mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
6c2bb98bc3
Up until now algorithms have been happy to get a context pointer since they know everything that's in the tfm already (e.g., alignment, block size). However, once we have parameterised algorithms, such information will be specific to each tfm. So the algorithm API needs to be changed to pass the tfm structure instead of the context pointer. This patch is basically a text substitution. The only tricky bit is the assembly routines that need to get the context pointer offset through asm-offsets.h. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
505 lines
13 KiB
C
505 lines
13 KiB
C
/*
|
|
*
|
|
* Glue Code for optimized 586 assembler version of AES
|
|
*
|
|
* Copyright (c) 2002, Dr Brian Gladman <>, Worcester, UK.
|
|
* All rights reserved.
|
|
*
|
|
* LICENSE TERMS
|
|
*
|
|
* The free distribution and use of this software in both source and binary
|
|
* form is allowed (with or without changes) provided that:
|
|
*
|
|
* 1. distributions of this source code include the above copyright
|
|
* notice, this list of conditions and the following disclaimer;
|
|
*
|
|
* 2. distributions in binary form include the above copyright
|
|
* notice, this list of conditions and the following disclaimer
|
|
* in the documentation and/or other associated materials;
|
|
*
|
|
* 3. the copyright holder's name is not used to endorse products
|
|
* built using this software without specific written permission.
|
|
*
|
|
* ALTERNATIVELY, provided that this notice is retained in full, this product
|
|
* may be distributed under the terms of the GNU General Public License (GPL),
|
|
* in which case the provisions of the GPL apply INSTEAD OF those given above.
|
|
*
|
|
* DISCLAIMER
|
|
*
|
|
* This software is provided 'as is' with no explicit or implied warranties
|
|
* in respect of its properties, including, but not limited to, correctness
|
|
* and/or fitness for purpose.
|
|
*
|
|
* Copyright (c) 2003, Adam J. Richter <adam@yggdrasil.com> (conversion to
|
|
* 2.5 API).
|
|
* Copyright (c) 2003, 2004 Fruhwirth Clemens <clemens@endorphin.org>
|
|
* Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
|
|
*
|
|
*/
|
|
|
|
#include <asm/byteorder.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/types.h>
|
|
#include <linux/crypto.h>
|
|
#include <linux/linkage.h>
|
|
|
|
asmlinkage void aes_enc_blk(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
