue(struct ov5640_dev *sensor, int value)
{
int ret;
if (value) {
ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0,
BIT(0), BIT(0));
if (ret)
return ret;
ret = ov5640_write_reg16(sensor, OV5640_REG_SDE_CTRL1, value);
} else {
ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(0), 0);
}
return ret;
}
static int ov5640_set_ctrl_contrast(struct ov5640_dev *sensor, int value)
{
int ret;
if (value) {
ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0,
BIT(2), BIT(2));
if (ret)
return ret;
ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL5,
value & 0xff);
} else {
ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(2), 0);
}
return ret;
}
static int ov5640_set_ctrl_saturation(struct ov5640_dev *sensor, int value)
{
int ret;
if (value) {
ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0,
BIT(1), BIT(1));
if (ret)
return ret;
ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL3,
value & 0xff);
if (ret)
return ret;
ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL4,
value & 0xff);
} else {
ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(1), 0);
}
return ret;
}
static int ov5640_set_ctrl_white_balance(struct ov5640_dev *sensor, int awb)
{
int ret;
ret = ov5640_mod_reg(sensor, OV5640_REG_AWB_MANUAL_CTRL,
BIT(0), awb ? 0 : 1);
if (ret)
return ret;
if (!awb) {
u16 red = (u16)sensor->ctrls.red_balance->val;
u16 blue = (u16)sensor->ctrls.blue_balance->val;
ret = ov5640_write_reg16(sensor, OV5640_REG_AWB_R_GAIN, red);
if (ret)
return ret;
ret = ov5640_write_reg16(sensor, OV5640_REG_AWB_B_GAIN, blue);
}
return ret;
}
static int ov5640_set_ctrl_exposure(struct ov5640_dev *sensor,
enum v4l2_exposure_auto_type auto_exposure)
{
struct ov5640_ctrls *ctrls = &sensor->ctrls;
bool auto_exp = (auto_exposure == V4L2_EXPOSURE_AUTO);
int ret = 0;
if (ctrls->auto_exp->is_new) {
ret = ov5640_set_autoexposure(sensor, auto_exp);
if (ret)
return ret;
}
if (!auto_exp && ctrls->exposure->is_new) {
u16 max_exp;
ret = ov5640_read_reg16(sensor, OV5640_REG_AEC_PK_VTS,
&max_exp);
if (ret)
return ret;
ret = ov5640_get_vts(sensor);
if (ret < 0)
return ret;
max_exp += ret;
ret = 0;
if (ctrls->exposure->val < max_exp)
ret = ov5640_set_exposure(sensor, ctrls->exposure->val);
}
return ret;
}
static int ov5640_set_ctrl_gain(struct ov5640_dev *sensor, bool auto_gain)
{
struct ov5640_ctrls *ctrls = &sensor->ctrls;
int ret = 0;
if (ctrls->auto_gain->is_new) {
ret = ov5640_set_autogain(sensor, auto_gain);
if (ret)
return ret;
}
if (!auto_gain && ctrls->gain->is_new)
ret = ov5640_set_gain(sensor, ctrls->gain->val);
return ret;
}
static const char * const test_pattern_menu[] = {
"Disabled",
"Color bars",
"Color bars w/ rolling bar",
"Color squares",
"Color squares w/ rolling bar",
};
#define OV5640_TEST_ENABLE BIT(7)
#define OV5640_TEST_ROLLING BIT(6) /* rolling horizontal bar */
#define OV5640_TEST_TRANSPARENT BIT(5)
#define OV5640_TEST_SQUARE_BW BIT(4) /* black & white squares */
