mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-26 01:30:54 +07:00
3ab8352137
This patch provides an enhancement to kexec/kdump. It implements the following features: - Backup/restore memory used by the original kernel before/after kexec. - Save/restore CPU state before/after kexec. The features of this patch can be used as a general method to call program in physical mode (paging turning off). This can be used to call BIOS code under Linux. kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 Usage example of calling some physical mode code and return: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_KEXEC=y CONFIG_PM=y CONFIG_KEXEC_JUMP=y 2. Build patched kexec-tool or download the pre-built one. 3. Build some physical mode executable named such as "phy_mode" 4. Boot kernel compiled in step 1. 5. Load physical mode executable with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context --args-none phy_mode 6. Call physical mode executable with following shell command line: /sbin/kexec -e Implementation point: To support jumping without reserving memory. One shadow backup page (source page) is allocated for each page used by kexeced code image (destination page). When do kexec_load, the image of kexeced code is loaded into source pages, and before executing, the destination pages and the source pages are swapped, so the contents of destination pages are backupped. Before jumping to the kexeced code image and after jumping back to the original kernel, the destination pages and the source pages are swapped too. C ABI (calling convention) is used as communication protocol between kernel and called code. A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to indicate that the loaded kernel image is used for jumping back. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1806 lines
42 KiB
C
1806 lines
42 KiB
C
/*
|
|
* linux/kernel/sys.c
|
|
*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/utsname.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/prctl.h>
|
|
#include <linux/highuid.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/resource.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/device.h>
|
|
#include <linux/key.h>
|
|
#include <linux/times.h>
|
|
#include <linux/posix-timers.h>
|
|
#include <linux/security.h>
|
|
#include <linux/dcookies.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/cn_proc.h>
|
|
#include <linux/getcpu.h>
|
|
#include <linux/task_io_accounting_ops.h>
|
|
#include <linux/seccomp.h>
|
|
#include <linux/cpu.h>
|
|
|
|
#include <linux/compat.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/user_namespace.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <asm/io.h>
|
|
#include <asm/unistd.h>
|
|
|
|
#ifndef SET_UNALIGN_CTL
|
|
# define SET_UNALIGN_CTL(a,b) (-EINVAL)
|
|
#endif
|
|
#ifndef GET_UNALIGN_CTL
|
|
# define GET_UNALIGN_CTL(a,b) (-EINVAL)
|
|
#endif
|
|
#ifndef SET_FPEMU_CTL
|
|
# define SET_FPEMU_CTL(a,b) (-EINVAL)
|
|
#endif
|
|
#ifndef GET_FPEMU_CTL
|
|
# define GET_FPEMU_CTL(a,b) (-EINVAL)
|
|
#endif
|
|
#ifndef SET_FPEXC_CTL
|
|
# define SET_FPEXC_CTL(a,b) (-EINVAL)
|
|
#endif
|
|
#ifndef GET_FPEXC_CTL
|
|
# define GET_FPEXC_CTL(a,b) (-EINVAL)
|
|
#endif
|
|
#ifndef GET_ENDIAN
|
|
# define GET_ENDIAN(a,b) (-EINVAL)
|
|
#endif
|
|
#ifndef SET_ENDIAN
|
|
# define SET_ENDIAN(a,b) (-EINVAL)
|
|
#endif
|
|
#ifndef GET_TSC_CTL
|
|
# define GET_TSC_CTL(a) (-EINVAL)
|
|
#endif
|
|
#ifndef SET_TSC_CTL
|
|
# define SET_TSC_CTL(a) (-EINVAL)
|
|
#endif
|
|
|
|
/*
|
|
* this is where the system-wide overflow UID and GID are defined, for
|
|
* architectures that now have 32-bit UID/GID but didn't in the past
|
|
*/
|
|
|
|
int overflowuid = DEFAULT_OVERFLOWUID;
|
|
int overflowgid = DEFAULT_OVERFLOWGID;
|
|
|
|
#ifdef CONFIG_UID16
|
|
EXPORT_SYMBOL(overflowuid);
|
|
EXPORT_SYMBOL(overflowgid);
|
|
#endif
|
|
|
|
/*
|
|
* the same as above, but for filesystems which can only store a 16-bit
|
|
* UID and GID. as such, this is needed on all architectures
|
|
*/
|
|
|
|
int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
|
|
int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
|
|
|
|
EXPORT_SYMBOL(fs_overflowuid);
|
|
EXPORT_SYMBOL(fs_overflowgid);
|
|
|
|
/*
|
|
* this indicates whether you can reboot with ctrl-alt-del: the default is yes
|
|
*/
|
|
|
|
int C_A_D = 1;
|
|
struct pid *cad_pid;
|
|
EXPORT_SYMBOL(cad_pid);
|
|
|
|
/*
|
|
* If set, this is used for preparing the system to power off.
|
|
*/
|
|
|
|
void (*pm_power_off_prepare)(void);
|
|
|
|
static int set_one_prio(struct task_struct *p, int niceval, int error)
|
|
{
|
|
int no_nice;
|
|
|
|
if (p->uid != current->euid &&
|
|
p->euid != current->euid && !capable(CAP_SYS_NICE)) {
|
|
error = -EPERM;
|
|
goto out;
|
|
}
|
|
if (niceval < task_nice(p) && !can_nice(p, niceval)) {
|
|
error = -EACCES;
|
|
goto out;
|
|
}
|
|
no_nice = security_task_setnice(p, niceval);
|
|
if (no_nice) {
|
|
error = no_nice;
|
|
goto out;
|
|
}
|
|
if (error == -ESRCH)
|
|
error = 0;
|
|
set_user_nice(p, niceval);
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
asmlinkage long sys_setpriority(int which, int who, int niceval)
|
|
{
|
|
struct task_struct *g, *p;
|
|
struct user_struct *user;
|
|
int error = -EINVAL;
|
|
struct pid *pgrp;
|
|
|
|
if (which > PRIO_USER || which < PRIO_PROCESS)
|
|
goto out;
|
|
|
|
/* normalize: avoid signed division (rounding problems) */
|
|
error = -ESRCH;
|
|
if (niceval < -20)
|
|
niceval = -20;
|
|
if (niceval > 19)
|
|
niceval = 19;
|
|
|
|
read_lock(&tasklist_lock);
|
|
switch (which) {
|
|
case PRIO_PROCESS:
|
|
if (who)
|
|
p = find_task_by_vpid(who);
|
|
else
|
|
p = current;
|
|
if (p)
|
|
error = set_one_prio(p, niceval, error);
|
|
break;
|
|
case PRIO_PGRP:
|
|
if (who)
|
|
pgrp = find_vpid(who);
|
|
else
|
|
pgrp = task_pgrp(current);
|
|
do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
|
|
error = set_one_prio(p, niceval, error);
|
|
} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
|
|
break;
|
|
case PRIO_USER:
|
|
user = current->user;
|
|
if (!who)
|
|
who = current->uid;
|
|
else
|
|
if ((who != current->uid) && !(user = find_user(who)))
|
|
goto out_unlock; /* No processes for this user */
|
|
|
|
do_each_thread(g, p)
|
|
if (p->uid == who)
|
|
error = set_one_prio(p, niceval, error);
|
|
while_each_thread(g, p);
|
|
if (who != current->uid)
|
|
free_uid(user); /* For find_user() */
|
|
break;
|
|
}
|
|
out_unlock:
|
|
read_unlock(&tasklist_lock);
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Ugh. To avoid negative return values, "getpriority()" will
|
|
* not return the normal nice-value, but a negated value that
|
|
* has been offset by 20 (ie it returns 40..1 instead of -20..19)
|
|
* to stay compatible.
