mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 11:09:59 +07:00
63f0620cc5
xen_dma_sync_for_cpu, xen_dma_sync_for_device, xen_arch_need_swiotlb are getting called passing dma addresses. On some platforms dma addresses could be different from physical addresses. Before doing any operations on these addresses we need to convert them back to physical addresses using dma_to_phys. Move the arch_sync_dma_for_cpu and arch_sync_dma_for_device calls from xen_dma_sync_for_cpu/device to swiotlb-xen.c, and add a call dma_to_phys to do address translations there. dma_cache_maint is fixed by the next patch. Signed-off-by: Stefano Stabellini <stefano.stabellini@xilinx.com> Tested-by: Corey Minyard <cminyard@mvista.com> Tested-by: Roman Shaposhnik <roman@zededa.com> Acked-by: Juergen Gross <jgross@suse.com> Link: https://lore.kernel.org/r/20200710223427.6897-10-sstabellini@kernel.org Signed-off-by: Juergen Gross <jgross@suse.com>
582 lines
16 KiB
C
582 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright 2010
|
|
* by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
|
|
*
|
|
* This code provides a IOMMU for Xen PV guests with PCI passthrough.
|
|
*
|
|
* PV guests under Xen are running in an non-contiguous memory architecture.
|
|
*
|
|
* When PCI pass-through is utilized, this necessitates an IOMMU for
|
|
* translating bus (DMA) to virtual and vice-versa and also providing a
|
|
* mechanism to have contiguous pages for device drivers operations (say DMA
|
|
* operations).
|
|
*
|
|
* Specifically, under Xen the Linux idea of pages is an illusion. It
|
|
* assumes that pages start at zero and go up to the available memory. To
|
|
* help with that, the Linux Xen MMU provides a lookup mechanism to
|
|
* translate the page frame numbers (PFN) to machine frame numbers (MFN)
|
|
* and vice-versa. The MFN are the "real" frame numbers. Furthermore
|
|
* memory is not contiguous. Xen hypervisor stitches memory for guests
|
|
* from different pools, which means there is no guarantee that PFN==MFN
|
|
* and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
|
|
* allocated in descending order (high to low), meaning the guest might
|
|
* never get any MFN's under the 4GB mark.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/memblock.h>
|
|
#include <linux/dma-direct.h>
|
|
#include <linux/dma-noncoherent.h>
|
|
#include <linux/export.h>
|
|
#include <xen/swiotlb-xen.h>
|
|
#include <xen/page.h>
|
|
#include <xen/xen-ops.h>
|
|
#include <xen/hvc-console.h>
|
|
|
|
#include <asm/dma-mapping.h>
|
|
#include <asm/xen/page-coherent.h>
|
|
|
|
#include <trace/events/swiotlb.h>
|
|
#define MAX_DMA_BITS 32
|
|
/*
|
|
* Used to do a quick range check in swiotlb_tbl_unmap_single and
|
|
* swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
|
|
* API.
|
|
*/
|
|
|
|
static char *xen_io_tlb_start, *xen_io_tlb_end;
|
|
static unsigned long xen_io_tlb_nslabs;
|
|
/*
|
|
* Quick lookup value of the bus address of the IOTLB.
|
|
*/
|
|
|
|
static inline phys_addr_t xen_phys_to_bus(struct device *dev, phys_addr_t paddr)
|
|
{
|
|
unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
|
|
phys_addr_t baddr = (phys_addr_t)bfn << XEN_PAGE_SHIFT;
|
|
|
|
baddr |= paddr & ~XEN_PAGE_MASK;
|
|
return baddr;
|
|
}
|
|
|
|
static inline dma_addr_t xen_phys_to_dma(struct device *dev, phys_addr_t paddr)
|
|
{
|
|
return phys_to_dma(dev, xen_phys_to_bus(dev, paddr));
|
|
}
|
|
|
|
static inline phys_addr_t xen_bus_to_phys(struct device *dev,
|
|
phys_addr_t baddr)
|
|
{
|
|
unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
|
|
phys_addr_t paddr = (xen_pfn << XEN_PAGE_SHIFT) |
|
|
(baddr & ~XEN_PAGE_MASK);
|
|
|
|
return paddr;
|
|
}
|
|
|
|
static inline phys_addr_t xen_dma_to_phys(struct device *dev,
|
|
dma_addr_t dma_addr)
|
|
{
|
|
return xen_bus_to_phys(dev, dma_to_phys(dev, dma_addr));
|
|
}
|
|
|
|
static inline dma_addr_t xen_virt_to_bus(struct device *dev, void *address)
|
|
{
|
|
return xen_phys_to_dma(dev, virt_to_phys(address));
|
|
}
|
|
|
|
static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
|
|
{
|
|
unsigned long next_bfn, xen_pfn = XEN_PFN_DOWN(p);
|
|
unsigned int i, nr_pages = XEN_PFN_UP(xen_offset_in_page(p) + size);
|
|
|
|
next_bfn = pfn_to_bfn(xen_pfn);
|
|
|
|
for (i = 1; i < nr_pages; i++)
|
|
if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int is_xen_swiotlb_buffer(struct device *dev, dma_addr_t dma_addr)
|
|
{
|
|
unsigned long bfn = XEN_PFN_DOWN(dma_to_phys(dev, dma_addr));
|
|
unsigned long xen_pfn = bfn_to_local_pfn(bfn);
|
|
phys_addr_t paddr = (phys_addr_t)xen_pfn << XEN_PAGE_SHIFT;
|
|
|
|
/* If the address is outside our domain, it CAN
|
|
* have the same virtual address as another address
|
|
* in our domain. Therefore _only_ check address within our domain.