#define OV5640_TEST_BAR_STANDARD (0 << 2)
#define OV5640_TEST_BAR_VERT_CHANGE_1 (1 << 2)
#define OV5640_TEST_BAR_HOR_CHANGE (2 << 2)
#define OV5640_TEST_BAR_VERT_CHANGE_2 (3 << 2)
#define OV5640_TEST_BAR (0 << 0)
#define OV5640_TEST_RANDOM (1 << 0)
#define OV5640_TEST_SQUARE (2 << 0)
#define OV5640_TEST_BLACK (3 << 0)
static const u8 test_pattern_val[] = {
0,
OV5640_TEST_ENABLE | OV5640_TEST_BAR_VERT_CHANGE_1 |
OV5640_TEST_BAR,
OV5640_TEST_ENABLE | OV5640_TEST_ROLLING |
OV5640_TEST_BAR_VERT_CHANGE_1 | OV5640_TEST_BAR,
OV5640_TEST_ENABLE | OV5640_TEST_SQUARE,
OV5640_TEST_ENABLE | OV5640_TEST_ROLLING | OV5640_TEST_SQUARE,
};
static int ov5640_set_ctrl_test_pattern(struct ov5640_dev *sensor, int value)
{
return ov5640_write_reg(sensor, OV5640_REG_PRE_ISP_TEST_SET1,
test_pattern_val[value]);
}
static int ov5640_set_ctrl_light_freq(struct ov5640_dev *sensor, int value)
{
int ret;
ret = ov5640_mod_reg(sensor, OV5640_REG_HZ5060_CTRL01, BIT(7),
(value == V4L2_CID_POWER_LINE_FREQUENCY_AUTO) ?
0 : BIT(7));
if (ret)
return ret;
return ov5640_mod_reg(sensor, OV5640_REG_HZ5060_CTRL00, BIT(2),
(value == V4L2_CID_POWER_LINE_FREQUENCY_50HZ) ?
BIT(2) : 0);
}
static int ov5640_set_ctrl_hflip(struct ov5640_dev *sensor, int value)
{
/*
* If sensor is mounted upside down, mirror logic is inversed.
*
* Sensor is a BSI (Back Side Illuminated) one,
* so image captured is physically mirrored.
* This is why mirror logic is inversed in
* order to cancel this mirror effect.
*/
/*
* TIMING TC REG21:
* - [2]: ISP mirror
* - [1]: Sensor mirror
*/
return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21,
BIT(2) | BIT(1),
(!(value ^ sensor->upside_down)) ?
(BIT(2) | BIT(1)) : 0);
}
static int ov5640_set_ctrl_vflip(struct ov5640_dev *sensor, int value)
{
/* If sensor is mounted upside down, flip logic is inversed */
/*
* TIMING TC REG20:
* - [2]: ISP vflip
* - [1]: Sensor vflip
*/
return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG20,
BIT(2) | BIT(1),
(value ^ sensor->upside_down) ?
(BIT(2) | BIT(1)) : 0);
}
static int ov5640_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
{
struct v4l2_subdev *sd = ctrl_to_sd(ctrl);
struct ov5640_dev *sensor = to_ov5640_dev(sd);
int val;
/* v4l2_ctrl_lock() locks our own mutex */
switch (ctrl->id) {
case V4L2_CID_AUTOGAIN:
val = ov5640_get_gain(sensor);
if (val < 0)
return val;
sensor->ctrls.gain->val = val;
break;
case V4L2_CID_EXPOSURE_AUTO:
val = ov5640_get_exposure(sensor);
if (val < 0)
return val;
sensor->ctrls.exposure->val = val;
break;
}
return 0;
}
static int ov5640_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct v4l2_subdev *sd = ctrl_to_sd(ctrl);
struct ov5640_dev *sensor = to_ov5640_dev(sd);
int ret;
/* v4l2_ctrl_lock() locks our own mutex */
/*
* If the device is not powered up by the host driver do
* not apply any controls to H/W at this time. Instead
* the controls will be restored right after power-up.
