mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-24 04:27:00 +07:00
2dbf708448
Test each combination of recovery and syndrome generation functions. Signed-off-by: Jim Kukunas <james.t.kukunas@linux.intel.com> Signed-off-by: NeilBrown <neilb@suse.de>
135 lines
2.9 KiB
C
135 lines
2.9 KiB
C
/* -*- linux-c -*- ------------------------------------------------------- *
|
|
*
|
|
* Copyright 2002-2007 H. Peter Anvin - All Rights Reserved
|
|
*
|
|
* This file is part of the Linux kernel, and is made available under
|
|
* the terms of the GNU General Public License version 2 or (at your
|
|
* option) any later version; incorporated herein by reference.
|
|
*
|
|
* ----------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* raid6test.c
|
|
*
|
|
* Test RAID-6 recovery with various algorithms
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <linux/raid/pq.h>
|
|
|
|
#define NDISKS 16 /* Including P and Q */
|
|
|
|
const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
|
|
struct raid6_calls raid6_call;
|
|
|
|
char *dataptrs[NDISKS];
|
|
char data[NDISKS][PAGE_SIZE];
|
|
char recovi[PAGE_SIZE], recovj[PAGE_SIZE];
|
|
|
|
static void makedata(void)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < NDISKS; i++) {
|
|
for (j = 0; j < PAGE_SIZE; j++)
|
|
data[i][j] = rand();
|
|
|
|
dataptrs[i] = data[i];
|
|
}
|
|
}
|
|
|
|
static char disk_type(int d)
|
|
{
|
|
switch (d) {
|
|
case NDISKS-2:
|
|
return 'P';
|
|
case NDISKS-1:
|
|
return 'Q';
|
|
default:
|
|
return 'D';
|
|
}
|
|
}
|
|
|
|
static int test_disks(int i, int j)
|
|
{
|
|
int erra, errb;
|
|
|
|
memset(recovi, 0xf0, PAGE_SIZE);
|
|
memset(recovj, 0xba, PAGE_SIZE);
|
|
|
|
dataptrs[i] = recovi;
|
|
dataptrs[j] = recovj;
|
|
|
|
raid6_dual_recov(NDISKS, PAGE_SIZE, i, j, (void **)&dataptrs);
|
|
|
|
erra = memcmp(data[i], recovi, PAGE_SIZE);
|
|
errb = memcmp(data[j], recovj, PAGE_SIZE);
|
|
|
|
if (i < NDISKS-2 && j == NDISKS-1) {
|
|
/* We don't implement the DQ failure scenario, since it's
|
|
equivalent to a RAID-5 failure (XOR, then recompute Q) */
|
|
erra = errb = 0;
|
|
} else {
|
|
printf("algo=%-8s faila=%3d(%c) failb=%3d(%c) %s\n",
|
|
raid6_call.name,
|
|
i, disk_type(i),
|
|
j, disk_type(j),
|
|
(!erra && !errb) ? "OK" :
|
|
!erra ? "ERRB" :
|
|
!errb ? "ERRA" : "ERRAB");
|
|
}
|
|
|
|
dataptrs[i] = data[i];
|
|
dataptrs[j] = data[j];
|
|
|
|
return erra || errb;
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
const struct raid6_calls *const *algo;
|
|
const struct raid6_recov_calls *const *ra;
|
|
int i, j;
|
|
int err = 0;
|
|
|
|
makedata();
|
|
|
|
for (ra = raid6_recov_algos; *ra; ra++) {
|
|
if ((*ra)->valid && !(*ra)->valid())
|
|
continue;
|
|
raid6_2data_recov = (*ra)->data2;
|
|
raid6_datap_recov = (*ra)->datap;
|
|
|
|
printf("using recovery %s\n", (*ra)->name);
|
|
|
|
for (algo = raid6_algos; *algo; algo++) {
|
|
if (!(*algo)->valid || (*algo)->valid()) {
|
|
raid6_call = **algo;
|
|
|
|
/* Nuke syndromes */
|
|
memset(data[NDISKS-2], 0xee, 2*PAGE_SIZE);
|
|
|
|
/* Generate assumed good syndrome */
|
|
raid6_call.gen_syndrome(NDISKS, PAGE_SIZE,
|
|
(void **)&dataptrs);
|
|
|
|
for (i = 0; i < NDISKS-1; i++)
|
|
for (j = i+1; j < NDISKS; j++)
|
|
err += test_disks(i, j);
|
|
}
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
printf("\n");
|
|
/* Pick the best algorithm test */
|
|
raid6_select_algo();
|
|
|
|
if (err)
|
|
printf("\n*** ERRORS FOUND ***\n");
|
|
|
|
return err;
|
|
}
|