mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-16 12:07:10 +07:00
a208fa8f33
We need to consistently enforce that keyed hashes cannot be used without setting the key. To do this we need a reliable way to determine whether a given hash algorithm is keyed or not. AF_ALG currently does this by checking for the presence of a ->setkey() method. However, this is actually slightly broken because the CRC-32 algorithms implement ->setkey() but can also be used without a key. (The CRC-32 "key" is not actually a cryptographic key but rather represents the initial state. If not overridden, then a default initial state is used.) Prepare to fix this by introducing a flag CRYPTO_ALG_OPTIONAL_KEY which indicates that the algorithm has a ->setkey() method, but it is not required to be called. Then set it on all the CRC-32 algorithms. The same also applies to the Adler-32 implementation in Lustre. Also, the cryptd and mcryptd templates have to pass through the flag from their underlying algorithm. Cc: stable@vger.kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
315 lines
8.4 KiB
C
315 lines
8.4 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Crypto-API module for CRC-32 algorithms implemented with the
|
|
* z/Architecture Vector Extension Facility.
|
|
*
|
|
* Copyright IBM Corp. 2015
|
|
* Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
|
|
*/
|
|
#define KMSG_COMPONENT "crc32-vx"
|
|
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/cpufeature.h>
|
|
#include <linux/crc32.h>
|
|
#include <crypto/internal/hash.h>
|
|
#include <asm/fpu/api.h>
|
|
|
|
|
|
#define CRC32_BLOCK_SIZE 1
|
|
#define CRC32_DIGEST_SIZE 4
|
|
|
|
#define VX_MIN_LEN 64
|
|
#define VX_ALIGNMENT 16L
|
|
#define VX_ALIGN_MASK (VX_ALIGNMENT - 1)
|
|
|
|
struct crc_ctx {
|
|
u32 key;
|
|
};
|
|
|
|
struct crc_desc_ctx {
|
|
u32 crc;
|
|
};
|
|
|
|
/* Prototypes for functions in assembly files */
|
|
u32 crc32_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size);
|
|
u32 crc32_be_vgfm_16(u32 crc, unsigned char const *buf, size_t size);
|
|
u32 crc32c_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size);
|
|
|
|
/*
|
|
* DEFINE_CRC32_VX() - Define a CRC-32 function using the vector extension
|
|
*
|
|
* Creates a function to perform a particular CRC-32 computation. Depending
|
|
* on the message buffer, the hardware-accelerated or software implementation
|
|
* is used. Note that the message buffer is aligned to improve fetch
|
|
* operations of VECTOR LOAD MULTIPLE instructions.
|
|
*
|
|
*/
|
|
#define DEFINE_CRC32_VX(___fname, ___crc32_vx, ___crc32_sw) \
|
|
static u32 __pure ___fname(u32 crc, \
|
|
unsigned char const *data, size_t datalen) \
|
|
{ \
|
|
struct kernel_fpu vxstate; \
|
|
unsigned long prealign, aligned, remaining; \
|
|
\
|
|
if (datalen < VX_MIN_LEN + VX_ALIGN_MASK) \
|
|
return ___crc32_sw(crc, data, datalen); \
|
|
\
|
|
if ((unsigned long)data & VX_ALIGN_MASK) { \
|
|
prealign = VX_ALIGNMENT - \
|
|
((unsigned long)data & VX_ALIGN_MASK); \
|
|
datalen -= prealign; \
|
|
crc = ___crc32_sw(crc, data, prealign); \
|
|
data = (void *)((unsigned long)data + prealign); \
|