*/
if (sensor->power_count == 0)
return 0;
switch (ctrl->id) {
case V4L2_CID_AUTOGAIN:
ret = ov5640_set_ctrl_gain(sensor, ctrl->val);
break;
case V4L2_CID_EXPOSURE_AUTO:
ret = ov5640_set_ctrl_exposure(sensor, ctrl->val);
break;
case V4L2_CID_AUTO_WHITE_BALANCE:
ret = ov5640_set_ctrl_white_balance(sensor, ctrl->val);
break;
case V4L2_CID_HUE:
ret = ov5640_set_ctrl_hue(sensor, ctrl->val);
break;
case V4L2_CID_CONTRAST:
ret = ov5640_set_ctrl_contrast(sensor, ctrl->val);
break;
case V4L2_CID_SATURATION:
ret = ov5640_set_ctrl_saturation(sensor, ctrl->val);
break;
case V4L2_CID_TEST_PATTERN:
ret = ov5640_set_ctrl_test_pattern(sensor, ctrl->val);
break;
case V4L2_CID_POWER_LINE_FREQUENCY:
ret = ov5640_set_ctrl_light_freq(sensor, ctrl->val);
break;
case V4L2_CID_HFLIP:
ret = ov5640_set_ctrl_hflip(sensor, ctrl->val);
break;
case V4L2_CID_VFLIP:
ret = ov5640_set_ctrl_vflip(sensor, ctrl->val);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static const struct v4l2_ctrl_ops ov5640_ctrl_ops = {
.g_volatile_ctrl = ov5640_g_volatile_ctrl,
.s_ctrl = ov5640_s_ctrl,
};
static int ov5640_init_controls(struct ov5640_dev *sensor)
{
const struct v4l2_ctrl_ops *ops = &ov5640_ctrl_ops;
struct ov5640_ctrls *ctrls = &sensor->ctrls;
struct v4l2_ctrl_handler *hdl = &ctrls->handler;
int ret;
v4l2_ctrl_handler_init(hdl, 32);
/* we can use our own mutex for the ctrl lock */
hdl->lock = &sensor->lock;
/* Clock related controls */
ctrls->pixel_rate = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_PIXEL_RATE,
0, INT_MAX, 1,
ov5640_calc_pixel_rate(sensor));
/* Auto/manual white balance */
ctrls->auto_wb = v4l2_ctrl_new_std(hdl, ops,
V4L2_CID_AUTO_WHITE_BALANCE,
0, 1, 1, 1);
ctrls->blue_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BLUE_BALANCE,
0, 4095, 1, 0);
ctrls->red_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_RED_BALANCE,
0, 4095, 1, 0);
/* Auto/manual exposure */
ctrls->auto_exp = v4l2_ctrl_new_std_menu(hdl, ops,
V4L2_CID_EXPOSURE_AUTO,
V4L2_EXPOSURE_MANUAL, 0,
V4L2_EXPOSURE_AUTO);
ctrls->exposure = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE,
0, 65535, 1, 0);
/* Auto/manual gain */
ctrls->auto_gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_AUTOGAIN,
0, 1, 1, 1);
ctrls->gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_GAIN,
0, 1023, 1, 0);
ctrls->saturation = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_SATURATION,
0, 255, 1, 64);
ctrls->hue = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HUE,
0, 359, 1, 0);
ctrls->contrast = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_CONTRAST,
0, 255, 1, 0);
ctrls->test_pattern =
v4l2_ctrl_new_std_menu_items(hdl, ops, V4L2_CID_TEST_PATTERN,
ARRAY_SIZE(test_pattern_menu) - 1,
0, 0, test_pattern_menu);
ctrls->hflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HFLIP,
0, 1, 1, 0);
ctrls->vflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VFLIP,
0, 1, 1, 0);
ctrls->light_freq =
v4l2_ctrl_new_std_menu(hdl, ops,
V4L2_CID_POWER_LINE_FREQUENCY,
V4L2_CID_POWER_LINE_FREQUENCY_AUTO, 0,
V4L2_CID_POWER_LINE_FREQUENCY_50HZ);
if (hdl->error) {
