linux_dsm_epyc7002/drivers/iio/adc/qcom-spmi-vadc.c
Thomas Gleixner 97fb5e8d9b treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 284
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license version 2 and
  only version 2 as published by the free software foundation this
  program is distributed in the hope that it will be useful but
  without any warranty without even the implied warranty of
  merchantability or fitness for a particular purpose see the gnu
  general public license for more details

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 294 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190529141900.825281744@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-05 17:36:37 +02:00

941 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2012-2016, The Linux Foundation. All rights reserved.
*/
#include <linux/bitops.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/iio/iio.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/log2.h>
#include <dt-bindings/iio/qcom,spmi-vadc.h>
#include "qcom-vadc-common.h"
/* VADC register and bit definitions */
#define VADC_REVISION2 0x1
#define VADC_REVISION2_SUPPORTED_VADC 1
#define VADC_PERPH_TYPE 0x4
#define VADC_PERPH_TYPE_ADC 8
#define VADC_PERPH_SUBTYPE 0x5
#define VADC_PERPH_SUBTYPE_VADC 1
#define VADC_STATUS1 0x8
#define VADC_STATUS1_OP_MODE 4
#define VADC_STATUS1_REQ_STS BIT(1)
#define VADC_STATUS1_EOC BIT(0)
#define VADC_STATUS1_REQ_STS_EOC_MASK 0x3
#define VADC_MODE_CTL 0x40
#define VADC_OP_MODE_SHIFT 3
#define VADC_OP_MODE_NORMAL 0
#define VADC_AMUX_TRIM_EN BIT(1)
#define VADC_ADC_TRIM_EN BIT(0)
#define VADC_EN_CTL1 0x46
#define VADC_EN_CTL1_SET BIT(7)
#define VADC_ADC_CH_SEL_CTL 0x48
#define VADC_ADC_DIG_PARAM 0x50
#define VADC_ADC_DIG_DEC_RATIO_SEL_SHIFT 2
#define VADC_HW_SETTLE_DELAY 0x51
#define VADC_CONV_REQ 0x52
#define VADC_CONV_REQ_SET BIT(7)
#define VADC_FAST_AVG_CTL 0x5a
#define VADC_FAST_AVG_EN 0x5b
#define VADC_FAST_AVG_EN_SET BIT(7)
#define VADC_ACCESS 0xd0
#define VADC_ACCESS_DATA 0xa5
#define VADC_PERH_RESET_CTL3 0xda
#define VADC_FOLLOW_WARM_RB BIT(2)
#define VADC_DATA 0x60 /* 16 bits */
#define VADC_CHAN_MIN VADC_USBIN
#define VADC_CHAN_MAX VADC_LR_MUX3_BUF_PU1_PU2_XO_THERM
/**
* struct vadc_channel_prop - VADC channel property.
* @channel: channel number, refer to the channel list.
* @calibration: calibration type.
* @decimation: sampling rate supported for the channel.
* @prescale: channel scaling performed on the input signal.
* @hw_settle_time: the time between AMUX being configured and the
* start of conversion.
* @avg_samples: ability to provide single result from the ADC
* that is an average of multiple measurements.
* @scale_fn_type: Represents the scaling function to convert voltage
* physical units desired by the client for the channel.
*/
struct vadc_channel_prop {
unsigned int channel;
enum vadc_calibration calibration;
unsigned int decimation;
unsigned int prescale;
unsigned int hw_settle_time;
unsigned int avg_samples;
enum vadc_scale_fn_type scale_fn_type;
};
/**
* struct vadc_priv - VADC private structure.
* @regmap: pointer to struct regmap.
* @dev: pointer to struct device.
* @base: base address for the ADC peripheral.
* @nchannels: number of VADC channels.
* @chan_props: array of VADC channel properties.
* @iio_chans: array of IIO channels specification.
* @are_ref_measured: are reference points measured.