|
|
*/
|
|
asmlinkage long sys_getpriority(int which, int who)
|
|
{
|
|
struct task_struct *g, *p;
|
|
struct user_struct *user;
|
|
long niceval, retval = -ESRCH;
|
|
struct pid *pgrp;
|
|
|
|
if (which > PRIO_USER || which < PRIO_PROCESS)
|
|
return -EINVAL;
|
|
|
|
read_lock(&tasklist_lock);
|
|
switch (which) {
|
|
case PRIO_PROCESS:
|
|
if (who)
|
|
p = find_task_by_vpid(who);
|
|
else
|
|
p = current;
|
|
if (p) {
|
|
niceval = 20 - task_nice(p);
|
|
if (niceval > retval)
|
|
retval = niceval;
|
|
}
|
|
break;
|
|
case PRIO_PGRP:
|
|
if (who)
|
|
pgrp = find_vpid(who);
|
|
else
|
|
pgrp = task_pgrp(current);
|
|
do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
|
|
niceval = 20 - task_nice(p);
|
|
if (niceval > retval)
|
|
retval = niceval;
|
|
} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
|
|
break;
|
|
case PRIO_USER:
|
|
user = current->user;
|
|
if (!who)
|
|
who = current->uid;
|
|
else
|
|
if ((who != current->uid) && !(user = find_user(who)))
|
|
goto out_unlock; /* No processes for this user */
|
|
|
|
do_each_thread(g, p)
|
|
if (p->uid == who) {
|
|
niceval = 20 - task_nice(p);
|
|
if (niceval > retval)
|
|
retval = niceval;
|
|
}
|
|
while_each_thread(g, p);
|
|
if (who != current->uid)
|
|
free_uid(user); /* for find_user() */
|
|
break;
|
|
}
|
|
out_unlock:
|
|
read_unlock(&tasklist_lock);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* emergency_restart - reboot the system
|
|
*
|
|
* Without shutting down any hardware or taking any locks
|
|
* reboot the system. This is called when we know we are in
|
|
* trouble so this is our best effort to reboot. This is
|
|
* safe to call in interrupt context.
|
|
*/
|
|
void emergency_restart(void)
|
|
{
|
|
machine_emergency_restart();
|
|
}
|
|
EXPORT_SYMBOL_GPL(emergency_restart);
|
|
|
|
static void kernel_restart_prepare(char *cmd)
|
|
{
|
|
blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
|
|
system_state = SYSTEM_RESTART;
|
|
device_shutdown();
|
|
sysdev_shutdown();
|
|
}
|
|
|
|
/**
|
|
* kernel_restart - reboot the system
|
|
* @cmd: pointer to buffer containing command to execute for restart
|
|
* or %NULL
|
|
*
|
|
* Shutdown everything and perform a clean reboot.
|
|
* This is not safe to call in interrupt context.
|
|
*/
|
|
void kernel_restart(char *cmd)
|
|
{
|
|
kernel_restart_prepare(cmd);
|
|
if (!cmd)
|
|
printk(KERN_EMERG "Restarting system.\n");
|
|
else
|
|
printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
|
|
machine_restart(cmd);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kernel_restart);
|
|
|
|
static void kernel_shutdown_prepare(enum system_states state)
|
|
{
|
|
blocking_notifier_call_chain(&reboot_notifier_list,
|
|
(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
|
|
system_state = state;
|
|
device_shutdown();
|
|
}
|
|
/**
|
|
* kernel_halt - halt the system
|
|
*
|
|
* Shutdown everything and perform a clean system halt.
|
|
*/
|
|
void kernel_halt(void)
|
|
{
|
|
kernel_shutdown_prepare(SYSTEM_HALT);
|
|
sysdev_shutdown();
|
|
printk(KERN_EMERG "System halted.\n");
|
|
machine_halt();
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(kernel_halt);
|
|
|
|
/**
|
|
* kernel_power_off - power_off the system
|
|
*
|
|
* Shutdown everything and perform a clean system power_off.
|
|
*/
|
|
void kernel_power_off(void)
|
|
{
|
|
kernel_shutdown_prepare(SYSTEM_POWER_OFF);
|
|
if (pm_power_off_prepare)
|
|
pm_power_off_prepare();
|
|
disable_nonboot_cpus();
|
|
sysdev_shutdown();
|
|
printk(KERN_EMERG "Power down.\n");
|
|
machine_power_off();
|
|
}
|
|
EXPORT_SYMBOL_GPL(kernel_power_off);
|
|
/*
|
|
* Reboot system call: for obvious reasons only root may call it,
|
|
* and even root needs to set up some magic numbers in the registers
|
|
* so that some mistake won't make this reboot the whole machine.
|
|
* You can also set the meaning of the ctrl-alt-del-key here.
|
|
*
|
|
* reboot doesn't sync: do that yourself before calling this.
|
|
*/
|
|
asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
|
|
{
|
|
char buffer[256];
|
|
|
|
/* We only trust the superuser with rebooting the system. */
|
|
if (!capable(CAP_SYS_BOOT))
|
|
return -EPERM;
|
|
|
|
/* For safety, we require "magic" arguments. */
|
|
if (magic1 != LINUX_REBOOT_MAGIC1 ||
|
|
(magic2 != LINUX_REBOOT_MAGIC2 &&
|
|
magic2 != LINUX_REBOOT_MAGIC2A &&
|
|
magic2 != LINUX_REBOOT_MAGIC2B &&
|
|
magic2 != LINUX_REBOOT_MAGIC2C))
|
|
return -EINVAL;
|
|
|
|
/* Instead of trying to make the power_off code look like
|
|
* halt when pm_power_off is not set do it the easy way.
|
|
*/
|
|
if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
|
|
cmd = LINUX_REBOOT_CMD_HALT;
|
|
|
|
lock_kernel();
|
|
switch (cmd) {
|
|
case LINUX_REBOOT_CMD_RESTART:
|
|
kernel_restart(NULL);
|
|
break;
|
|
|
|
case LINUX_REBOOT_CMD_CAD_ON:
|
|
C_A_D = 1;
|
|
break;
|
|
|
|
case LINUX_REBOOT_CMD_CAD_OFF:
|
|
C_A_D = 0;
|
|
break;
|
|
|
|
case LINUX_REBOOT_CMD_HALT:
|
|
kernel_halt();
|
|
unlock_kernel();
|
|
do_exit(0);
|
|
break;
|
|
|
|
case LINUX_REBOOT_CMD_POWER_OFF:
|
|
kernel_power_off();
|
|
unlock_kernel();
|
|
do_exit(0);
|
|
break;
|
|
|
|
case LINUX_REBOOT_CMD_RESTART2:
|
|
if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
|
|
unlock_kernel();
|
|
return -EFAULT;
|
|
}
|
|
buffer[sizeof(buffer) - 1] = '\0';
|
|
|
|
kernel_restart(buffer);
|
|
break;
|
|
|
|
#ifdef CONFIG_KEXEC
|
|
case LINUX_REBOOT_CMD_KEXEC:
|
|
{
|
|
int ret;
|
|
ret = kernel_kexec();
|
|
unlock_kernel();
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_HIBERNATION
|
|
case LINUX_REBOOT_CMD_SW_SUSPEND:
|
|
{
|
|
int ret = hibernate();
|
|
unlock_kernel();
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
default:
|
|
unlock_kernel();
|
|
return -EINVAL;
|
|
}
|
|
unlock_kernel();
|
|
return 0;
|
|
}
|
|
|
|
static void deferred_cad(struct work_struct *dummy)
|
|
{
|
|
kernel_restart(NULL);
|
|
}
|
|
|
|
/*
|
|
* This function gets called by ctrl-alt-del - ie the keyboard interrupt.