ret = hdl->error;
goto free_ctrls;
}
ctrls->pixel_rate->flags |= V4L2_CTRL_FLAG_READ_ONLY;
ctrls->gain->flags |= V4L2_CTRL_FLAG_VOLATILE;
ctrls->exposure->flags |= V4L2_CTRL_FLAG_VOLATILE;
v4l2_ctrl_auto_cluster(3, &ctrls->auto_wb, 0, false);
v4l2_ctrl_auto_cluster(2, &ctrls->auto_gain, 0, true);
v4l2_ctrl_auto_cluster(2, &ctrls->auto_exp, 1, true);
sensor->sd.ctrl_handler = hdl;
return 0;
free_ctrls:
v4l2_ctrl_handler_free(hdl);
return ret;
}
static int ov5640_enum_frame_size(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_frame_size_enum *fse)
{
if (fse->pad != 0)
return -EINVAL;
if (fse->index >= OV5640_NUM_MODES)
return -EINVAL;
fse->min_width =
ov5640_mode_data[fse->index].hact;
fse->max_width = fse->min_width;
fse->min_height =
ov5640_mode_data[fse->index].vact;
fse->max_height = fse->min_height;
return 0;
}
static int ov5640_enum_frame_interval(
struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_frame_interval_enum *fie)
{
struct ov5640_dev *sensor = to_ov5640_dev(sd);
struct v4l2_fract tpf;
int ret;
if (fie->pad != 0)
return -EINVAL;
if (fie->index >= OV5640_NUM_FRAMERATES)
return -EINVAL;
tpf.numerator = 1;
tpf.denominator = ov5640_framerates[fie->index];
ret = ov5640_try_frame_interval(sensor, &tpf,
fie->width, fie->height);
if (ret < 0)
return -EINVAL;
fie->interval = tpf;
return 0;
}
static int ov5640_g_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_frame_interval *fi)
{
struct ov5640_dev *sensor = to_ov5640_dev(sd);
mutex_lock(&sensor->lock);
fi->interval = sensor->frame_interval;
mutex_unlock(&sensor->lock);
return 0;
}
static int ov5640_s_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_frame_interval *fi)
{
struct ov5640_dev *sensor = to_ov5640_dev(sd);
const struct ov5640_mode_info *mode;
int frame_rate, ret = 0;
if (fi->pad != 0)
return -EINVAL;
mutex_lock(&sensor->lock);
if (sensor->streaming) {
ret = -EBUSY;
goto out;
}
mode = sensor->current_mode;
frame_rate = ov5640_try_frame_interval(sensor, &fi->interval,
mode->hact, mode->vact);
if (frame_rate < 0) {
/* Always return a valid frame interval value */
fi->interval = sensor->frame_interval;
goto out;
}
mode = ov5640_find_mode(sensor, frame_rate, mode->hact,
mode->vact, true);
if (!mode) {
ret = -EINVAL;
goto out;
}
if (mode != sensor->current_mode ||
frame_rate != sensor->current_fr) {
sensor->current_fr = frame_rate;
sensor->frame_interval = fi->interval;
sensor->current_mode = mode;
sensor->pending_mode_change = true;
__v4l2_ctrl_s_ctrl_int64(sensor->ctrls.pixel_rate,
ov5640_calc_pixel_rate(sensor));
}
out:
mutex_unlock(&sensor->lock);
return ret;
}
static int ov5640_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_mbus_code_enum *code)
{
if (code->pad != 0)
return -EINVAL;
if (code->index >= ARRAY_SIZE(ov5640_formats))
return -EINVAL;
code->code = ov5640_formats[code->index].code;
return 0;
}
static int ov5640_s_stream(struct v4l2_subdev *sd, int enable)
{
struct ov5640_dev *sensor = to_ov5640_dev(sd);
int ret = 0;
mutex_lock(&sensor->lock);
if (sensor->streaming == !enable) {
if (enable && sensor->pending_mode_change) {