|
} \
|
|
\
|
|
aligned = datalen & ~VX_ALIGN_MASK; \
|
|
remaining = datalen & VX_ALIGN_MASK; \
|
|
\
|
|
kernel_fpu_begin(&vxstate, KERNEL_VXR_LOW); \
|
|
crc = ___crc32_vx(crc, data, aligned); \
|
|
kernel_fpu_end(&vxstate, KERNEL_VXR_LOW); \
|
|
\
|
|
if (remaining) \
|
|
crc = ___crc32_sw(crc, data + aligned, remaining); \
|
|
\
|
|
return crc; \
|
|
}
|
|
|
|
DEFINE_CRC32_VX(crc32_le_vx, crc32_le_vgfm_16, crc32_le)
|
|
DEFINE_CRC32_VX(crc32_be_vx, crc32_be_vgfm_16, crc32_be)
|
|
DEFINE_CRC32_VX(crc32c_le_vx, crc32c_le_vgfm_16, __crc32c_le)
|
|
|
|
|
|
static int crc32_vx_cra_init_zero(struct crypto_tfm *tfm)
|
|
{
|
|
struct crc_ctx *mctx = crypto_tfm_ctx(tfm);
|
|
|
|
mctx->key = 0;
|
|
return 0;
|
|
}
|
|
|
|
static int crc32_vx_cra_init_invert(struct crypto_tfm *tfm)
|
|
{
|
|
struct crc_ctx *mctx = crypto_tfm_ctx(tfm);
|
|
|
|
mctx->key = ~0;
|
|
return 0;
|
|
}
|
|
|
|
static int crc32_vx_init(struct shash_desc *desc)
|
|
{
|
|
struct crc_ctx *mctx = crypto_shash_ctx(desc->tfm);
|
|
struct crc_desc_ctx *ctx = shash_desc_ctx(desc);
|
|
|
|
ctx->crc = mctx->key;
|
|
return 0;
|
|
}
|
|
|
|
static int crc32_vx_setkey(struct crypto_shash *tfm, const u8 *newkey,
|
|
unsigned int newkeylen)
|
|
{
|
|
struct crc_ctx *mctx = crypto_shash_ctx(tfm);
|
|
|
|
if (newkeylen != sizeof(mctx->key)) {
|
|
crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
|
return -EINVAL;
|
|
}
|
|
mctx->key = le32_to_cpu(*(__le32 *)newkey);
|
|
return 0;
|
|
}
|
|
|
|
static int crc32be_vx_setkey(struct crypto_shash *tfm, const u8 *newkey,
|
|
unsigned int newkeylen)
|
|
{
|
|
struct crc_ctx *mctx = crypto_shash_ctx(tfm);
|
|
|
|
if (newkeylen != sizeof(mctx->key)) {
|
|
crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
|
return -EINVAL;
|
|
}
|
|
mctx->key = be32_to_cpu(*(__be32 *)newkey);
|
|
return 0;
|
|
}
|
|
|
|
static int crc32le_vx_final(struct shash_desc *desc, u8 *out)
|
|
{
|
|
struct crc_desc_ctx *ctx = shash_desc_ctx(desc);
|
|
|
|
*(__le32 *)out = cpu_to_le32p(&ctx->crc);
|
|
return 0;
|
|
}
|
|
|
|
static int crc32be_vx_final(struct shash_desc *desc, u8 *out)
|
|
{
|
|
struct crc_desc_ctx *ctx = shash_desc_ctx(desc);
|
|
|
|
*(__be32 *)out = cpu_to_be32p(&ctx->crc);
|
|
return 0;
|
|
}
|
|
|
|
static int crc32c_vx_final(struct shash_desc *desc, u8 *out)
|
|
{
|
|
struct crc_desc_ctx *ctx = shash_desc_ctx(desc);
|
|
|
|
/*
|
|
* Perform a final XOR with 0xFFFFFFFF to be in sync
|
|
* with the generic crc32c shash implementation.
|
|
*/
|
|
*(__le32 *)out = ~cpu_to_le32p(&ctx->crc);
|
|
return 0;
|
|
}
|
|
|
|
static int __crc32le_vx_finup(u32 *crc, const u8 *data, unsigned int len,
|
|
u8 *out)
|
|
{
|
|
*(__le32 *)out = cpu_to_le32(crc32_le_vx(*crc, data, len));
|
|
return 0;
|
|
}
|
|
|
|
static int __crc32be_vx_finup(u32 *crc, const u8 *data, unsigned int len,
|
|
u8 *out)
|
|
{
|
|
*(__be32 *)out = cpu_to_be32(crc32_be_vx(*crc, data, len));
|
|
return 0;
|
|
}
|
|
|
|
static int __crc32c_vx_finup(u32 *crc, const u8 *data, unsigned int len,
|
|
u8 *out)
|
|
{
|
|
/*
|
|
* Perform a final XOR with 0xFFFFFFFF to be in sync
|
|
* with the generic crc32c shash implementation.