|
|
*/
|
|
if (pfn_valid(PFN_DOWN(paddr))) {
|
|
return paddr >= virt_to_phys(xen_io_tlb_start) &&
|
|
paddr < virt_to_phys(xen_io_tlb_end);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
|
|
{
|
|
int i, rc;
|
|
int dma_bits;
|
|
dma_addr_t dma_handle;
|
|
phys_addr_t p = virt_to_phys(buf);
|
|
|
|
dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
|
|
|
|
i = 0;
|
|
do {
|
|
int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
|
|
|
|
do {
|
|
rc = xen_create_contiguous_region(
|
|
p + (i << IO_TLB_SHIFT),
|
|
get_order(slabs << IO_TLB_SHIFT),
|
|
dma_bits, &dma_handle);
|
|
} while (rc && dma_bits++ < MAX_DMA_BITS);
|
|
if (rc)
|
|
return rc;
|
|
|
|
i += slabs;
|
|
} while (i < nslabs);
|
|
return 0;
|
|
}
|
|
static unsigned long xen_set_nslabs(unsigned long nr_tbl)
|
|
{
|
|
if (!nr_tbl) {
|
|
xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
|
|
xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
|
|
} else
|
|
xen_io_tlb_nslabs = nr_tbl;
|
|
|
|
return xen_io_tlb_nslabs << IO_TLB_SHIFT;
|
|
}
|
|
|
|
enum xen_swiotlb_err {
|
|
XEN_SWIOTLB_UNKNOWN = 0,
|
|
XEN_SWIOTLB_ENOMEM,
|
|
XEN_SWIOTLB_EFIXUP
|
|
};
|
|
|
|
static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
|
|
{
|
|
switch (err) {
|
|
case XEN_SWIOTLB_ENOMEM:
|
|
return "Cannot allocate Xen-SWIOTLB buffer\n";
|
|
case XEN_SWIOTLB_EFIXUP:
|
|
return "Failed to get contiguous memory for DMA from Xen!\n"\
|
|
"You either: don't have the permissions, do not have"\
|
|
" enough free memory under 4GB, or the hypervisor memory"\
|
|
" is too fragmented!";
|
|
default:
|
|
break;
|
|
}
|
|
return "";
|
|
}
|
|
int __ref xen_swiotlb_init(int verbose, bool early)
|
|
{
|
|
unsigned long bytes, order;
|
|
int rc = -ENOMEM;
|
|
enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
|
|
unsigned int repeat = 3;
|
|
|
|
xen_io_tlb_nslabs = swiotlb_nr_tbl();
|
|
retry:
|
|
bytes = xen_set_nslabs(xen_io_tlb_nslabs);
|
|
order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
|
|
|
|
/*
|
|
* IO TLB memory already allocated. Just use it.
|
|
*/
|
|
if (io_tlb_start != 0) {
|
|
xen_io_tlb_start = phys_to_virt(io_tlb_start);
|
|
goto end;
|
|
}
|
|
|
|
/*
|
|
* Get IO TLB memory from any location.
