linux_dsm_epyc7002/arch/s390/mm/vmem.c
Mike Rapoport e31cf2f4ca mm: don't include asm/pgtable.h if linux/mm.h is already included
Patch series "mm: consolidate definitions of page table accessors", v2.

The low level page table accessors (pXY_index(), pXY_offset()) are
duplicated across all architectures and sometimes more than once.  For
instance, we have 31 definition of pgd_offset() for 25 supported
architectures.

Most of these definitions are actually identical and typically it boils
down to, e.g.

static inline unsigned long pmd_index(unsigned long address)
{
        return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
}

static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
{
        return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
}

These definitions can be shared among 90% of the arches provided
XYZ_SHIFT, PTRS_PER_XYZ and xyz_page_vaddr() are defined.

For architectures that really need a custom version there is always
possibility to override the generic version with the usual ifdefs magic.

These patches introduce include/linux/pgtable.h that replaces
include/asm-generic/pgtable.h and add the definitions of the page table
accessors to the new header.

This patch (of 12):

The linux/mm.h header includes <asm/pgtable.h> to allow inlining of the
functions involving page table manipulations, e.g.  pte_alloc() and
pmd_alloc().  So, there is no point to explicitly include <asm/pgtable.h>
in the files that include <linux/mm.h>.

The include statements in such cases are remove with a simple loop:

	for f in $(git grep -l "include <linux/mm.h>") ; do
		sed -i -e '/include <asm\/pgtable.h>/ d' $f
	done

Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200514170327.31389-1-rppt@kernel.org
Link: http://lkml.kernel.org/r/20200514170327.31389-2-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 09:39:13 -07:00