ret = ov5640_set_mode(sensor);
if (ret)
goto out;
}
if (enable && sensor->pending_fmt_change) {
ret = ov5640_set_framefmt(sensor, &sensor->fmt);
if (ret)
goto out;
sensor->pending_fmt_change = false;
}
if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY)
ret = ov5640_set_stream_mipi(sensor, enable);
else
ret = ov5640_set_stream_dvp(sensor, enable);
if (!ret)
sensor->streaming = enable;
}
out:
mutex_unlock(&sensor->lock);
return ret;
}
static const struct v4l2_subdev_core_ops ov5640_core_ops = {
.s_power = ov5640_s_power,
.log_status = v4l2_ctrl_subdev_log_status,
.subscribe_event = v4l2_ctrl_subdev_subscribe_event,
.unsubscribe_event = v4l2_event_subdev_unsubscribe,
};
static const struct v4l2_subdev_video_ops ov5640_video_ops = {
.g_frame_interval = ov5640_g_frame_interval,
.s_frame_interval = ov5640_s_frame_interval,
.s_stream = ov5640_s_stream,
};
static const struct v4l2_subdev_pad_ops ov5640_pad_ops = {
.enum_mbus_code = ov5640_enum_mbus_code,
.get_fmt = ov5640_get_fmt,
.set_fmt = ov5640_set_fmt,
.enum_frame_size = ov5640_enum_frame_size,
.enum_frame_interval = ov5640_enum_frame_interval,
};
static const struct v4l2_subdev_ops ov5640_subdev_ops = {
.core = &ov5640_core_ops,
.video = &ov5640_video_ops,
.pad = &ov5640_pad_ops,
};
static int ov5640_get_regulators(struct ov5640_dev *sensor)
{
int i;
for (i = 0; i < OV5640_NUM_SUPPLIES; i++)
sensor->supplies[i].supply = ov5640_supply_name[i];
return devm_regulator_bulk_get(&sensor->i2c_client->dev,
OV5640_NUM_SUPPLIES,
sensor->supplies);
}
static int ov5640_check_chip_id(struct ov5640_dev *sensor)
{
struct i2c_client *client = sensor->i2c_client;
int ret = 0;
u16 chip_id;
ret = ov5640_set_power_on(sensor);
if (ret)
return ret;
ret = ov5640_read_reg16(sensor, OV5640_REG_CHIP_ID, &chip_id);
if (ret) {
dev_err(&client->dev, "%s: failed to read chip identifier\n",
__func__);
goto power_off;
}
if (chip_id != 0x5640) {
dev_err(&client->dev, "%s: wrong chip identifier, expected 0x5640, got 0x%x\n",
__func__, chip_id);
ret = -ENXIO;
}
power_off:
ov5640_set_power_off(sensor);
return ret;
}
static int ov5640_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct fwnode_handle *endpoint;
struct ov5640_dev *sensor;
struct v4l2_mbus_framefmt *fmt;
u32 rotation;
int ret;
sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL);
if (!sensor)
return -ENOMEM;
sensor->i2c_client = client;
/*
* default init sequence initialize sensor to
* YUV422 UYVY VGA@30fps
*/
fmt = &sensor->fmt;
fmt->code = MEDIA_BUS_FMT_UYVY8_2X8;
fmt->colorspace = V4L2_COLORSPACE_SRGB;
fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt->colorspace);
fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE;
fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt->colorspace);
fmt->width = 640;
fmt->height = 480;
fmt->field = V4L2_FIELD_NONE;
sensor->frame_interval.numerator = 1;
sensor->frame_interval.denominator = ov5640_framerates[OV5640_30_FPS];
sensor->current_fr = OV5640_30_FPS;
sensor->current_mode =
&ov5640_mode_data[OV5640_MODE_VGA_640_480];
sensor->last_mode = sensor->current_mode;
sensor->ae_target = 52;