|
|
*/
|
|
if (early) {
|
|
xen_io_tlb_start = memblock_alloc(PAGE_ALIGN(bytes),
|
|
PAGE_SIZE);
|
|
if (!xen_io_tlb_start)
|
|
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
|
|
__func__, PAGE_ALIGN(bytes), PAGE_SIZE);
|
|
} else {
|
|
#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
|
|
#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
|
|
while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
|
|
xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order);
|
|
if (xen_io_tlb_start)
|
|
break;
|
|
order--;
|
|
}
|
|
if (order != get_order(bytes)) {
|
|
pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
|
|
(PAGE_SIZE << order) >> 20);
|
|
xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
|
|
bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
|
|
}
|
|
}
|
|
if (!xen_io_tlb_start) {
|
|
m_ret = XEN_SWIOTLB_ENOMEM;
|
|
goto error;
|
|
}
|
|
/*
|
|
* And replace that memory with pages under 4GB.
|
|
*/
|
|
rc = xen_swiotlb_fixup(xen_io_tlb_start,
|
|
bytes,
|
|
xen_io_tlb_nslabs);
|
|
if (rc) {
|
|
if (early)
|
|
memblock_free(__pa(xen_io_tlb_start),
|
|
PAGE_ALIGN(bytes));
|
|
else {
|
|
free_pages((unsigned long)xen_io_tlb_start, order);
|
|
xen_io_tlb_start = NULL;
|
|
}
|
|
m_ret = XEN_SWIOTLB_EFIXUP;
|
|
goto error;
|
|
}
|
|
if (early) {
|
|
if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
|
|
verbose))
|
|
panic("Cannot allocate SWIOTLB buffer");
|
|
rc = 0;
|
|
} else
|
|
rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
|
|
|
|
end:
|
|
xen_io_tlb_end = xen_io_tlb_start + bytes;
|
|
if (!rc)
|
|
swiotlb_set_max_segment(PAGE_SIZE);
|
|
|
|
return rc;
|
|
error:
|
|
if (repeat--) {
|
|
xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
|
|
(xen_io_tlb_nslabs >> 1));
|
|
pr_info("Lowering to %luMB\n",
|
|
(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
|
|
goto retry;
|
|
}
|
|
pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
|
|
if (early)
|
|
panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
|
|
else
|
|
free_pages((unsigned long)xen_io_tlb_start, order);
|
|
return rc;
|
|
}
|
|
|
|
static void *
|
|
xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
|
|
dma_addr_t *dma_handle, gfp_t flags,
|
|
unsigned long attrs)
|
|
{
|
|
void *ret;
|
|
int order = get_order(size);
|
|
u64 dma_mask = DMA_BIT_MASK(32);
|
|
phys_addr_t phys;
|
|
dma_addr_t dev_addr;
|
|
|
|
/*
|
|
* Ignore region specifiers - the kernel's ideas of
|
|
* pseudo-phys memory layout has nothing to do with the
|
|
* machine physical layout. We can't allocate highmem
|
|
* because we can't return a pointer to it.
|
|
*/
|
|
flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
|
|
|
|
/* Convert the size to actually allocated. */
|
|
size = 1UL << (order + XEN_PAGE_SHIFT);
|
|
|
|
/* On ARM this function returns an ioremap'ped virtual address for
|
|
* which virt_to_phys doesn't return the corresponding physical
|
|
* address. In fact on ARM virt_to_phys only works for kernel direct
|
|
* mapped RAM memory. Also see comment below.
|
|
*/
|
|
ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
|
|
|
|
if (!ret)
|
|
return ret;
|
|
|
|
if (hwdev && hwdev->coherent_dma_mask)
|
|
dma_mask = hwdev->coherent_dma_mask;
|
|
|
|
/* At this point dma_handle is the dma address, next we are
|
|
* going to set it to the machine address.