|
|
* As it's called within an interrupt, it may NOT sync: the only choice
|
|
* is whether to reboot at once, or just ignore the ctrl-alt-del.
|
|
*/
|
|
void ctrl_alt_del(void)
|
|
{
|
|
static DECLARE_WORK(cad_work, deferred_cad);
|
|
|
|
if (C_A_D)
|
|
schedule_work(&cad_work);
|
|
else
|
|
kill_cad_pid(SIGINT, 1);
|
|
}
|
|
|
|
/*
|
|
* Unprivileged users may change the real gid to the effective gid
|
|
* or vice versa. (BSD-style)
|
|
*
|
|
* If you set the real gid at all, or set the effective gid to a value not
|
|
* equal to the real gid, then the saved gid is set to the new effective gid.
|
|
*
|
|
* This makes it possible for a setgid program to completely drop its
|
|
* privileges, which is often a useful assertion to make when you are doing
|
|
* a security audit over a program.
|
|
*
|
|
* The general idea is that a program which uses just setregid() will be
|
|
* 100% compatible with BSD. A program which uses just setgid() will be
|
|
* 100% compatible with POSIX with saved IDs.
|
|
*
|
|
* SMP: There are not races, the GIDs are checked only by filesystem
|
|
* operations (as far as semantic preservation is concerned).
|
|
*/
|
|
asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
|
|
{
|
|
int old_rgid = current->gid;
|
|
int old_egid = current->egid;
|
|
int new_rgid = old_rgid;
|
|
int new_egid = old_egid;
|
|
int retval;
|
|
|
|
retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
|
|
if (retval)
|
|
return retval;
|
|
|
|
if (rgid != (gid_t) -1) {
|
|
if ((old_rgid == rgid) ||
|
|
(current->egid==rgid) ||
|
|
capable(CAP_SETGID))
|
|
new_rgid = rgid;
|
|
else
|
|
return -EPERM;
|
|
}
|
|
if (egid != (gid_t) -1) {
|
|
if ((old_rgid == egid) ||
|
|
(current->egid == egid) ||
|
|
(current->sgid == egid) ||
|
|
capable(CAP_SETGID))
|
|
new_egid = egid;
|
|
else
|
|
return -EPERM;
|
|
}
|
|
if (new_egid != old_egid) {
|
|
set_dumpable(current->mm, suid_dumpable);
|
|
smp_wmb();
|
|
}
|
|
if (rgid != (gid_t) -1 ||
|
|
(egid != (gid_t) -1 && egid != old_rgid))
|
|
current->sgid = new_egid;
|
|
current->fsgid = new_egid;
|
|
current->egid = new_egid;
|
|
current->gid = new_rgid;
|
|
key_fsgid_changed(current);
|
|
proc_id_connector(current, PROC_EVENT_GID);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* setgid() is implemented like SysV w/ SAVED_IDS
|
|
*
|
|
* SMP: Same implicit races as above.
|
|
*/
|
|
asmlinkage long sys_setgid(gid_t gid)
|
|
{
|
|
int old_egid = current->egid;
|
|
int retval;
|
|
|
|
retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
|
|
if (retval)
|
|
return retval;
|
|
|
|
if (capable(CAP_SETGID)) {
|
|
if (old_egid != gid) {
|
|
set_dumpable(current->mm, suid_dumpable);
|
|
smp_wmb();
|
|
}
|
|
current->gid = current->egid = current->sgid = current->fsgid = gid;
|
|
} else if ((gid == current->gid) || (gid == current->sgid)) {
|
|
if (old_egid != gid) {
|
|
set_dumpable(current->mm, suid_dumpable);
|
|
smp_wmb();
|
|
}
|
|
current->egid = current->fsgid = gid;
|
|
}
|
|
else
|
|
return -EPERM;
|
|
|
|
key_fsgid_changed(current);
|
|
proc_id_connector(current, PROC_EVENT_GID);
|
|
return 0;
|
|
}
|
|
|
|
static int set_user(uid_t new_ruid, int dumpclear)
|
|
{
|
|
struct user_struct *new_user;
|
|
|
|
new_user = alloc_uid(current->nsproxy->user_ns, new_ruid);
|
|
if (!new_user)
|
|
return -EAGAIN;
|
|
|
|
if (atomic_read(&new_user->processes) >=
|
|
current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
|
|
new_user != current->nsproxy->user_ns->root_user) {
|
|
free_uid(new_user);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
switch_uid(new_user);
|
|
|
|
if (dumpclear) {
|
|
set_dumpable(current->mm, suid_dumpable);
|
|
smp_wmb();
|
|
}
|
|
current->uid = new_ruid;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Unprivileged users may change the real uid to the effective uid
|
|
* or vice versa. (BSD-style)
|
|
*
|
|
* If you set the real uid at all, or set the effective uid to a value not
|
|
* equal to the real uid, then the saved uid is set to the new effective uid.
|
|
*
|
|
* This makes it possible for a setuid program to completely drop its
|
|
* privileges, which is often a useful assertion to make when you are doing
|
|
* a security audit over a program.
|
|
*
|
|
* The general idea is that a program which uses just setreuid() will be
|
|
* 100% compatible with BSD. A program which uses just setuid() will be
|
|
* 100% compatible with POSIX with saved IDs.
|
|
*/
|
|
asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
|
|
{
|
|
int old_ruid, old_euid, old_suid, new_ruid, new_euid;
|
|
int retval;
|
|
|
|
retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
|
|
if (retval)
|
|
return retval;
|
|
|
|
new_ruid = old_ruid = current->uid;
|
|
new_euid = old_euid = current->euid;
|
|
old_suid = current->suid;
|
|
|
|
if (ruid != (uid_t) -1) {
|
|
new_ruid = ruid;
|
|
if ((old_ruid != ruid) &&
|
|
(current->euid != ruid) &&
|
|
!capable(CAP_SETUID))
|
|
return -EPERM;
|
|
}
|
|
|
|
if (euid != (uid_t) -1) {
|
|
new_euid = euid;
|
|
if ((old_ruid != euid) &&
|
|
(current->euid != euid) &&
|
|
(current->suid != euid) &&
|
|
!capable(CAP_SETUID))
|
|
return -EPERM;
|
|
}
|
|
|
|
if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
|
|
return -EAGAIN;
|
|
|
|
if (new_euid != old_euid) {
|
|
set_dumpable(current->mm, suid_dumpable);
|
|
smp_wmb();
|
|
}
|
|
current->fsuid = current->euid = new_euid;
|
|
if (ruid != (uid_t) -1 ||
|
|
(euid != (uid_t) -1 && euid != old_ruid))
|
|
current->suid = current->euid;
|
|
current->fsuid = current->euid;
|
|
|
|
key_fsuid_changed(current);
|
|
proc_id_connector(current, PROC_EVENT_UID);
|
|
|
|
return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* setuid() is implemented like SysV with SAVED_IDS
|
|
*
|
|
* Note that SAVED_ID's is deficient in that a setuid root program
|
|
* like sendmail, for example, cannot set its uid to be a normal
|
|
* user and then switch back, because if you're root, setuid() sets
|
|
* the saved uid too. If you don't like this, blame the bright people
|
|
* in the POSIX committee and/or USG. Note that the BSD-style setreuid()
|
|
* will allow a root program to temporarily drop privileges and be able to
|
|
* regain them by swapping the real and effective uid.