* @poll_eoc: use polling instead of interrupt.
* @complete: VADC result notification after interrupt is received.
* @graph: store parameters for calibration.
* @lock: ADC lock for access to the peripheral.
*/
struct vadc_priv {
struct regmap *regmap;
struct device *dev;
u16 base;
unsigned int nchannels;
struct vadc_channel_prop *chan_props;
struct iio_chan_spec *iio_chans;
bool are_ref_measured;
bool poll_eoc;
struct completion complete;
struct vadc_linear_graph graph[2];
struct mutex lock;
};
static const struct vadc_prescale_ratio vadc_prescale_ratios[] = {
{.num = 1, .den = 1},
{.num = 1, .den = 3},
{.num = 1, .den = 4},
{.num = 1, .den = 6},
{.num = 1, .den = 20},
{.num = 1, .den = 8},
{.num = 10, .den = 81},
{.num = 1, .den = 10}
};
static int vadc_read(struct vadc_priv *vadc, u16 offset, u8 *data)
{
return regmap_bulk_read(vadc->regmap, vadc->base + offset, data, 1);
}
static int vadc_write(struct vadc_priv *vadc, u16 offset, u8 data)
{
return regmap_write(vadc->regmap, vadc->base + offset, data);
}
static int vadc_reset(struct vadc_priv *vadc)
{
u8 data;
int ret;
ret = vadc_write(vadc, VADC_ACCESS, VADC_ACCESS_DATA);
if (ret)
return ret;
ret = vadc_read(vadc, VADC_PERH_RESET_CTL3, &data);
if (ret)
return ret;
ret = vadc_write(vadc, VADC_ACCESS, VADC_ACCESS_DATA);
if (ret)
return ret;
data |= VADC_FOLLOW_WARM_RB;
return vadc_write(vadc, VADC_PERH_RESET_CTL3, data);
}
static int vadc_set_state(struct vadc_priv *vadc, bool state)
{
return vadc_write(vadc, VADC_EN_CTL1, state ? VADC_EN_CTL1_SET : 0);
}
static void vadc_show_status(struct vadc_priv *vadc)
{
u8 mode, sta1, chan, dig, en, req;
int ret;
ret = vadc_read(vadc, VADC_MODE_CTL, &mode);
if (ret)
return;
ret = vadc_read(vadc, VADC_ADC_DIG_PARAM, &dig);
if (ret)
return;
ret = vadc_read(vadc, VADC_ADC_CH_SEL_CTL, &chan);
if (ret)
return;
ret = vadc_read(vadc, VADC_CONV_REQ, &req);
if (ret)
return;
ret = vadc_read(vadc, VADC_STATUS1, &sta1);
if (ret)
return;
ret = vadc_read(vadc, VADC_EN_CTL1, &en);
if (ret)
return;
dev_err(vadc->dev,
"mode:%02x en:%02x chan:%02x dig:%02x req:%02x sta1:%02x\n",
mode, en, chan, dig, req, sta1);
}
static int vadc_configure(struct vadc_priv *vadc,
struct vadc_channel_prop *prop)
{
u8 decimation, mode_ctrl;
int ret;
/* Mode selection */
mode_ctrl = (VADC_OP_MODE_NORMAL << VADC_OP_MODE_SHIFT) |
VADC_ADC_TRIM_EN | VADC_AMUX_TRIM_EN;
ret = vadc_write(vadc, VADC_MODE_CTL, mode_ctrl);
if (ret)
return ret;
/* Channel selection */
ret = vadc_write(vadc, VADC_ADC_CH_SEL_CTL, prop->channel);
if (ret)
return ret;
/* Digital parameter setup */
decimation = prop->decimation << VADC_ADC_DIG_DEC_RATIO_SEL_SHIFT;
ret = vadc_write(vadc, VADC_ADC_DIG_PARAM, decimation);
if (ret)
return ret;
/* HW settle time delay */
ret = vadc_write(vadc, VADC_HW_SETTLE_DELAY, prop->hw_settle_time);
if (ret)
return ret;
ret = vadc_write(vadc, VADC_FAST_AVG_CTL, prop->avg_samples);
if (ret)
return ret;
if (prop->avg_samples)
ret = vadc_write(vadc, VADC_FAST_AVG_EN, VADC_FAST_AVG_EN_SET);
else
ret = vadc_write(vadc, VADC_FAST_AVG_EN, 0);