|
|
*/
|
|
*(__le32 *)out = ~cpu_to_le32(crc32c_le_vx(*crc, data, len));
|
|
return 0;
|
|
}
|
|
|
|
|
|
#define CRC32_VX_FINUP(alg, func) \
|
|
static int alg ## _vx_finup(struct shash_desc *desc, const u8 *data, \
|
|
unsigned int datalen, u8 *out) \
|
|
{ \
|
|
return __ ## alg ## _vx_finup(shash_desc_ctx(desc), \
|
|
data, datalen, out); \
|
|
}
|
|
|
|
CRC32_VX_FINUP(crc32le, crc32_le_vx)
|
|
CRC32_VX_FINUP(crc32be, crc32_be_vx)
|
|
CRC32_VX_FINUP(crc32c, crc32c_le_vx)
|
|
|
|
#define CRC32_VX_DIGEST(alg, func) \
|
|
static int alg ## _vx_digest(struct shash_desc *desc, const u8 *data, \
|
|
unsigned int len, u8 *out) \
|
|
{ \
|
|
return __ ## alg ## _vx_finup(crypto_shash_ctx(desc->tfm), \
|
|
data, len, out); \
|
|
}
|
|
|
|
CRC32_VX_DIGEST(crc32le, crc32_le_vx)
|
|
CRC32_VX_DIGEST(crc32be, crc32_be_vx)
|
|
CRC32_VX_DIGEST(crc32c, crc32c_le_vx)
|
|
|
|
#define CRC32_VX_UPDATE(alg, func) \
|
|
static int alg ## _vx_update(struct shash_desc *desc, const u8 *data, \
|
|
unsigned int datalen) \
|
|
{ \
|
|
struct crc_desc_ctx *ctx = shash_desc_ctx(desc); \
|
|
ctx->crc = func(ctx->crc, data, datalen); \
|
|
return 0; \
|
|
}
|
|
|
|
CRC32_VX_UPDATE(crc32le, crc32_le_vx)
|
|
CRC32_VX_UPDATE(crc32be, crc32_be_vx)
|
|
CRC32_VX_UPDATE(crc32c, crc32c_le_vx)
|
|
|
|
|
|
static struct shash_alg crc32_vx_algs[] = {
|
|
/* CRC-32 LE */
|
|
{
|
|
.init = crc32_vx_init,
|
|
.setkey = crc32_vx_setkey,
|
|
.update = crc32le_vx_update,
|
|
.final = crc32le_vx_final,
|
|
.finup = crc32le_vx_finup,
|
|
.digest = crc32le_vx_digest,
|
|
.descsize = sizeof(struct crc_desc_ctx),
|
|
.digestsize = CRC32_DIGEST_SIZE,
|
|
.base = {
|
|
.cra_name = "crc32",
|
|
.cra_driver_name = "crc32-vx",
|
|
.cra_priority = 200,
|
|
.cra_flags = CRYPTO_ALG_OPTIONAL_KEY,
|
|
.cra_blocksize = CRC32_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct crc_ctx),
|
|
.cra_module = THIS_MODULE,
|
|
.cra_init = crc32_vx_cra_init_zero,
|
|
},
|
|
},
|
|
/* CRC-32 BE */
|
|
{
|
|
.init = crc32_vx_init,
|
|
.setkey = crc32be_vx_setkey,
|
|
.update = crc32be_vx_update,
|
|
.final = crc32be_vx_final,
|
|
.finup = crc32be_vx_finup,
|
|
.digest = crc32be_vx_digest,
|
|
.descsize = sizeof(struct crc_desc_ctx),
|
|
.digestsize = CRC32_DIGEST_SIZE,
|
|
.base = {
|
|
.cra_name = "crc32be",
|
|
.cra_driver_name = "crc32be-vx",
|
|
.cra_priority = 200,
|
|
.cra_flags = CRYPTO_ALG_OPTIONAL_KEY,
|
|
.cra_blocksize = CRC32_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct crc_ctx),
|
|
.cra_module = THIS_MODULE,
|
|
.cra_init = crc32_vx_cra_init_zero,
|
|
},
|
|
},
|
|
/* CRC-32C LE */
|
|
{
|
|
.init = crc32_vx_init,
|
|
.setkey = crc32_vx_setkey,
|
|
.update = crc32c_vx_update,
|
|
.final = crc32c_vx_final,
|
|
.finup = crc32c_vx_finup,
|
|
.digest = crc32c_vx_digest,
|
|
.descsize = sizeof(struct crc_desc_ctx),
|
|
.digestsize = CRC32_DIGEST_SIZE,
|
|
.base = {
|
|
.cra_name = "crc32c",
|
|
.cra_driver_name = "crc32c-vx",
|
|
.cra_priority = 200,
|
|
.cra_flags = CRYPTO_ALG_OPTIONAL_KEY,
|
|
.cra_blocksize = CRC32_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct crc_ctx),
|
|
.cra_module = THIS_MODULE,
|
|
.cra_init = crc32_vx_cra_init_invert,
|
|
},
|
|
},
|
|
};
|
|
|
|
|
|
static int __init crc_vx_mod_init(void)
|
|
{
|
|
return crypto_register_shashes(crc32_vx_algs,
|
|
ARRAY_SIZE(crc32_vx_algs));
|
|
}
|
|
|
|
static void __exit crc_vx_mod_exit(void)
|
|
{
|
|
crypto_unregister_shashes(crc32_vx_algs, ARRAY_SIZE(crc32_vx_algs));
|
|
}
|
|
|
|
module_cpu_feature_match(VXRS, crc_vx_mod_init);
|
|
module_exit(crc_vx_mod_exit);
|
|
|
|
MODULE_AUTHOR("Hendrik Brueckner <brueckner@linux.vnet.ibm.com>");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
MODULE_ALIAS_CRYPTO("crc32");
|
|
MODULE_ALIAS_CRYPTO("crc32-vx");
|
|
MODULE_ALIAS_CRYPTO("crc32c");
|
|
MODULE_ALIAS_CRYPTO("crc32c-vx");
|