|
|
asmlinkage void aes_dec_blk(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
|
|
|
|
#define AES_MIN_KEY_SIZE 16
|
|
#define AES_MAX_KEY_SIZE 32
|
|
#define AES_BLOCK_SIZE 16
|
|
#define AES_KS_LENGTH 4 * AES_BLOCK_SIZE
|
|
#define RC_LENGTH 29
|
|
|
|
struct aes_ctx {
|
|
u32 ekey[AES_KS_LENGTH];
|
|
u32 rounds;
|
|
u32 dkey[AES_KS_LENGTH];
|
|
};
|
|
|
|
#define WPOLY 0x011b
|
|
#define bytes2word(b0, b1, b2, b3) \
|
|
(((u32)(b3) << 24) | ((u32)(b2) << 16) | ((u32)(b1) << 8) | (b0))
|
|
|
|
/* define the finite field multiplies required for Rijndael */
|
|
#define f2(x) ((x) ? pow[log[x] + 0x19] : 0)
|
|
#define f3(x) ((x) ? pow[log[x] + 0x01] : 0)
|
|
#define f9(x) ((x) ? pow[log[x] + 0xc7] : 0)
|
|
#define fb(x) ((x) ? pow[log[x] + 0x68] : 0)
|
|
#define fd(x) ((x) ? pow[log[x] + 0xee] : 0)
|
|
#define fe(x) ((x) ? pow[log[x] + 0xdf] : 0)
|
|
#define fi(x) ((x) ? pow[255 - log[x]]: 0)
|
|
|
|
static inline u32 upr(u32 x, int n)
|
|
{
|
|
return (x << 8 * n) | (x >> (32 - 8 * n));
|
|
}
|
|
|
|
static inline u8 bval(u32 x, int n)
|
|
{
|
|
return x >> 8 * n;
|
|
}
|
|
|
|
/* The forward and inverse affine transformations used in the S-box */
|
|
#define fwd_affine(x) \
|
|
(w = (u32)x, w ^= (w<<1)^(w<<2)^(w<<3)^(w<<4), 0x63^(u8)(w^(w>>8)))
|
|
|
|
#define inv_affine(x) \
|
|
(w = (u32)x, w = (w<<1)^(w<<3)^(w<<6), 0x05^(u8)(w^(w>>8)))
|
|
|
|
static u32 rcon_tab[RC_LENGTH];
|
|
|
|
u32 ft_tab[4][256];
|
|
u32 fl_tab[4][256];
|
|
static u32 im_tab[4][256];
|
|
u32 il_tab[4][256];
|
|
u32 it_tab[4][256];
|
|
|
|
static void gen_tabs(void)
|
|
{
|
|
u32 i, w;
|
|
u8 pow[512], log[256];
|
|
|
|
/*
|
|
* log and power tables for GF(2^8) finite field with
|
|
* WPOLY as modular polynomial - the simplest primitive
|
|
* root is 0x03, used here to generate the tables.
|
|
*/
|
|
i = 0; w = 1;
|
|
|
|
do {
|
|
pow[i] = (u8)w;
|
|
pow[i + 255] = (u8)w;
|
|
log[w] = (u8)i++;
|
|
w ^= (w << 1) ^ (w & 0x80 ? WPOLY : 0);
|
|
} while (w != 1);
|
|
|
|
for(i = 0, w = 1; i < RC_LENGTH; ++i) {
|
|
rcon_tab[i] = bytes2word(w, 0, 0, 0);
|
|
w = f2(w);
|
|
}
|
|
|
|
for(i = 0; i < 256; ++i) {
|
|
u8 b;
|
|
|
|
b = fwd_affine(fi((u8)i));
|
|
w = bytes2word(f2(b), b, b, f3(b));
|
|
|
|
/* tables for a normal encryption round */
|
|
ft_tab[0][i] = w;
|
|
ft_tab[1][i] = upr(w, 1);
|
|
ft_tab[2][i] = upr(w, 2);
|
|
ft_tab[3][i] = upr(w, 3);
|
|