448 lines
10 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright IBM Corp. 2006
* Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
*/
#include <linux/memblock.h>
#include <linux/pfn.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/hugetlb.h>
#include <linux/slab.h>
#include <asm/cacheflush.h>
#include <asm/pgalloc.h>
#include <asm/setup.h>
#include <asm/tlbflush.h>
#include <asm/sections.h>
#include <asm/set_memory.h>
static DEFINE_MUTEX(vmem_mutex);
struct memory_segment {
struct list_head list;
unsigned long start;
unsigned long size;
};
static LIST_HEAD(mem_segs);
static void __ref *vmem_alloc_pages(unsigned int order)
{
unsigned long size = PAGE_SIZE << order;
if (slab_is_available())
return (void *)__get_free_pages(GFP_KERNEL, order);
return (void *) memblock_phys_alloc(size, size);
}
void *vmem_crst_alloc(unsigned long val)
{
unsigned long *table;
table = vmem_alloc_pages(CRST_ALLOC_ORDER);
if (table)
crst_table_init(table, val);
return table;
}
pte_t __ref *vmem_pte_alloc(void)
{
unsigned long size = PTRS_PER_PTE * sizeof(pte_t);
pte_t *pte;
if (slab_is_available())
pte = (pte_t *) page_table_alloc(&init_mm);
else
pte = (pte_t *) memblock_phys_alloc(size, size);
if (!pte)
return NULL;
memset64((u64 *)pte, _PAGE_INVALID, PTRS_PER_PTE);
return pte;
}
/*
* Add a physical memory range to the 1:1 mapping.
*/
static int vmem_add_mem(unsigned long start, unsigned long size)
{
unsigned long pgt_prot, sgt_prot, r3_prot;
unsigned long pages4k, pages1m, pages2g;
unsigned long end = start + size;
unsigned long address = start;
pgd_t *pg_dir;
p4d_t *p4_dir;
pud_t *pu_dir;
pmd_t *pm_dir;
pte_t *pt_dir;
int ret = -ENOMEM;
pgt_prot = pgprot_val(PAGE_KERNEL);
sgt_prot = pgprot_val(SEGMENT_KERNEL);
r3_prot = pgprot_val(REGION3_KERNEL);
if (!MACHINE_HAS_NX) {
pgt_prot &= ~_PAGE_NOEXEC;
sgt_prot &= ~_SEGMENT_ENTRY_NOEXEC;
r3_prot &= ~_REGION_ENTRY_NOEXEC;
}
pages4k = pages1m = pages2g = 0;
while (address < end) {
pg_dir = pgd_offset_k(address);
if (pgd_none(*pg_dir)) {
p4_dir = vmem_crst_alloc(_REGION2_ENTRY_EMPTY);
if (!p4_dir)
goto out;
pgd_populate(&init_mm, pg_dir, p4_dir);
}
p4_dir = p4d_offset(pg_dir, address);
if (p4d_none(*p4_dir)) {
pu_dir = vmem_crst_alloc(_REGION3_ENTRY_EMPTY);
if (!pu_dir)
goto out;
p4d_populate(&init_mm, p4_dir, pu_dir);
}
pu_dir = pud_offset(p4_dir, address);
if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
!(address & ~PUD_MASK) && (address + PUD_SIZE <= end) &&
!debug_pagealloc_enabled()) {
pud_val(*pu_dir) = address | r3_prot;
address += PUD_SIZE;
pages2g++;
continue;
}
if (pud_none(*pu_dir)) {
pm_dir = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY);
if (!pm_dir)
goto out;
pud_populate(&init_mm, pu_dir, pm_dir);
}
pm_dir = pmd_offset(pu_dir, address);
if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
!(address & ~PMD_MASK) && (address + PMD_SIZE <= end) &&
!debug_pagealloc_enabled()) {
pmd_val(*pm_dir) = address | sgt_prot;
address += PMD_SIZE;
pages1m++;
continue;
}
if (pmd_none(*pm_dir)) {
pt_dir = vmem_pte_alloc();
if (!pt_dir)
goto out;
pmd_populate(&init_mm, pm_dir, pt_dir);
}
pt_dir = pte_offset_kernel(pm_dir, address);
pte_val(*pt_dir) = address | pgt_prot;
address += PAGE_SIZE;
pages4k++;
}
ret = 0;
out:
update_page_count(PG_DIRECT_MAP_4K, pages4k);
update_page_count(PG_DIRECT_MAP_1M, pages1m);
update_page_count(PG_DIRECT_MAP_2G, pages2g);
return ret;
}
/*
* Remove a physical memory range from the 1:1 mapping.
* Currently only invalidates page table entries.
*/
static void vmem_remove_range(unsigned long start, unsigned long size)
{
unsigned long pages4k, pages1m, pages2g;
unsigned long end = start + size;
unsigned long address = start;
pgd_t *pg_dir;
p4d_t *p4_dir;
pud_t *pu_dir;
pmd_t *pm_dir;
pte_t *pt_dir;
pages4k = pages1m = pages2g = 0;
while (address < end) {
pg_dir = pgd_offset_k(address);
if (pgd_none(*pg_dir)) {
address += PGDIR_SIZE;
continue;
}
p4_dir = p4d_offset(pg_dir, address);
if (p4d_none(*p4_dir)) {
address += P4D_SIZE;
continue;
}
pu_dir = pud_offset(p4_dir, address);
if (pud_none(*pu_dir)) {
address += PUD_SIZE;
continue;
}
if (pud_large(*pu_dir)) {
pud_clear(pu_dir);
address += PUD_SIZE;
pages2g++;
continue;
}
pm_dir = pmd_offset(pu_dir, address);
if (pmd_none(*pm_dir)) {
address += PMD_SIZE;
continue;
}
if (pmd_large(*pm_dir)) {
pmd_clear(pm_dir);
address += PMD_SIZE;
pages1m++;
continue;
}
pt_dir = pte_offset_kernel(pm_dir, address);
pte_clear(&init_mm, address, pt_dir);
address += PAGE_SIZE;
pages4k++;
}
flush_tlb_kernel_range(start, end);
update_page_count(PG_DIRECT_MAP_4K, -pages4k);
update_page_count(PG_DIRECT_MAP_1M, -pages1m);
update_page_count(PG_DIRECT_MAP_2G, -pages2g);
}
/*
* Add a backed mem_map array to the virtual mem_map array.
*/
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
struct vmem_altmap *altmap)
{
unsigned long pgt_prot, sgt_prot;
unsigned long address = start;
pgd_t *pg_dir;
p4d_t *p4_dir;
pud_t *pu_dir;
pmd_t *pm_dir;