|
|
*/
|
|
asmlinkage long sys_setuid(uid_t uid)
|
|
{
|
|
int old_euid = current->euid;
|
|
int old_ruid, old_suid, new_suid;
|
|
int retval;
|
|
|
|
retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
|
|
if (retval)
|
|
return retval;
|
|
|
|
old_ruid = current->uid;
|
|
old_suid = current->suid;
|
|
new_suid = old_suid;
|
|
|
|
if (capable(CAP_SETUID)) {
|
|
if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
|
|
return -EAGAIN;
|
|
new_suid = uid;
|
|
} else if ((uid != current->uid) && (uid != new_suid))
|
|
return -EPERM;
|
|
|
|
if (old_euid != uid) {
|
|
set_dumpable(current->mm, suid_dumpable);
|
|
smp_wmb();
|
|
}
|
|
current->fsuid = current->euid = uid;
|
|
current->suid = new_suid;
|
|
|
|
key_fsuid_changed(current);
|
|
proc_id_connector(current, PROC_EVENT_UID);
|
|
|
|
return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
|
|
}
|
|
|
|
|
|
/*
|
|
* This function implements a generic ability to update ruid, euid,
|
|
* and suid. This allows you to implement the 4.4 compatible seteuid().
|
|
*/
|
|
asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
|
|
{
|
|
int old_ruid = current->uid;
|
|
int old_euid = current->euid;
|
|
int old_suid = current->suid;
|
|
int retval;
|
|
|
|
retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
|
|
if (retval)
|
|
return retval;
|
|
|
|
if (!capable(CAP_SETUID)) {
|
|
if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
|
|
(ruid != current->euid) && (ruid != current->suid))
|
|
return -EPERM;
|
|
if ((euid != (uid_t) -1) && (euid != current->uid) &&
|
|
(euid != current->euid) && (euid != current->suid))
|
|
return -EPERM;
|
|
if ((suid != (uid_t) -1) && (suid != current->uid) &&
|
|
(suid != current->euid) && (suid != current->suid))
|
|
return -EPERM;
|
|
}
|
|
if (ruid != (uid_t) -1) {
|
|
if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
|
|
return -EAGAIN;
|
|
}
|
|
if (euid != (uid_t) -1) {
|
|
if (euid != current->euid) {
|
|
set_dumpable(current->mm, suid_dumpable);
|
|
smp_wmb();
|
|
}
|
|
current->euid = euid;
|
|
}
|
|
current->fsuid = current->euid;
|
|
if (suid != (uid_t) -1)
|
|
current->suid = suid;
|
|
|
|
key_fsuid_changed(current);
|
|
proc_id_connector(current, PROC_EVENT_UID);
|
|
|
|
return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
|
|
}
|
|
|
|
asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
|
|
{
|
|
int retval;
|
|
|
|
if (!(retval = put_user(current->uid, ruid)) &&
|
|
!(retval = put_user(current->euid, euid)))
|
|
retval = put_user(current->suid, suid);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Same as above, but for rgid, egid, sgid.
|
|
*/
|
|
asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
|
|
{
|
|
int retval;
|
|
|
|
retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
|
|
if (retval)
|
|
return retval;
|
|
|
|
if (!capable(CAP_SETGID)) {
|
|
if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
|
|
(rgid != current->egid) && (rgid != current->sgid))
|
|
return -EPERM;
|
|
if ((egid != (gid_t) -1) && (egid != current->gid) &&
|
|
(egid != current->egid) && (egid != current->sgid))
|
|
return -EPERM;
|
|
if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
|
|
(sgid != current->egid) && (sgid != current->sgid))
|
|
return -EPERM;
|
|
}
|
|
if (egid != (gid_t) -1) {
|
|
if (egid != current->egid) {
|
|
set_dumpable(current->mm, suid_dumpable);
|
|
smp_wmb();
|
|
}
|
|
current->egid = egid;
|
|
}
|
|
current->fsgid = current->egid;
|
|
if (rgid != (gid_t) -1)
|
|
current->gid = rgid;
|
|
if (sgid != (gid_t) -1)
|
|
current->sgid = sgid;
|
|
|
|
key_fsgid_changed(current);
|
|
proc_id_connector(current, PROC_EVENT_GID);
|
|
return 0;
|
|
}
|
|
|
|
asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
|
|
{
|
|
int retval;
|
|
|
|
if (!(retval = put_user(current->gid, rgid)) &&
|
|
!(retval = put_user(current->egid, egid)))
|
|
retval = put_user(current->sgid, sgid);
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
/*
|
|
* "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
|
|
* is used for "access()" and for the NFS daemon (letting nfsd stay at
|
|
* whatever uid it wants to). It normally shadows "euid", except when
|
|
* explicitly set by setfsuid() or for access..
|
|
*/
|
|
asmlinkage long sys_setfsuid(uid_t uid)
|
|
{
|
|
int old_fsuid;
|
|
|
|
old_fsuid = current->fsuid;
|
|
if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
|
|
return old_fsuid;
|
|
|
|
if (uid == current->uid || uid == current->euid ||
|
|
uid == current->suid || uid == current->fsuid ||
|
|
capable(CAP_SETUID)) {
|
|
if (uid != old_fsuid) {
|
|
set_dumpable(current->mm, suid_dumpable);
|
|
smp_wmb();
|
|
}
|
|
current->fsuid = uid;
|
|
}
|
|
|
|
key_fsuid_changed(current);
|
|
proc_id_connector(current, PROC_EVENT_UID);
|
|
|
|
security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
|
|
|
|
return old_fsuid;
|
|
}
|
|
|
|
/*
|
|
* Samma på svenska..
|
|
*/
|
|
asmlinkage long sys_setfsgid(gid_t gid)
|
|
{
|
|
int old_fsgid;
|
|
|
|
old_fsgid = current->fsgid;
|
|
if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
|
|
return old_fsgid;
|
|
|
|
if (gid == current->gid || gid == current->egid ||
|
|
gid == current->sgid || gid == current->fsgid ||
|
|
capable(CAP_SETGID)) {
|
|
if (gid != old_fsgid) {
|
|
set_dumpable(current->mm, suid_dumpable);
|
|
smp_wmb();
|
|
}
|
|
current->fsgid = gid;
|
|
key_fsgid_changed(current);
|
|
proc_id_connector(current, PROC_EVENT_GID);
|
|
}
|
|
return old_fsgid;
|
|
}
|
|
|
|
asmlinkage long sys_times(struct tms __user * tbuf)
|
|
{
|
|
/*
|
|
* In the SMP world we might just be unlucky and have one of
|
|
* the times increment as we use it. Since the value is an
|
|
* atomically safe type this is just fine. Conceptually its
|
|
* as if the syscall took an instant longer to occur.
|
|
*/
|
|
if (tbuf) {
|
|
struct tms tmp;
|
|
struct task_struct *tsk = current;
|
|
struct task_struct *t;
|
|
cputime_t utime, stime, cutime, cstime;
|
|
|
|
spin_lock_irq(&tsk->sighand->siglock);
|
|
utime = tsk->signal->utime;
|
|
stime = tsk->signal->stime;
|
|
t = tsk;
|
|
do {
|
|
utime = cputime_add(utime, t->utime);
|
|
stime = cputime_add(stime, t->stime);
|
|
t = next_thread(t);
|
|
} while (t != tsk);
|
|
|
|
cutime = tsk->signal->cutime;
|
|
cstime = tsk->signal->cstime;
|
|
spin_unlock_irq(&tsk->sighand->siglock);
|
|
|
|
tmp.tms_utime = cputime_to_clock_t(utime);
|
|
tmp.tms_stime = cputime_to_clock_t(stime);
|
|
tmp.tms_cutime = cputime_to_clock_t(cutime);
|
|
tmp.tms_cstime = cputime_to_clock_t(cstime);
|
|
if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
|
|
return -EFAULT;
|
|
}
|
|
return (long) jiffies_64_to_clock_t(get_jiffies_64());
|
|
}
|
|
|
|
/*
|
|
* This needs some heavy checking ...