w = bytes2word(b, 0, 0, 0);
|
|
|
|
/*
|
|
* tables for last encryption round
|
|
* (may also be used in the key schedule)
|
|
*/
|
|
fl_tab[0][i] = w;
|
|
fl_tab[1][i] = upr(w, 1);
|
|
fl_tab[2][i] = upr(w, 2);
|
|
fl_tab[3][i] = upr(w, 3);
|
|
|
|
b = fi(inv_affine((u8)i));
|
|
w = bytes2word(fe(b), f9(b), fd(b), fb(b));
|
|
|
|
/* tables for the inverse mix column operation */
|
|
im_tab[0][b] = w;
|
|
im_tab[1][b] = upr(w, 1);
|
|
im_tab[2][b] = upr(w, 2);
|
|
im_tab[3][b] = upr(w, 3);
|
|
|
|
/* tables for a normal decryption round */
|
|
it_tab[0][i] = w;
|
|
it_tab[1][i] = upr(w,1);
|
|
it_tab[2][i] = upr(w,2);
|
|
it_tab[3][i] = upr(w,3);
|
|
|
|
w = bytes2word(b, 0, 0, 0);
|
|
|
|
/* tables for last decryption round */
|
|
il_tab[0][i] = w;
|
|
il_tab[1][i] = upr(w,1);
|
|
il_tab[2][i] = upr(w,2);
|
|
il_tab[3][i] = upr(w,3);
|
|
}
|
|
}
|
|
|
|
#define four_tables(x,tab,vf,rf,c) \
|
|
( tab[0][bval(vf(x,0,c),rf(0,c))] ^ \
|
|
tab[1][bval(vf(x,1,c),rf(1,c))] ^ \
|
|
tab[2][bval(vf(x,2,c),rf(2,c))] ^ \
|
|
tab[3][bval(vf(x,3,c),rf(3,c))] \
|
|
)
|
|
|
|
#define vf1(x,r,c) (x)
|
|
#define rf1(r,c) (r)
|
|
#define rf2(r,c) ((r-c)&3)
|
|
|
|
#define inv_mcol(x) four_tables(x,im_tab,vf1,rf1,0)
|
|
#define ls_box(x,c) four_tables(x,fl_tab,vf1,rf2,c)
|
|
|
|
#define ff(x) inv_mcol(x)
|
|
|
|
#define ke4(k,i) \
|
|
{ \
|
|
k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; \
|
|
k[4*(i)+5] = ss[1] ^= ss[0]; \
|
|
k[4*(i)+6] = ss[2] ^= ss[1]; \
|
|
k[4*(i)+7] = ss[3] ^= ss[2]; \
|
|
}
|
|
|
|
#define kel4(k,i) \
|
|
{ \
|
|
k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; \
|
|
k[4*(i)+5] = ss[1] ^= ss[0]; \
|
|
k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \
|
|
}
|
|
|
|
#define ke6(k,i) \
|
|
{ \
|
|
k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \
|
|
k[6*(i)+ 7] = ss[1] ^= ss[0]; \
|
|
k[6*(i)+ 8] = ss[2] ^= ss[1]; \
|
|
k[6*(i)+ 9] = ss[3] ^= ss[2]; \
|
|
k[6*(i)+10] = ss[4] ^= ss[3]; \
|
|
k[6*(i)+11] = ss[5] ^= ss[4]; \
|
|
}
|
|
|
|
#define kel6(k,i) \
|
|
{ \
|
|
k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \
|
|
k[6*(i)+ 7] = ss[1] ^= ss[0]; \
|
|
k[6*(i)+ 8] = ss[2] ^= ss[1]; \
|
|
k[6*(i)+ 9] = ss[3] ^= ss[2]; \
|
|
}
|
|
|
|
#define ke8(k,i) \
|
|
{ \
|
|
k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \
|
|
k[8*(i)+ 9] = ss[1] ^= ss[0]; \
|
|
k[8*(i)+10] = ss[2] ^= ss[1]; \
|
|
k[8*(i)+11] = ss[3] ^= ss[2]; \
|
|