return ret;
}
static int vadc_poll_wait_eoc(struct vadc_priv *vadc, unsigned int interval_us)
{
unsigned int count, retry;
u8 sta1;
int ret;
retry = interval_us / VADC_CONV_TIME_MIN_US;
for (count = 0; count < retry; count++) {
ret = vadc_read(vadc, VADC_STATUS1, &sta1);
if (ret)
return ret;
sta1 &= VADC_STATUS1_REQ_STS_EOC_MASK;
if (sta1 == VADC_STATUS1_EOC)
return 0;
usleep_range(VADC_CONV_TIME_MIN_US, VADC_CONV_TIME_MAX_US);
}
vadc_show_status(vadc);
return -ETIMEDOUT;
}
static int vadc_read_result(struct vadc_priv *vadc, u16 *data)
{
int ret;
ret = regmap_bulk_read(vadc->regmap, vadc->base + VADC_DATA, data, 2);
if (ret)
return ret;
*data = clamp_t(u16, *data, VADC_MIN_ADC_CODE, VADC_MAX_ADC_CODE);
return 0;
}
static struct vadc_channel_prop *vadc_get_channel(struct vadc_priv *vadc,
unsigned int num)
{
unsigned int i;
for (i = 0; i < vadc->nchannels; i++)
if (vadc->chan_props[i].channel == num)
return &vadc->chan_props[i];
dev_dbg(vadc->dev, "no such channel %02x\n", num);
return NULL;
}
static int vadc_do_conversion(struct vadc_priv *vadc,
struct vadc_channel_prop *prop, u16 *data)
{
unsigned int timeout;
int ret;
mutex_lock(&vadc->lock);
ret = vadc_configure(vadc, prop);
if (ret)
goto unlock;
if (!vadc->poll_eoc)
reinit_completion(&vadc->complete);
ret = vadc_set_state(vadc, true);
if (ret)
goto unlock;
ret = vadc_write(vadc, VADC_CONV_REQ, VADC_CONV_REQ_SET);
if (ret)
goto err_disable;
timeout = BIT(prop->avg_samples) * VADC_CONV_TIME_MIN_US * 2;
if (vadc->poll_eoc) {
ret = vadc_poll_wait_eoc(vadc, timeout);
} else {
ret = wait_for_completion_timeout(&vadc->complete, timeout);
if (!ret) {
ret = -ETIMEDOUT;
goto err_disable;
}
/* Double check conversion status */
ret = vadc_poll_wait_eoc(vadc, VADC_CONV_TIME_MIN_US);
if (ret)
goto err_disable;
}
ret = vadc_read_result(vadc, data);
err_disable:
vadc_set_state(vadc, false);
if (ret)
dev_err(vadc->dev, "conversion failed\n");
unlock:
mutex_unlock(&vadc->lock);
return ret;
}
static int vadc_measure_ref_points(struct vadc_priv *vadc)
{
struct vadc_channel_prop *prop;
u16 read_1, read_2;
int ret;
vadc->graph[VADC_CALIB_RATIOMETRIC].dx = VADC_RATIOMETRIC_RANGE;
vadc->graph[VADC_CALIB_ABSOLUTE].dx = VADC_ABSOLUTE_RANGE_UV;
prop = vadc_get_channel(vadc, VADC_REF_1250MV);
ret = vadc_do_conversion(vadc, prop, &read_1);
if (ret)
goto err;
/* Try with buffered 625mV channel first */
prop = vadc_get_channel(vadc, VADC_SPARE1);
if (!prop)
prop = vadc_get_channel(vadc, VADC_REF_625MV);
ret = vadc_do_conversion(vadc, prop, &read_2);
if (ret)
goto err;
if (read_1 == read_2) {
ret = -EINVAL;
goto err;
}
vadc->graph[VADC_CALIB_ABSOLUTE].dy = read_1 - read_2;
vadc->graph[VADC_CALIB_ABSOLUTE].gnd = read_2;
/* Ratiometric calibration */
prop = vadc_get_channel(vadc, VADC_VDD_VADC);
ret = vadc_do_conversion(vadc, prop, &read_1);
if (ret)
goto err;
prop = vadc_get_channel(vadc, VADC_GND_REF);
ret = vadc_do_conversion(vadc, prop, &read_2);
if (ret)
goto err;
if (read_1 == read_2) {
ret = -EINVAL;
goto err;
}
vadc->graph[VADC_CALIB_RATIOMETRIC].dy = read_1 - read_2;