|
|
* I just haven't the stomach for it. I also don't fully
|
|
* understand sessions/pgrp etc. Let somebody who does explain it.
|
|
*
|
|
* OK, I think I have the protection semantics right.... this is really
|
|
* only important on a multi-user system anyway, to make sure one user
|
|
* can't send a signal to a process owned by another. -TYT, 12/12/91
|
|
*
|
|
* Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
|
|
* LBT 04.03.94
|
|
*/
|
|
asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
|
|
{
|
|
struct task_struct *p;
|
|
struct task_struct *group_leader = current->group_leader;
|
|
struct pid *pgrp;
|
|
int err;
|
|
|
|
if (!pid)
|
|
pid = task_pid_vnr(group_leader);
|
|
if (!pgid)
|
|
pgid = pid;
|
|
if (pgid < 0)
|
|
return -EINVAL;
|
|
|
|
/* From this point forward we keep holding onto the tasklist lock
|
|
* so that our parent does not change from under us. -DaveM
|
|
*/
|
|
write_lock_irq(&tasklist_lock);
|
|
|
|
err = -ESRCH;
|
|
p = find_task_by_vpid(pid);
|
|
if (!p)
|
|
goto out;
|
|
|
|
err = -EINVAL;
|
|
if (!thread_group_leader(p))
|
|
goto out;
|
|
|
|
if (same_thread_group(p->real_parent, group_leader)) {
|
|
err = -EPERM;
|
|
if (task_session(p) != task_session(group_leader))
|
|
goto out;
|
|
err = -EACCES;
|
|
if (p->did_exec)
|
|
goto out;
|
|
} else {
|
|
err = -ESRCH;
|
|
if (p != group_leader)
|
|
goto out;
|
|
}
|
|
|
|
err = -EPERM;
|
|
if (p->signal->leader)
|
|
goto out;
|
|
|
|
pgrp = task_pid(p);
|
|
if (pgid != pid) {
|
|
struct task_struct *g;
|
|
|
|
pgrp = find_vpid(pgid);
|
|
g = pid_task(pgrp, PIDTYPE_PGID);
|
|
if (!g || task_session(g) != task_session(group_leader))
|
|
goto out;
|
|
}
|
|
|
|
err = security_task_setpgid(p, pgid);
|
|
if (err)
|
|
goto out;
|
|
|
|
if (task_pgrp(p) != pgrp) {
|
|
change_pid(p, PIDTYPE_PGID, pgrp);
|
|
set_task_pgrp(p, pid_nr(pgrp));
|
|
}
|
|
|
|
err = 0;
|
|
out:
|
|
/* All paths lead to here, thus we are safe. -DaveM */
|
|
write_unlock_irq(&tasklist_lock);
|
|
return err;
|
|
}
|
|
|
|
asmlinkage long sys_getpgid(pid_t pid)
|
|
{
|
|
struct task_struct *p;
|
|
struct pid *grp;
|
|
int retval;
|
|
|
|
rcu_read_lock();
|
|
if (!pid)
|
|
grp = task_pgrp(current);
|
|
else {
|
|
retval = -ESRCH;
|
|
p = find_task_by_vpid(pid);
|
|
if (!p)
|
|
goto out;
|
|
grp = task_pgrp(p);
|
|
if (!grp)
|
|
goto out;
|
|
|
|
retval = security_task_getpgid(p);
|
|
if (retval)
|
|
goto out;
|
|
}
|
|
retval = pid_vnr(grp);
|
|
out:
|
|
rcu_read_unlock();
|
|
return retval;
|
|
}
|
|
|
|
#ifdef __ARCH_WANT_SYS_GETPGRP
|
|
|
|
asmlinkage long sys_getpgrp(void)
|
|
{
|
|
return sys_getpgid(0);
|
|
}
|
|
|
|
#endif
|
|
|
|
asmlinkage long sys_getsid(pid_t pid)
|
|
{
|
|
struct task_struct *p;
|
|
struct pid *sid;
|
|
int retval;
|
|
|
|
rcu_read_lock();
|
|
if (!pid)
|
|
sid = task_session(current);
|
|
else {
|
|
retval = -ESRCH;
|
|
p = find_task_by_vpid(pid);
|
|
if (!p)
|
|
goto out;
|
|
sid = task_session(p);
|
|
if (!sid)
|
|
goto out;
|
|
|
|
retval = security_task_getsid(p);
|
|
if (retval)
|
|
goto out;
|
|
}
|
|
retval = pid_vnr(sid);
|
|
out:
|
|
rcu_read_unlock();
|
|
return retval;
|
|
}
|
|
|
|
asmlinkage long sys_setsid(void)
|
|
{
|
|
struct task_struct *group_leader = current->group_leader;
|
|
struct pid *sid = task_pid(group_leader);
|
|
pid_t session = pid_vnr(sid);
|
|
int err = -EPERM;
|
|
|
|
write_lock_irq(&tasklist_lock);
|
|
/* Fail if I am already a session leader */
|
|
if (group_leader->signal->leader)
|
|
goto out;
|
|
|
|
/* Fail if a process group id already exists that equals the
|
|
* proposed session id.