k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); \
|
|
k[8*(i)+13] = ss[5] ^= ss[4]; \
|
|
k[8*(i)+14] = ss[6] ^= ss[5]; \
|
|
k[8*(i)+15] = ss[7] ^= ss[6]; \
|
|
}
|
|
|
|
#define kel8(k,i) \
|
|
{ \
|
|
k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \
|
|
k[8*(i)+ 9] = ss[1] ^= ss[0]; \
|
|
k[8*(i)+10] = ss[2] ^= ss[1]; \
|
|
k[8*(i)+11] = ss[3] ^= ss[2]; \
|
|
}
|
|
|
|
#define kdf4(k,i) \
|
|
{ \
|
|
ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; \
|
|
ss[1] = ss[1] ^ ss[3]; \
|
|
ss[2] = ss[2] ^ ss[3]; \
|
|
ss[3] = ss[3]; \
|
|
ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; \
|
|
ss[i % 4] ^= ss[4]; \
|
|
ss[4] ^= k[4*(i)]; \
|
|
k[4*(i)+4] = ff(ss[4]); \
|
|
ss[4] ^= k[4*(i)+1]; \
|
|
k[4*(i)+5] = ff(ss[4]); \
|
|
ss[4] ^= k[4*(i)+2]; \
|
|
k[4*(i)+6] = ff(ss[4]); \
|
|
ss[4] ^= k[4*(i)+3]; \
|
|
k[4*(i)+7] = ff(ss[4]); \
|
|
}
|
|
|
|
#define kd4(k,i) \
|
|
{ \
|
|
ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; \
|
|
ss[i % 4] ^= ss[4]; \
|
|
ss[4] = ff(ss[4]); \
|
|
k[4*(i)+4] = ss[4] ^= k[4*(i)]; \
|
|
k[4*(i)+5] = ss[4] ^= k[4*(i)+1]; \
|
|
k[4*(i)+6] = ss[4] ^= k[4*(i)+2]; \
|
|
k[4*(i)+7] = ss[4] ^= k[4*(i)+3]; \
|
|
}
|
|
|
|
#define kdl4(k,i) \
|
|
{ \
|
|
ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; \
|
|
ss[i % 4] ^= ss[4]; \
|
|
k[4*(i)+4] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; \
|
|
k[4*(i)+5] = ss[1] ^ ss[3]; \
|
|
k[4*(i)+6] = ss[0]; \
|
|
k[4*(i)+7] = ss[1]; \
|
|
}
|
|
|
|
#define kdf6(k,i) \
|
|
{ \
|
|
ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \
|
|
k[6*(i)+ 6] = ff(ss[0]); \
|
|
ss[1] ^= ss[0]; \
|
|
k[6*(i)+ 7] = ff(ss[1]); \
|
|
ss[2] ^= ss[1]; \
|
|
k[6*(i)+ 8] = ff(ss[2]); \
|
|
ss[3] ^= ss[2]; \
|
|
k[6*(i)+ 9] = ff(ss[3]); \
|
|
ss[4] ^= ss[3]; \
|
|
k[6*(i)+10] = ff(ss[4]); \
|
|
ss[5] ^= ss[4]; \
|
|
k[6*(i)+11] = ff(ss[5]); \
|
|
}
|
|
|
|
#define kd6(k,i) \
|
|
{ \
|
|
ss[6] = ls_box(ss[5],3) ^ rcon_tab[i]; \
|
|
ss[0] ^= ss[6]; ss[6] = ff(ss[6]); \
|
|
k[6*(i)+ 6] = ss[6] ^= k[6*(i)]; \
|
|
ss[1] ^= ss[0]; \
|
|
k[6*(i)+ 7] = ss[6] ^= k[6*(i)+ 1]; \
|
|
ss[2] ^= ss[1]; \
|
|
k[6*(i)+ 8] = ss[6] ^= k[6*(i)+ 2]; \
|
|
ss[3] ^= ss[2]; \
|
|
k[6*(i)+ 9] = ss[6] ^= k[6*(i)+ 3]; \
|
|
ss[4] ^= ss[3]; \
|
|
k[6*(i)+10] = ss[6] ^= k[6*(i)+ 4]; \
|
|
ss[5] ^= ss[4]; \
|
|
k[6*(i)+11] = ss[6] ^= k[6*(i)+ 5]; \
|
|
}
|
|
|
|
#define kdl6(k,i) \
|
|
{ \
|
|
ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \
|
|
k[6*(i)+ 6] = ss[0]; \
|
|
ss[1] ^= ss[0]; \
|
|
k[6*(i)+ 7] = ss[1]; \
|
|
ss[2] ^= ss[1]; \
|
|
k[6*(i)+ 8] = ss[2]; \
|
|
ss[3] ^= ss[2]; \
|
|
k[6*(i)+ 9] = ss[3]; \
|
|
}
|
|
|
|
#define kdf8(k,i) \
|
|
{ \
|
|
ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \
|
|
k[8*(i)+ 8] = ff(ss[0]); \
|
|
ss[1] ^= ss[0]; \
|
|
k[8*(i)+ 9] = ff(ss[1]); \
|
|
ss[2] ^= ss[1]; \
|
|
k[8*(i)+10] = ff(ss[2]); \
|
|
ss[3] ^= ss[2]; \
|
|
k[8*(i)+11] = ff(ss[3]); \
|
|
ss[4] ^= ls_box(ss[3],0); \
|
|
k[8*(i)+12] = ff(ss[4]); \
|
|
ss[5] ^= ss[4]; \
|
|
k[8*(i)+13] = ff(ss[5]); \
|
|
ss[6] ^= ss[5]; \
|
|
k[8*(i)+14] = ff(ss[6]); \
|
|
ss[7] ^= ss[6]; \
|
|
k[8*(i)+15] = ff(ss[7]); \
|
|
}
|
|
|
|
#define kd8(k,i) \
|
|
{ \
|
|
u32 __g = ls_box(ss[7],3) ^ rcon_tab[i]; \
|
|
ss[0] ^= __g; \
|
|
__g = ff(__g); \
|
|
k[8*(i)+ 8] = __g ^= k[8*(i)]; \
|
|
ss[1] ^= ss[0]; \
|
|
k[8*(i)+ 9] = __g ^= k[8*(i)+ 1]; \
|
|
ss[2] ^= ss[1]; \
|
|
k[8*(i)+10] = __g ^= k[8*(i)+ 2]; \
|
|
ss[3] ^= ss[2]; \
|
|
k[8*(i)+11] = __g ^= k[8*(i)+ 3]; \
|
|
__g = ls_box(ss[3],0); \
|
|
ss[4] ^= __g; \
|
|
__g = ff(__g); \
|
|
k[8*(i)+12] = __g ^= k[8*(i)+ 4]; \
|
|
ss[5] ^= ss[4]; \
|
|
k[8*(i)+13] = __g ^= k[8*(i)+ 5]; \
|
|
ss[6] ^= ss[5]; \
|
|
k[8*(i)+14] = __g ^= k[8*(i)+ 6]; \
|
|
ss[7] ^= ss[6]; \
|
|
k[8*(i)+15] = __g ^= k[8*(i)+ 7]; \
|
|
}
|
|
|
|
#define kdl8(k,i) \
|
|
{ \
|
|
ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \
|
|
k[8*(i)+ 8] = ss[0]; \
|
|
ss[1] ^= ss[0]; \
|
|
k[8*(i)+ 9] = ss[1]; \
|
|
ss[2] ^= ss[1]; \
|
|
k[8*(i)+10] = ss[2]; \
|
|
ss[3] ^= ss[2]; \
|
|
k[8*(i)+11] = ss[3]; \
|
|
}
|
|
|
|
static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
|
|
unsigned int key_len, u32 *flags)
|
|
{
|
|
int i;
|
|
u32 ss[8];
|
|
struct aes_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
const __le32 *key = (const __le32 *)in_key;
|
|
|
|
/* encryption schedule */
|
|
|
|
ctx->ekey[0] = ss[0] = le32_to_cpu(key[0]);
|
|
ctx->ekey[1] = ss[1] = le32_to_cpu(key[1]);
|
|
ctx->ekey[2] = ss[2] = le32_to_cpu(key[2]);
|
|
ctx->ekey[3] = ss[3] = le32_to_cpu(key[3]);
|
|
|
|
switch(key_len) {
|
|
case 16:
|
|
for (i = 0; i < 9; i++)
|
|
ke4(ctx->ekey, i);
|
|
kel4(ctx->ekey, 9);
|
|
ctx->rounds = 10;
|
|
break;
|
|
|
|
case 24:
|
|
ctx->ekey[4] = ss[4] = le32_to_cpu(key[4]);
|
|
ctx->ekey[5] = ss[5] = le32_to_cpu(key[5]);
|
|
for (i = 0; i < 7; i++)
|
|