vadc->graph[VADC_CALIB_RATIOMETRIC].gnd = read_2;
err:
if (ret)
dev_err(vadc->dev, "measure reference points failed\n");
return ret;
}
static int vadc_prescaling_from_dt(u32 num, u32 den)
{
unsigned int pre;
for (pre = 0; pre < ARRAY_SIZE(vadc_prescale_ratios); pre++)
if (vadc_prescale_ratios[pre].num == num &&
vadc_prescale_ratios[pre].den == den)
break;
if (pre == ARRAY_SIZE(vadc_prescale_ratios))
return -EINVAL;
return pre;
}
static int vadc_hw_settle_time_from_dt(u32 value)
{
if ((value <= 1000 && value % 100) || (value > 1000 && value % 2000))
return -EINVAL;
if (value <= 1000)
value /= 100;
else
value = value / 2000 + 10;
return value;
}
static int vadc_avg_samples_from_dt(u32 value)
{
if (!is_power_of_2(value) || value > VADC_AVG_SAMPLES_MAX)
return -EINVAL;
return __ffs64(value);
}
static int vadc_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val, int *val2,
long mask)
{
struct vadc_priv *vadc = iio_priv(indio_dev);
struct vadc_channel_prop *prop;
u16 adc_code;
int ret;
switch (mask) {
case IIO_CHAN_INFO_PROCESSED:
prop = &vadc->chan_props[chan->address];
ret = vadc_do_conversion(vadc, prop, &adc_code);
if (ret)
break;
ret = qcom_vadc_scale(prop->scale_fn_type,
&vadc->graph[prop->calibration],
&vadc_prescale_ratios[prop->prescale],
(prop->calibration == VADC_CALIB_ABSOLUTE),
adc_code, val);
if (ret)
break;
return IIO_VAL_INT;
case IIO_CHAN_INFO_RAW:
prop = &vadc->chan_props[chan->address];
ret = vadc_do_conversion(vadc, prop, &adc_code);
if (ret)
break;
*val = (int)adc_code;
return IIO_VAL_INT;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int vadc_of_xlate(struct iio_dev *indio_dev,
const struct of_phandle_args *iiospec)
{
struct vadc_priv *vadc = iio_priv(indio_dev);
unsigned int i;
for (i = 0; i < vadc->nchannels; i++)
if (vadc->iio_chans[i].channel == iiospec->args[0])
return i;
return -EINVAL;
}
static const struct iio_info vadc_info = {
.read_raw = vadc_read_raw,
.of_xlate = vadc_of_xlate,
};
struct vadc_channels {
const char *datasheet_name;
unsigned int prescale_index;
enum iio_chan_type type;
long info_mask;
enum vadc_scale_fn_type scale_fn_type;
};
#define VADC_CHAN(_dname, _type, _mask, _pre, _scale) \
[VADC_##_dname] = { \
.datasheet_name = __stringify(_dname), \
.prescale_index = _pre, \
.type = _type, \
.info_mask = _mask, \
.scale_fn_type = _scale \
}, \
#define VADC_NO_CHAN(_dname, _type, _mask, _pre) \
[VADC_##_dname] = { \
.datasheet_name = __stringify(_dname), \
.prescale_index = _pre, \
.type = _type, \
.info_mask = _mask \
},
#define VADC_CHAN_TEMP(_dname, _pre, _scale) \
VADC_CHAN(_dname, IIO_TEMP, \
BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_PROCESSED), \
_pre, _scale) \
#define VADC_CHAN_VOLT(_dname, _pre, _scale) \
VADC_CHAN(_dname, IIO_VOLTAGE, \
BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_PROCESSED),\
_pre, _scale) \
#define VADC_CHAN_NO_SCALE(_dname, _pre) \
VADC_NO_CHAN(_dname, IIO_VOLTAGE, \
BIT(IIO_CHAN_INFO_RAW), \
_pre) \
/*
* The array represents all possible ADC channels found in the supported PMICs.