|
|
*/
|
|
if (pid_task(sid, PIDTYPE_PGID))
|
|
goto out;
|
|
|
|
group_leader->signal->leader = 1;
|
|
__set_special_pids(sid);
|
|
|
|
spin_lock(&group_leader->sighand->siglock);
|
|
group_leader->signal->tty = NULL;
|
|
spin_unlock(&group_leader->sighand->siglock);
|
|
|
|
err = session;
|
|
out:
|
|
write_unlock_irq(&tasklist_lock);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Supplementary group IDs
|
|
*/
|
|
|
|
/* init to 2 - one for init_task, one to ensure it is never freed */
|
|
struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
|
|
|
|
struct group_info *groups_alloc(int gidsetsize)
|
|
{
|
|
struct group_info *group_info;
|
|
int nblocks;
|
|
int i;
|
|
|
|
nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
|
|
/* Make sure we always allocate at least one indirect block pointer */
|
|
nblocks = nblocks ? : 1;
|
|
group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
|
|
if (!group_info)
|
|
return NULL;
|
|
group_info->ngroups = gidsetsize;
|
|
group_info->nblocks = nblocks;
|
|
atomic_set(&group_info->usage, 1);
|
|
|
|
if (gidsetsize <= NGROUPS_SMALL)
|
|
group_info->blocks[0] = group_info->small_block;
|
|
else {
|
|
for (i = 0; i < nblocks; i++) {
|
|
gid_t *b;
|
|
b = (void *)__get_free_page(GFP_USER);
|
|
if (!b)
|
|
goto out_undo_partial_alloc;
|
|
group_info->blocks[i] = b;
|
|
}
|
|
}
|
|
return group_info;
|
|
|
|
out_undo_partial_alloc:
|
|
while (--i >= 0) {
|
|
free_page((unsigned long)group_info->blocks[i]);
|
|
}
|
|
kfree(group_info);
|
|
return NULL;
|
|
}
|
|
|
|
EXPORT_SYMBOL(groups_alloc);
|
|
|
|
void groups_free(struct group_info *group_info)
|
|
{
|
|
if (group_info->blocks[0] != group_info->small_block) {
|
|
int i;
|
|
for (i = 0; i < group_info->nblocks; i++)
|
|
free_page((unsigned long)group_info->blocks[i]);
|
|
}
|
|
kfree(group_info);
|
|
}
|
|
|
|
EXPORT_SYMBOL(groups_free);
|
|
|
|
/* export the group_info to a user-space array */
|
|
static int groups_to_user(gid_t __user *grouplist,
|
|
struct group_info *group_info)
|
|
{
|
|
int i;
|
|
unsigned int count = group_info->ngroups;
|
|
|
|
for (i = 0; i < group_info->nblocks; i++) {
|
|
unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
|
|
unsigned int len = cp_count * sizeof(*grouplist);
|
|
|
|
if (copy_to_user(grouplist, group_info->blocks[i], len))
|
|
return -EFAULT;
|
|
|
|
grouplist += NGROUPS_PER_BLOCK;
|
|
count -= cp_count;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* fill a group_info from a user-space array - it must be allocated already */
|
|
static int groups_from_user(struct group_info *group_info,
|
|
gid_t __user *grouplist)
|
|
{
|
|
int i;
|
|
unsigned int count = group_info->ngroups;
|
|
|
|
for (i = 0; i < group_info->nblocks; i++) {
|
|
unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
|
|
unsigned int len = cp_count * sizeof(*grouplist);
|
|
|
|
if (copy_from_user(group_info->blocks[i], grouplist, len))
|
|
return -EFAULT;
|
|
|
|
grouplist += NGROUPS_PER_BLOCK;
|
|
count -= cp_count;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* a simple Shell sort */
|
|
static void groups_sort(struct group_info *group_info)
|
|
{
|
|
int base, max, stride;
|
|
int gidsetsize = group_info->ngroups;
|
|
|
|
for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
|
|
; /* nothing */
|
|
stride /= 3;
|
|
|
|
while (stride) {
|
|
max = gidsetsize - stride;
|
|
for (base = 0; base < max; base++) {
|
|
int left = base;
|
|
int right = left + stride;
|
|
gid_t tmp = GROUP_AT(group_info, right);
|
|
|
|
while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
|
|
GROUP_AT(group_info, right) =
|
|
GROUP_AT(group_info, left);
|
|
right = left;
|
|
left -= stride;
|
|
}
|
|
GROUP_AT(group_info, right) = tmp;
|
|
}
|
|
stride /= 3;
|
|
}
|
|
}
|
|
|
|
/* a simple bsearch */
|
|
int groups_search(struct group_info *group_info, gid_t grp)
|
|
{
|
|
unsigned int left, right;
|
|
|
|
if (!group_info)
|
|
return 0;
|
|
|
|
left = 0;
|
|
right = group_info->ngroups;
|
|
while (left < right) {
|
|
unsigned int mid = (left+right)/2;
|
|
int cmp = grp - GROUP_AT(group_info, mid);
|
|
if (cmp > 0)
|
|
left = mid + 1;
|
|
else if (cmp < 0)
|
|
right = mid;
|
|
else
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* validate and set current->group_info */
|
|
int set_current_groups(struct group_info *group_info)
|
|
{
|
|
int retval;
|
|
struct group_info *old_info;
|
|
|
|
retval = security_task_setgroups(group_info);
|
|
if (retval)
|
|
return retval;
|
|
|
|
groups_sort(group_info);
|
|
get_group_info(group_info);
|
|
|
|
task_lock(current);
|
|
old_info = current->group_info;
|
|
current->group_info = group_info;
|
|
task_unlock(current);
|
|
|
|
put_group_info(old_info);
|
|
|
|
return 0;
|
|
}
|
|
|
|
EXPORT_SYMBOL(set_current_groups);
|
|
|
|
asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
|
|
{
|
|
int i = 0;
|
|
|
|
/*
|
|
* SMP: Nobody else can change our grouplist. Thus we are
|
|
* safe.
|
|
*/
|
|
|
|
if (gidsetsize < 0)
|
|
return -EINVAL;
|
|
|
|
/* no need to grab task_lock here; it cannot change */
|
|
i = current->group_info->ngroups;
|
|
if (gidsetsize) {
|
|
if (i > gidsetsize) {
|
|
i = -EINVAL;
|
|
goto out;
|
|
}
|
|
if (groups_to_user(grouplist, current->group_info)) {
|
|
i = -EFAULT;
|
|
goto out;
|
|
}
|
|
}
|
|
out:
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* SMP: Our groups are copy-on-write. We can set them safely
|
|
* without another task interfering.
|
|
*/
|
|
|
|
asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
|
|
{
|
|
struct group_info *group_info;
|
|
int retval;
|
|
|
|
if (!capable(CAP_SETGID))
|
|
return -EPERM;
|
|
if ((unsigned)gidsetsize > NGROUPS_MAX)
|
|
return -EINVAL;
|
|
|
|
group_info = groups_alloc(gidsetsize);
|
|
if (!group_info)
|
|
return -ENOMEM;
|
|
retval = groups_from_user(group_info, grouplist);
|
|
if (retval) {
|
|
put_group_info(group_info);
|
|
return retval;
|
|
}
|
|
|
|
retval = set_current_groups(group_info);
|
|
put_group_info(group_info);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Check whether we're fsgid/egid or in the supplemental group..
|
|
*/
|
|
int in_group_p(gid_t grp)
|
|
{
|
|
int retval = 1;
|
|
if (grp != current->fsgid)
|
|
retval = groups_search(current->group_info, grp);
|
|
return retval;
|
|
}
|
|
|
|
EXPORT_SYMBOL(in_group_p);
|
|
|
|
int in_egroup_p(gid_t grp)
|
|
{
|
|
int retval = 1;
|
|
if (grp != current->egid)
|
|
retval = groups_search(current->group_info, grp);
|
|
return retval;
|
|
}
|
|
|
|
EXPORT_SYMBOL(in_egroup_p);
|
|
|
|
DECLARE_RWSEM(uts_sem);
|
|
|
|
asmlinkage long sys_newuname(struct new_utsname __user * name)
|
|
{
|
|
int errno = 0;
|
|
|
|
down_read(&uts_sem);
|
|
if (copy_to_user(name, utsname(), sizeof *name))
|
|
errno = -EFAULT;
|
|
up_read(&uts_sem);
|
|
return errno;
|
|
}
|
|
|
|
asmlinkage long sys_sethostname(char __user *name, int len)
|
|
{
|
|
int errno;
|
|
char tmp[__NEW_UTS_LEN];
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
if (len < 0 || len > __NEW_UTS_LEN)
|
|
return -EINVAL;
|
|
down_write(&uts_sem);
|
|
errno = -EFAULT;
|
|
if (!copy_from_user(tmp, name, len)) {
|
|
memcpy(utsname()->nodename, tmp, len);
|
|
utsname()->nodename[len] = 0;
|
|
errno = 0;
|
|
}
|
|
up_write(&uts_sem);
|
|
return errno;
|
|
}
|
|
|
|
#ifdef __ARCH_WANT_SYS_GETHOSTNAME
|
|
|
|
asmlinkage long sys_gethostname(char __user *name, int len)
|
|
{
|
|
int i, errno;
|
|
|
|
if (len < 0)
|
|
return -EINVAL;
|
|
down_read(&uts_sem);
|
|
i = 1 + strlen(utsname()->nodename);
|
|
if (i > len)
|
|
i = len;
|
|
errno = 0;
|
|
if (copy_to_user(name, utsname()->nodename, i))
|
|
errno = -EFAULT;
|
|
up_read(&uts_sem);
|
|
return errno;
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Only setdomainname; getdomainname can be implemented by calling
|
|
* uname()
|
|
*/
|
|
asmlinkage long sys_setdomainname(char __user *name, int len)
|
|
{
|
|
int errno;
|
|
char tmp[__NEW_UTS_LEN];
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
if (len < 0 || len > __NEW_UTS_LEN)
|
|
return -EINVAL;
|
|
|
|
down_write(&uts_sem);
|
|
errno = -EFAULT;
|
|
if (!copy_from_user(tmp, name, len)) {
|
|
memcpy(utsname()->domainname, tmp, len);
|
|
utsname()->domainname[len] = 0;
|
|
errno = 0;
|
|
}
|
|
up_write(&uts_sem);
|
|
return errno;
|
|
}
|
|
|
|
asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
|
|
{
|
|
if (resource >= RLIM_NLIMITS)
|
|
return -EINVAL;
|
|
else {
|
|
struct rlimit value;
|
|
task_lock(current->group_leader);
|
|
value = current->signal->rlim[resource];
|
|
task_unlock(current->group_leader);
|
|
return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
|
|
}
|
|
}
|
|
|
|
#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
|
|
|
|
/*
|
|
* Back compatibility for getrlimit. Needed for some apps.