ke6(ctx->ekey, i);
|
|
kel6(ctx->ekey, 7);
|
|
ctx->rounds = 12;
|
|
break;
|
|
|
|
case 32:
|
|
ctx->ekey[4] = ss[4] = le32_to_cpu(key[4]);
|
|
ctx->ekey[5] = ss[5] = le32_to_cpu(key[5]);
|
|
ctx->ekey[6] = ss[6] = le32_to_cpu(key[6]);
|
|
ctx->ekey[7] = ss[7] = le32_to_cpu(key[7]);
|
|
for (i = 0; i < 6; i++)
|
|
ke8(ctx->ekey, i);
|
|
kel8(ctx->ekey, 6);
|
|
ctx->rounds = 14;
|
|
break;
|
|
|
|
default:
|
|
*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* decryption schedule */
|
|
|
|
ctx->dkey[0] = ss[0] = le32_to_cpu(key[0]);
|
|
ctx->dkey[1] = ss[1] = le32_to_cpu(key[1]);
|
|
ctx->dkey[2] = ss[2] = le32_to_cpu(key[2]);
|
|
ctx->dkey[3] = ss[3] = le32_to_cpu(key[3]);
|
|
|
|
switch (key_len) {
|
|
case 16:
|
|
kdf4(ctx->dkey, 0);
|
|
for (i = 1; i < 9; i++)
|
|
kd4(ctx->dkey, i);
|
|
kdl4(ctx->dkey, 9);
|
|
break;
|
|
|
|
case 24:
|
|
ctx->dkey[4] = ff(ss[4] = le32_to_cpu(key[4]));
|
|
ctx->dkey[5] = ff(ss[5] = le32_to_cpu(key[5]));
|
|
kdf6(ctx->dkey, 0);
|
|
for (i = 1; i < 7; i++)
|
|
kd6(ctx->dkey, i);
|
|
kdl6(ctx->dkey, 7);
|
|
break;
|
|
|
|
case 32:
|
|
ctx->dkey[4] = ff(ss[4] = le32_to_cpu(key[4]));
|
|
ctx->dkey[5] = ff(ss[5] = le32_to_cpu(key[5]));
|
|
ctx->dkey[6] = ff(ss[6] = le32_to_cpu(key[6]));
|
|
ctx->dkey[7] = ff(ss[7] = le32_to_cpu(key[7]));
|
|
kdf8(ctx->dkey, 0);
|
|
for (i = 1; i < 6; i++)
|
|
kd8(ctx->dkey, i);
|
|
kdl8(ctx->dkey, 6);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct crypto_alg aes_alg = {
|
|
.cra_name = "aes",
|
|
.cra_driver_name = "aes-i586",
|
|
.cra_priority = 200,
|
|
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct aes_ctx),
|
|
.cra_module = THIS_MODULE,
|
|
.cra_list = LIST_HEAD_INIT(aes_alg.cra_list),
|
|
.cra_u = {
|
|
.cipher = {
|
|
.cia_min_keysize = AES_MIN_KEY_SIZE,
|
|
.cia_max_keysize = AES_MAX_KEY_SIZE,
|
|
.cia_setkey = aes_set_key,
|
|
.cia_encrypt = aes_enc_blk,
|
|
.cia_decrypt = aes_dec_blk
|
|
}
|
|
}
|
|
};
|
|
|
|
static int __init aes_init(void)
|
|
{
|
|
gen_tabs();
|
|
return crypto_register_alg(&aes_alg);
|
|
}
|
|
|
|
static void __exit aes_fini(void)
|
|
{
|
|
crypto_unregister_alg(&aes_alg);
|
|
}
|
|
|
|
module_init(aes_init);
|
|
module_exit(aes_fini);
|
|
|
|
MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, i586 asm optimized");
|
|
MODULE_LICENSE("Dual BSD/GPL");
|
|
MODULE_AUTHOR("Fruhwirth Clemens, James Morris, Brian Gladman, Adam Richter");
|
|
MODULE_ALIAS("aes");
|