/* optional indication of physical rotation of sensor */
ret = fwnode_property_read_u32(dev_fwnode(&client->dev), "rotation",
&rotation);
if (!ret) {
switch (rotation) {
case 180:
sensor->upside_down = true;
/* fall through */
case 0:
break;
default:
dev_warn(dev, "%u degrees rotation is not supported, ignoring...\n",
rotation);
}
}
endpoint = fwnode_graph_get_next_endpoint(dev_fwnode(&client->dev),
NULL);
if (!endpoint) {
dev_err(dev, "endpoint node not found\n");
return -EINVAL;
}
ret = v4l2_fwnode_endpoint_parse(endpoint, &sensor->ep);
fwnode_handle_put(endpoint);
if (ret) {
dev_err(dev, "Could not parse endpoint\n");
return ret;
}
/* get system clock (xclk) */
sensor->xclk = devm_clk_get(dev, "xclk");
if (IS_ERR(sensor->xclk)) {
dev_err(dev, "failed to get xclk\n");
return PTR_ERR(sensor->xclk);
}
sensor->xclk_freq = clk_get_rate(sensor->xclk);
if (sensor->xclk_freq < OV5640_XCLK_MIN ||
sensor->xclk_freq > OV5640_XCLK_MAX) {
dev_err(dev, "xclk frequency out of range: %d Hz\n",
sensor->xclk_freq);
return -EINVAL;
}
/* request optional power down pin */
sensor->pwdn_gpio = devm_gpiod_get_optional(dev, "powerdown",
GPIOD_OUT_HIGH);
if (IS_ERR(sensor->pwdn_gpio))
return PTR_ERR(sensor->pwdn_gpio);
/* request optional reset pin */
sensor->reset_gpio = devm_gpiod_get_optional(dev, "reset",
GPIOD_OUT_HIGH);
if (IS_ERR(sensor->reset_gpio))
return PTR_ERR(sensor->reset_gpio);
v4l2_i2c_subdev_init(&sensor->sd, client, &ov5640_subdev_ops);
sensor->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE |
V4L2_SUBDEV_FL_HAS_EVENTS;
sensor->pad.flags = MEDIA_PAD_FL_SOURCE;
sensor->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
ret = media_entity_pads_init(&sensor->sd.entity, 1, &sensor->pad);
if (ret)
return ret;
ret = ov5640_get_regulators(sensor);
if (ret)
return ret;
mutex_init(&sensor->lock);
ret = ov5640_check_chip_id(sensor);
if (ret)
goto entity_cleanup;
ret = ov5640_init_controls(sensor);
if (ret)
goto entity_cleanup;
ret = v4l2_async_register_subdev_sensor_common(&sensor->sd);
if (ret)
goto free_ctrls;
return 0;
free_ctrls:
v4l2_ctrl_handler_free(&sensor->ctrls.handler);
entity_cleanup:
mutex_destroy(&sensor->lock);
media_entity_cleanup(&sensor->sd.entity);
return ret;
}
static int ov5640_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct ov5640_dev *sensor = to_ov5640_dev(sd);
v4l2_async_unregister_subdev(&sensor->sd);
mutex_destroy(&sensor->lock);
media_entity_cleanup(&sensor->sd.entity);
v4l2_ctrl_handler_free(&sensor->ctrls.handler);
return 0;
}
static const struct i2c_device_id ov5640_id[] = {
{"ov5640", 0},
{},
};
MODULE_DEVICE_TABLE(i2c, ov5640_id);
static const struct of_device_id ov5640_dt_ids[] = {
{ .compatible = "ovti,ov5640" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, ov5640_dt_ids);
static struct i2c_driver ov5640_i2c_driver = {
.driver = {
.name = "ov5640",
.of_match_table = ov5640_dt_ids,
},
.id_table = ov5640_id,
.probe_new = ov5640_probe,
.remove = ov5640_remove,
};
module_i2c_driver(ov5640_i2c_driver);
MODULE_DESCRIPTION("OV5640 MIPI Camera Subdev Driver");
MODULE_LICENSE("GPL");