|
|
*/
|
|
|
|
asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
|
|
{
|
|
struct rlimit x;
|
|
if (resource >= RLIM_NLIMITS)
|
|
return -EINVAL;
|
|
|
|
task_lock(current->group_leader);
|
|
x = current->signal->rlim[resource];
|
|
task_unlock(current->group_leader);
|
|
if (x.rlim_cur > 0x7FFFFFFF)
|
|
x.rlim_cur = 0x7FFFFFFF;
|
|
if (x.rlim_max > 0x7FFFFFFF)
|
|
x.rlim_max = 0x7FFFFFFF;
|
|
return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
|
|
}
|
|
|
|
#endif
|
|
|
|
asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
|
|
{
|
|
struct rlimit new_rlim, *old_rlim;
|
|
unsigned long it_prof_secs;
|
|
int retval;
|
|
|
|
if (resource >= RLIM_NLIMITS)
|
|
return -EINVAL;
|
|
if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
|
|
return -EFAULT;
|
|
if (new_rlim.rlim_cur > new_rlim.rlim_max)
|
|
return -EINVAL;
|
|
old_rlim = current->signal->rlim + resource;
|
|
if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
|
|
!capable(CAP_SYS_RESOURCE))
|
|
return -EPERM;
|
|
if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > sysctl_nr_open)
|
|
return -EPERM;
|
|
|
|
retval = security_task_setrlimit(resource, &new_rlim);
|
|
if (retval)
|
|
return retval;
|
|
|
|
if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
|
|
/*
|
|
* The caller is asking for an immediate RLIMIT_CPU
|
|
* expiry. But we use the zero value to mean "it was
|
|
* never set". So let's cheat and make it one second
|
|
* instead
|
|
*/
|
|
new_rlim.rlim_cur = 1;
|
|
}
|
|
|
|
task_lock(current->group_leader);
|
|
*old_rlim = new_rlim;
|
|
task_unlock(current->group_leader);
|
|
|
|
if (resource != RLIMIT_CPU)
|
|
goto out;
|
|
|
|
/*
|
|
* RLIMIT_CPU handling. Note that the kernel fails to return an error
|
|
* code if it rejected the user's attempt to set RLIMIT_CPU. This is a
|
|
* very long-standing error, and fixing it now risks breakage of
|
|
* applications, so we live with it
|
|
*/
|
|
if (new_rlim.rlim_cur == RLIM_INFINITY)
|
|
goto out;
|
|
|
|
it_prof_secs = cputime_to_secs(current->signal->it_prof_expires);
|
|
if (it_prof_secs == 0 || new_rlim.rlim_cur <= it_prof_secs) {
|
|
unsigned long rlim_cur = new_rlim.rlim_cur;
|
|
cputime_t cputime;
|
|
|
|
cputime = secs_to_cputime(rlim_cur);
|
|
read_lock(&tasklist_lock);
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
read_unlock(&tasklist_lock);
|
|
}
|
|
out:
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* It would make sense to put struct rusage in the task_struct,
|
|
* except that would make the task_struct be *really big*. After
|
|
* task_struct gets moved into malloc'ed memory, it would
|
|
* make sense to do this. It will make moving the rest of the information
|
|
* a lot simpler! (Which we're not doing right now because we're not
|
|
* measuring them yet).
|
|
*
|
|
* When sampling multiple threads for RUSAGE_SELF, under SMP we might have
|
|
* races with threads incrementing their own counters. But since word
|
|
* reads are atomic, we either get new values or old values and we don't
|
|
* care which for the sums. We always take the siglock to protect reading
|
|
* the c* fields from p->signal from races with exit.c updating those
|
|
* fields when reaping, so a sample either gets all the additions of a
|
|
* given child after it's reaped, or none so this sample is before reaping.
|
|
*
|
|
* Locking:
|
|
* We need to take the siglock for CHILDEREN, SELF and BOTH
|
|
* for the cases current multithreaded, non-current single threaded
|
|
* non-current multithreaded. Thread traversal is now safe with
|
|
* the siglock held.
|
|
* Strictly speaking, we donot need to take the siglock if we are current and
|
|
* single threaded, as no one else can take our signal_struct away, no one
|
|
* else can reap the children to update signal->c* counters, and no one else
|
|
* can race with the signal-> fields. If we do not take any lock, the
|
|
* signal-> fields could be read out of order while another thread was just
|
|
* exiting. So we should place a read memory barrier when we avoid the lock.
|
|
* On the writer side, write memory barrier is implied in __exit_signal
|
|
* as __exit_signal releases the siglock spinlock after updating the signal->
|
|
* fields. But we don't do this yet to keep things simple.