pte_t *pt_dir;
int ret = -ENOMEM;
pgt_prot = pgprot_val(PAGE_KERNEL);
sgt_prot = pgprot_val(SEGMENT_KERNEL);
if (!MACHINE_HAS_NX) {
pgt_prot &= ~_PAGE_NOEXEC;
sgt_prot &= ~_SEGMENT_ENTRY_NOEXEC;
}
for (address = start; address < end;) {
pg_dir = pgd_offset_k(address);
if (pgd_none(*pg_dir)) {
p4_dir = vmem_crst_alloc(_REGION2_ENTRY_EMPTY);
if (!p4_dir)
goto out;
pgd_populate(&init_mm, pg_dir, p4_dir);
}
p4_dir = p4d_offset(pg_dir, address);
if (p4d_none(*p4_dir)) {
pu_dir = vmem_crst_alloc(_REGION3_ENTRY_EMPTY);
if (!pu_dir)
goto out;
p4d_populate(&init_mm, p4_dir, pu_dir);
}
pu_dir = pud_offset(p4_dir, address);
if (pud_none(*pu_dir)) {
pm_dir = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY);
if (!pm_dir)
goto out;
pud_populate(&init_mm, pu_dir, pm_dir);
}
pm_dir = pmd_offset(pu_dir, address);
if (pmd_none(*pm_dir)) {
/* Use 1MB frames for vmemmap if available. We always
* use large frames even if they are only partially
* used.
* Otherwise we would have also page tables since
* vmemmap_populate gets called for each section
* separately. */
if (MACHINE_HAS_EDAT1) {
void *new_page;
new_page = vmemmap_alloc_block(PMD_SIZE, node);
if (!new_page)
goto out;
pmd_val(*pm_dir) = __pa(new_page) | sgt_prot;
address = (address + PMD_SIZE) & PMD_MASK;
continue;
}
pt_dir = vmem_pte_alloc();
if (!pt_dir)
goto out;
pmd_populate(&init_mm, pm_dir, pt_dir);
} else if (pmd_large(*pm_dir)) {
address = (address + PMD_SIZE) & PMD_MASK;
continue;
}
pt_dir = pte_offset_kernel(pm_dir, address);
if (pte_none(*pt_dir)) {
void *new_page;
new_page = vmemmap_alloc_block(PAGE_SIZE, node);
if (!new_page)
goto out;
pte_val(*pt_dir) = __pa(new_page) | pgt_prot;
}
address += PAGE_SIZE;
}
ret = 0;
out:
return ret;
}
void vmemmap_free(unsigned long start, unsigned long end,
struct vmem_altmap *altmap)
{
}
/*
* Add memory segment to the segment list if it doesn't overlap with
* an already present segment.
*/
static int insert_memory_segment(struct memory_segment *seg)
{
struct memory_segment *tmp;
if (seg->start + seg->size > VMEM_MAX_PHYS ||
seg->start + seg->size < seg->start)
return -ERANGE;
list_for_each_entry(tmp, &mem_segs, list) {
if (seg->start >= tmp->start + tmp->size)
continue;
if (seg->start + seg->size <= tmp->start)
continue;
return -ENOSPC;
}
list_add(&seg->list, &mem_segs);
return 0;
}
/*
* Remove memory segment from the segment list.
*/
static void remove_memory_segment(struct memory_segment *seg)
{
list_del(&seg->list);
}
static void __remove_shared_memory(struct memory_segment *seg)
{
remove_memory_segment(seg);
vmem_remove_range(seg->start, seg->size);
}
int vmem_remove_mapping(unsigned long start, unsigned long size)
{
struct memory_segment *seg;
int ret;
mutex_lock(&vmem_mutex);
ret = -ENOENT;
list_for_each_entry(seg, &mem_segs, list) {
if (seg->start == start && seg->size == size)
break;
}
if (seg->start != start || seg->size != size)
goto out;
ret = 0;
__remove_shared_memory(seg);
kfree(seg);
out:
mutex_unlock(&vmem_mutex);
return ret;
}
int vmem_add_mapping(unsigned long start, unsigned long size)
{
struct memory_segment *seg;
int ret;
mutex_lock(&vmem_mutex);
ret = -ENOMEM;
seg = kzalloc(sizeof(*seg), GFP_KERNEL);
if (!seg)
goto out;
seg->start = start;
seg->size = size;
ret = insert_memory_segment(seg);
if (ret)
goto out_free;
ret = vmem_add_mem(start, size);
if (ret)
goto out_remove;
goto out;
out_remove:
__remove_shared_memory(seg);
out_free:
kfree(seg);
out:
mutex_unlock(&vmem_mutex);
return ret;
}
/*
* map whole physical memory to virtual memory (identity mapping)
* we reserve enough space in the vmalloc area for vmemmap to hotplug
* additional memory segments.
*/
void __init vmem_map_init(void)
{
struct memblock_region *reg;
for_each_memblock(memory, reg)
vmem_add_mem(reg->base, reg->size);
__set_memory((unsigned long)_stext,
(unsigned long)(_etext - _stext) >> PAGE_SHIFT,
SET_MEMORY_RO | SET_MEMORY_X);
__set_memory((unsigned long)_etext,
(unsigned long)(__end_rodata - _etext) >> PAGE_SHIFT,
SET_MEMORY_RO);
__set_memory((unsigned long)_sinittext,
(unsigned long)(_einittext - _sinittext) >> PAGE_SHIFT,
SET_MEMORY_RO | SET_MEMORY_X);
__set_memory(__stext_dma, (__etext_dma - __stext_dma) >> PAGE_SHIFT,
SET_MEMORY_RO | SET_MEMORY_X);
/* we need lowcore executable for our LPSWE instructions */
set_memory_x(0, 1);
pr_info("Write protected kernel read-only data: %luk\n",
(unsigned long)(__end_rodata - _stext) >> 10);
}
/*
* Convert memblock.memory to a memory segment list so there is a single
* list that contains all memory segments.
*/
static int __init vmem_convert_memory_chunk(void)
{
struct memblock_region *reg;
struct memory_segment *seg;
mutex_lock(&vmem_mutex);
for_each_memblock(memory, reg) {
seg = kzalloc(sizeof(*seg), GFP_KERNEL);
if (!seg)
panic("Out of memory...\n");
seg->start = reg->base;
seg->size = reg->size;
insert_memory_segment(seg);
}
mutex_unlock(&vmem_mutex);
return 0;
}
core_initcall(vmem_convert_memory_chunk);