|
|
* Do not use virt_to_phys(ret) because on ARM it doesn't correspond
|
|
* to *dma_handle. */
|
|
phys = dma_to_phys(hwdev, *dma_handle);
|
|
dev_addr = xen_phys_to_dma(hwdev, phys);
|
|
if (((dev_addr + size - 1 <= dma_mask)) &&
|
|
!range_straddles_page_boundary(phys, size))
|
|
*dma_handle = dev_addr;
|
|
else {
|
|
if (xen_create_contiguous_region(phys, order,
|
|
fls64(dma_mask), dma_handle) != 0) {
|
|
xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
|
|
return NULL;
|
|
}
|
|
*dma_handle = phys_to_dma(hwdev, *dma_handle);
|
|
SetPageXenRemapped(virt_to_page(ret));
|
|
}
|
|
memset(ret, 0, size);
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
|
|
dma_addr_t dev_addr, unsigned long attrs)
|
|
{
|
|
int order = get_order(size);
|
|
phys_addr_t phys;
|
|
u64 dma_mask = DMA_BIT_MASK(32);
|
|
struct page *page;
|
|
|
|
if (hwdev && hwdev->coherent_dma_mask)
|
|
dma_mask = hwdev->coherent_dma_mask;
|
|
|
|
/* do not use virt_to_phys because on ARM it doesn't return you the
|
|
* physical address */
|
|
phys = xen_dma_to_phys(hwdev, dev_addr);
|
|
|
|
/* Convert the size to actually allocated. */
|
|
size = 1UL << (order + XEN_PAGE_SHIFT);
|
|
|
|
if (is_vmalloc_addr(vaddr))
|
|
page = vmalloc_to_page(vaddr);
|
|
else
|
|
page = virt_to_page(vaddr);
|
|
|
|
if (!WARN_ON((dev_addr + size - 1 > dma_mask) ||
|
|
range_straddles_page_boundary(phys, size)) &&
|
|
TestClearPageXenRemapped(page))
|
|
xen_destroy_contiguous_region(phys, order);
|
|
|
|
xen_free_coherent_pages(hwdev, size, vaddr, phys_to_dma(hwdev, phys),
|
|
attrs);
|
|
}
|
|
|
|
/*
|
|
* Map a single buffer of the indicated size for DMA in streaming mode. The
|
|
* physical address to use is returned.
|
|
*
|
|
* Once the device is given the dma address, the device owns this memory until
|
|
* either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
|
|
*/
|
|
static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
|
|
unsigned long offset, size_t size,
|
|
enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
phys_addr_t map, phys = page_to_phys(page) + offset;
|
|
dma_addr_t dev_addr = xen_phys_to_dma(dev, phys);
|
|
|
|
BUG_ON(dir == DMA_NONE);
|
|
/*
|
|
* If the address happens to be in the device's DMA window,
|
|
* we can safely return the device addr and not worry about bounce
|
|
* buffering it.
|
|
*/
|
|
if (dma_capable(dev, dev_addr, size, true) &&
|
|
!range_straddles_page_boundary(phys, size) &&
|
|
!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
|
|
swiotlb_force != SWIOTLB_FORCE)
|
|
goto done;
|
|
|
|
/*
|
|
* Oh well, have to allocate and map a bounce buffer.
|
|
*/
|
|
trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
|
|
|
|
map = swiotlb_tbl_map_single(dev, virt_to_phys(xen_io_tlb_start),
|
|
phys, size, size, dir, attrs);
|
|
if (map == (phys_addr_t)DMA_MAPPING_ERROR)
|
|
return DMA_MAPPING_ERROR;
|
|
|
|
phys = map;
|
|
dev_addr = xen_phys_to_dma(dev, map);
|
|
|
|
/*
|
|
* Ensure that the address returned is DMA'ble
|
|
*/
|
|
if (unlikely(!dma_capable(dev, dev_addr, size, true))) {
|
|
swiotlb_tbl_unmap_single(dev, map, size, size, dir,
|
|
attrs | DMA_ATTR_SKIP_CPU_SYNC);
|
|
return DMA_MAPPING_ERROR;
|
|
}
|
|
|
|
done:
|
|
if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
|
|
if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dev_addr))))
|
|
arch_sync_dma_for_device(phys, size, dir);
|
|
else
|
|
xen_dma_sync_for_device(dev, dev_addr, size, dir);
|
|
}
|
|
return dev_addr;
|
|
}
|
|
|
|
/*
|
|
* Unmap a single streaming mode DMA translation. The dma_addr and size must
|
|
* match what was provided for in a previous xen_swiotlb_map_page call. All
|
|
* other usages are undefined.
|
|
*
|
|
* After this call, reads by the cpu to the buffer are guaranteed to see
|
|
* whatever the device wrote there.