|
|
*
|
|
*/
|
|
|
|
static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r,
|
|
cputime_t *utimep, cputime_t *stimep)
|
|
{
|
|
*utimep = cputime_add(*utimep, t->utime);
|
|
*stimep = cputime_add(*stimep, t->stime);
|
|
r->ru_nvcsw += t->nvcsw;
|
|
r->ru_nivcsw += t->nivcsw;
|
|
r->ru_minflt += t->min_flt;
|
|
r->ru_majflt += t->maj_flt;
|
|
r->ru_inblock += task_io_get_inblock(t);
|
|
r->ru_oublock += task_io_get_oublock(t);
|
|
}
|
|
|
|
static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
|
|
{
|
|
struct task_struct *t;
|
|
unsigned long flags;
|
|
cputime_t utime, stime;
|
|
|
|
memset((char *) r, 0, sizeof *r);
|
|
utime = stime = cputime_zero;
|
|
|
|
if (who == RUSAGE_THREAD) {
|
|
accumulate_thread_rusage(p, r, &utime, &stime);
|
|
goto out;
|
|
}
|
|
|
|
if (!lock_task_sighand(p, &flags))
|
|
return;
|
|
|
|
switch (who) {
|
|
case RUSAGE_BOTH:
|
|
case RUSAGE_CHILDREN:
|
|
utime = p->signal->cutime;
|
|
stime = p->signal->cstime;
|
|
r->ru_nvcsw = p->signal->cnvcsw;
|
|
r->ru_nivcsw = p->signal->cnivcsw;
|
|
r->ru_minflt = p->signal->cmin_flt;
|
|
r->ru_majflt = p->signal->cmaj_flt;
|
|
r->ru_inblock = p->signal->cinblock;
|
|
r->ru_oublock = p->signal->coublock;
|
|
|
|
if (who == RUSAGE_CHILDREN)
|
|
break;
|
|
|
|
case RUSAGE_SELF:
|
|
utime = cputime_add(utime, p->signal->utime);
|
|
stime = cputime_add(stime, p->signal->stime);
|
|
r->ru_nvcsw += p->signal->nvcsw;
|
|
r->ru_nivcsw += p->signal->nivcsw;
|
|
r->ru_minflt += p->signal->min_flt;
|
|
r->ru_majflt += p->signal->maj_flt;
|
|
r->ru_inblock += p->signal->inblock;
|
|
r->ru_oublock += p->signal->oublock;
|
|
t = p;
|
|
do {
|
|
accumulate_thread_rusage(t, r, &utime, &stime);
|
|
t = next_thread(t);
|
|
} while (t != p);
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
unlock_task_sighand(p, &flags);
|
|
|
|
out:
|
|
cputime_to_timeval(utime, &r->ru_utime);
|
|
cputime_to_timeval(stime, &r->ru_stime);
|
|
}
|
|
|
|
int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
|
|
{
|
|
struct rusage r;
|
|
k_getrusage(p, who, &r);
|
|
return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
|
|
}
|
|
|
|
asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
|
|
{
|
|
if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
|
|
who != RUSAGE_THREAD)
|
|
return -EINVAL;
|
|
return getrusage(current, who, ru);
|
|
}
|
|
|
|
asmlinkage long sys_umask(int mask)
|
|
{
|
|
mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
|
|
return mask;
|
|
}
|
|
|
|
asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
|
|
unsigned long arg4, unsigned long arg5)
|
|
{
|
|
long error = 0;
|
|
|
|
if (security_task_prctl(option, arg2, arg3, arg4, arg5, &error))
|
|
return error;
|
|
|
|
switch (option) {
|
|
case PR_SET_PDEATHSIG:
|
|
if (!valid_signal(arg2)) {
|
|
error = -EINVAL;
|
|
break;
|
|
}
|
|
current->pdeath_signal = arg2;
|
|
break;
|
|
case PR_GET_PDEATHSIG:
|
|
error = put_user(current->pdeath_signal, (int __user *)arg2);
|
|
break;
|
|
case PR_GET_DUMPABLE:
|
|
error = get_dumpable(current->mm);
|
|
break;
|
|
case PR_SET_DUMPABLE:
|
|
if (arg2 < 0 || arg2 > 1) {
|
|
error = -EINVAL;
|
|
break;
|
|
}
|
|
set_dumpable(current->mm, arg2);
|
|
break;
|
|
|
|
case PR_SET_UNALIGN:
|
|
error = SET_UNALIGN_CTL(current, arg2);
|
|
break;
|
|
case PR_GET_UNALIGN:
|
|
error = GET_UNALIGN_CTL(current, arg2);
|
|
break;
|
|
case PR_SET_FPEMU:
|
|
error = SET_FPEMU_CTL(current, arg2);
|
|
break;
|
|
case PR_GET_FPEMU:
|
|
error = GET_FPEMU_CTL(current, arg2);
|
|
break;
|
|
case PR_SET_FPEXC:
|
|
error = SET_FPEXC_CTL(current, arg2);
|
|
break;
|
|
case PR_GET_FPEXC:
|
|
error = GET_FPEXC_CTL(current, arg2);
|
|
break;
|
|
case PR_GET_TIMING:
|
|
error = PR_TIMING_STATISTICAL;
|
|
break;
|
|
case PR_SET_TIMING:
|
|
if (arg2 != PR_TIMING_STATISTICAL)
|
|
error = -EINVAL;
|
|
break;
|
|
|
|
case PR_SET_NAME: {
|
|
struct task_struct *me = current;
|
|
unsigned char ncomm[sizeof(me->comm)];
|
|
|
|
ncomm[sizeof(me->comm)-1] = 0;
|
|
if (strncpy_from_user(ncomm, (char __user *)arg2,
|
|
sizeof(me->comm)-1) < 0)
|
|
return -EFAULT;
|
|
set_task_comm(me, ncomm);
|
|
return 0;
|
|
}
|
|
case PR_GET_NAME: {
|
|
struct task_struct *me = current;
|
|
unsigned char tcomm[sizeof(me->comm)];
|
|
|
|
get_task_comm(tcomm, me);
|
|
if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
case PR_GET_ENDIAN:
|
|
error = GET_ENDIAN(current, arg2);
|
|
break;
|
|
case PR_SET_ENDIAN:
|
|
error = SET_ENDIAN(current, arg2);
|
|
break;
|
|
|
|
case PR_GET_SECCOMP:
|
|
error = prctl_get_seccomp();
|
|
break;
|
|
case PR_SET_SECCOMP:
|
|
error = prctl_set_seccomp(arg2);
|
|
break;
|
|
case PR_GET_TSC:
|
|
error = GET_TSC_CTL(arg2);
|
|
break;
|
|
case PR_SET_TSC:
|
|
error = SET_TSC_CTL(arg2);
|
|
break;
|
|
default:
|
|
error = -EINVAL;
|
|
break;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
asmlinkage long sys_getcpu(unsigned __user *cpup, unsigned __user *nodep,
|
|
struct getcpu_cache __user *unused)
|
|
{
|
|
int err = 0;
|
|
int cpu = raw_smp_processor_id();
|
|
if (cpup)
|
|
err |= put_user(cpu, cpup);
|
|
if (nodep)
|
|
err |= put_user(cpu_to_node(cpu), nodep);
|
|
return err ? -EFAULT : 0;
|
|
}
|
|
|
|
char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
|
|
|
|
static void argv_cleanup(char **argv, char **envp)
|
|
{
|
|
argv_free(argv);
|
|
}
|
|
|
|
/**
|
|
* orderly_poweroff - Trigger an orderly system poweroff
|
|
* @force: force poweroff if command execution fails
|
|
*
|
|
* This may be called from any context to trigger a system shutdown.
|
|
* If the orderly shutdown fails, it will force an immediate shutdown.
|
|
*/
|
|
int orderly_poweroff(bool force)
|
|
{
|
|
int argc;
|
|
char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
|
|
static char *envp[] = {
|
|
"HOME=/",
|
|
"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
|
|
NULL
|
|
};
|
|
int ret = -ENOMEM;
|
|
struct subprocess_info *info;
|
|
|
|
if (argv == NULL) {
|
|
printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
|
|
__func__, poweroff_cmd);
|
|
goto out;
|
|
}
|
|
|
|
info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
|
|
if (info == NULL) {
|
|
argv_free(argv);
|
|
goto out;
|
|
}
|
|
|
|
call_usermodehelper_setcleanup(info, argv_cleanup);
|
|
|
|
ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
|
|
|
|
out:
|
|
if (ret && force) {
|
|
printk(KERN_WARNING "Failed to start orderly shutdown: "
|
|
"forcing the issue\n");
|
|
|
|
/* I guess this should try to kick off some daemon to
|
|
sync and poweroff asap. Or not even bother syncing
|
|
if we're doing an emergency shutdown? */
|
|
emergency_sync();
|
|
kernel_power_off();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(orderly_poweroff);
|