* Every index in the array is equal to the channel number per datasheet. The
* gaps in the array should be treated as reserved channels.
*/
static const struct vadc_channels vadc_chans[] = {
VADC_CHAN_VOLT(USBIN, 4, SCALE_DEFAULT)
VADC_CHAN_VOLT(DCIN, 4, SCALE_DEFAULT)
VADC_CHAN_NO_SCALE(VCHG_SNS, 3)
VADC_CHAN_NO_SCALE(SPARE1_03, 1)
VADC_CHAN_NO_SCALE(USB_ID_MV, 1)
VADC_CHAN_VOLT(VCOIN, 1, SCALE_DEFAULT)
VADC_CHAN_NO_SCALE(VBAT_SNS, 1)
VADC_CHAN_VOLT(VSYS, 1, SCALE_DEFAULT)
VADC_CHAN_TEMP(DIE_TEMP, 0, SCALE_PMIC_THERM)
VADC_CHAN_VOLT(REF_625MV, 0, SCALE_DEFAULT)
VADC_CHAN_VOLT(REF_1250MV, 0, SCALE_DEFAULT)
VADC_CHAN_NO_SCALE(CHG_TEMP, 0)
VADC_CHAN_NO_SCALE(SPARE1, 0)
VADC_CHAN_TEMP(SPARE2, 0, SCALE_PMI_CHG_TEMP)
VADC_CHAN_VOLT(GND_REF, 0, SCALE_DEFAULT)
VADC_CHAN_VOLT(VDD_VADC, 0, SCALE_DEFAULT)
VADC_CHAN_NO_SCALE(P_MUX1_1_1, 0)
VADC_CHAN_NO_SCALE(P_MUX2_1_1, 0)
VADC_CHAN_NO_SCALE(P_MUX3_1_1, 0)
VADC_CHAN_NO_SCALE(P_MUX4_1_1, 0)
VADC_CHAN_NO_SCALE(P_MUX5_1_1, 0)
VADC_CHAN_NO_SCALE(P_MUX6_1_1, 0)
VADC_CHAN_NO_SCALE(P_MUX7_1_1, 0)
VADC_CHAN_NO_SCALE(P_MUX8_1_1, 0)
VADC_CHAN_NO_SCALE(P_MUX9_1_1, 0)
VADC_CHAN_NO_SCALE(P_MUX10_1_1, 0)
VADC_CHAN_NO_SCALE(P_MUX11_1_1, 0)
VADC_CHAN_NO_SCALE(P_MUX12_1_1, 0)
VADC_CHAN_NO_SCALE(P_MUX13_1_1, 0)
VADC_CHAN_NO_SCALE(P_MUX14_1_1, 0)
VADC_CHAN_NO_SCALE(P_MUX15_1_1, 0)
VADC_CHAN_NO_SCALE(P_MUX16_1_1, 0)
VADC_CHAN_NO_SCALE(P_MUX1_1_3, 1)
VADC_CHAN_NO_SCALE(P_MUX2_1_3, 1)
VADC_CHAN_NO_SCALE(P_MUX3_1_3, 1)
VADC_CHAN_NO_SCALE(P_MUX4_1_3, 1)