|
|
*/
|
|
static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
|
|
size_t size, enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
phys_addr_t paddr = xen_dma_to_phys(hwdev, dev_addr);
|
|
|
|
BUG_ON(dir == DMA_NONE);
|
|
|
|
if (!dev_is_dma_coherent(hwdev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
|
|
if (pfn_valid(PFN_DOWN(dma_to_phys(hwdev, dev_addr))))
|
|
arch_sync_dma_for_cpu(paddr, size, dir);
|
|
else
|
|
xen_dma_sync_for_cpu(hwdev, dev_addr, size, dir);
|
|
}
|
|
|
|
/* NOTE: We use dev_addr here, not paddr! */
|
|
if (is_xen_swiotlb_buffer(hwdev, dev_addr))
|
|
swiotlb_tbl_unmap_single(hwdev, paddr, size, size, dir, attrs);
|
|
}
|
|
|
|
static void
|
|
xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr,
|
|
size_t size, enum dma_data_direction dir)
|
|
{
|
|
phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
|
|
|
|
if (!dev_is_dma_coherent(dev)) {
|
|
if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
|
|
arch_sync_dma_for_cpu(paddr, size, dir);
|
|
else
|
|
xen_dma_sync_for_cpu(dev, dma_addr, size, dir);
|
|
}
|
|
|
|
if (is_xen_swiotlb_buffer(dev, dma_addr))
|
|
swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
|
|
}
|
|
|
|
static void
|
|
xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr,
|
|
size_t size, enum dma_data_direction dir)
|
|
{
|
|
phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
|
|
|
|
if (is_xen_swiotlb_buffer(dev, dma_addr))
|
|
swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
|
|
|
|
if (!dev_is_dma_coherent(dev)) {
|
|
if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
|
|
arch_sync_dma_for_device(paddr, size, dir);
|
|
else
|
|
xen_dma_sync_for_device(dev, dma_addr, size, dir);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Unmap a set of streaming mode DMA translations. Again, cpu read rules
|
|
* concerning calls here are the same as for swiotlb_unmap_page() above.
|
|
*/
|
|
static void
|
|
xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
|
|
enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
BUG_ON(dir == DMA_NONE);
|
|
|
|
for_each_sg(sgl, sg, nelems, i)
|
|
xen_swiotlb_unmap_page(hwdev, sg->dma_address, sg_dma_len(sg),
|
|
dir, attrs);
|
|
|
|
}
|
|
|
|
static int
|
|
xen_swiotlb_map_sg(struct device *dev, struct scatterlist *sgl, int nelems,
|
|
enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
BUG_ON(dir == DMA_NONE);
|
|
|
|
for_each_sg(sgl, sg, nelems, i) {
|
|
sg->dma_address = xen_swiotlb_map_page(dev, sg_page(sg),
|
|
sg->offset, sg->length, dir, attrs);
|
|
if (sg->dma_address == DMA_MAPPING_ERROR)
|
|
goto out_unmap;
|
|
sg_dma_len(sg) = sg->length;
|
|
}
|
|
|
|
return nelems;
|
|
out_unmap:
|
|
xen_swiotlb_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
|
|
sg_dma_len(sgl) = 0;
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
xen_swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
|
|
int nelems, enum dma_data_direction dir)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
for_each_sg(sgl, sg, nelems, i) {
|
|
xen_swiotlb_sync_single_for_cpu(dev, sg->dma_address,
|
|
sg->length, dir);
|
|
}
|
|
}
|
|
|
|
static void
|
|
xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
|
|
int nelems, enum dma_data_direction dir)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
for_each_sg(sgl, sg, nelems, i) {
|
|
xen_swiotlb_sync_single_for_device(dev, sg->dma_address,
|
|
sg->length, dir);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return whether the given device DMA address mask can be supported
|
|
* properly. For example, if your device can only drive the low 24-bits
|
|
* during bus mastering, then you would pass 0x00ffffff as the mask to
|
|
* this function.
|
|
*/
|
|
static int
|
|
xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
|
|
{
|
|
return xen_virt_to_bus(hwdev, xen_io_tlb_end - 1) <= mask;
|
|
}
|
|
|
|
const struct dma_map_ops xen_swiotlb_dma_ops = {
|
|
.alloc = xen_swiotlb_alloc_coherent,
|
|
.free = xen_swiotlb_free_coherent,
|
|
.sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
|
|
.sync_single_for_device = xen_swiotlb_sync_single_for_device,
|
|
.sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
|
|
.sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
|
|
.map_sg = xen_swiotlb_map_sg,
|
|
.unmap_sg = xen_swiotlb_unmap_sg,
|
|
.map_page = xen_swiotlb_map_page,
|
|
.unmap_page = xen_swiotlb_unmap_page,
|
|
.dma_supported = xen_swiotlb_dma_supported,
|
|
.mmap = dma_common_mmap,
|
|
.get_sgtable = dma_common_get_sgtable,
|
|
};
|