VADC_CHAN_NO_SCALE(P_MUX5_1_3, 1)
VADC_CHAN_NO_SCALE(P_MUX6_1_3, 1)
VADC_CHAN_NO_SCALE(P_MUX7_1_3, 1)
VADC_CHAN_NO_SCALE(P_MUX8_1_3, 1)
VADC_CHAN_NO_SCALE(P_MUX9_1_3, 1)
VADC_CHAN_NO_SCALE(P_MUX10_1_3, 1)
VADC_CHAN_NO_SCALE(P_MUX11_1_3, 1)
VADC_CHAN_NO_SCALE(P_MUX12_1_3, 1)
VADC_CHAN_NO_SCALE(P_MUX13_1_3, 1)
VADC_CHAN_NO_SCALE(P_MUX14_1_3, 1)
VADC_CHAN_NO_SCALE(P_MUX15_1_3, 1)
VADC_CHAN_NO_SCALE(P_MUX16_1_3, 1)
VADC_CHAN_NO_SCALE(LR_MUX1_BAT_THERM, 0)
VADC_CHAN_NO_SCALE(LR_MUX2_BAT_ID, 0)
VADC_CHAN_NO_SCALE(LR_MUX3_XO_THERM, 0)
VADC_CHAN_NO_SCALE(LR_MUX4_AMUX_THM1, 0)
VADC_CHAN_NO_SCALE(LR_MUX5_AMUX_THM2, 0)
VADC_CHAN_NO_SCALE(LR_MUX6_AMUX_THM3, 0)
VADC_CHAN_NO_SCALE(LR_MUX7_HW_ID, 0)
VADC_CHAN_NO_SCALE(LR_MUX8_AMUX_THM4, 0)
VADC_CHAN_NO_SCALE(LR_MUX9_AMUX_THM5, 0)
VADC_CHAN_NO_SCALE(LR_MUX10_USB_ID, 0)
VADC_CHAN_NO_SCALE(AMUX_PU1, 0)
VADC_CHAN_NO_SCALE(AMUX_PU2, 0)
VADC_CHAN_NO_SCALE(LR_MUX3_BUF_XO_THERM, 0)
VADC_CHAN_NO_SCALE(LR_MUX1_PU1_BAT_THERM, 0)
VADC_CHAN_NO_SCALE(LR_MUX2_PU1_BAT_ID, 0)
VADC_CHAN_NO_SCALE(LR_MUX3_PU1_XO_THERM, 0)
VADC_CHAN_TEMP(LR_MUX4_PU1_AMUX_THM1, 0, SCALE_THERM_100K_PULLUP)
VADC_CHAN_TEMP(LR_MUX5_PU1_AMUX_THM2, 0, SCALE_THERM_100K_PULLUP)
VADC_CHAN_TEMP(LR_MUX6_PU1_AMUX_THM3, 0, SCALE_THERM_100K_PULLUP)
VADC_CHAN_NO_SCALE(LR_MUX7_PU1_AMUX_HW_ID, 0)
VADC_CHAN_TEMP(LR_MUX8_PU1_AMUX_THM4, 0, SCALE_THERM_100K_PULLUP)
VADC_CHAN_TEMP(LR_MUX9_PU1_AMUX_THM5, 0, SCALE_THERM_100K_PULLUP)
VADC_CHAN_NO_SCALE(LR_MUX10_PU1_AMUX_USB_ID, 0)
VADC_CHAN_TEMP(LR_MUX3_BUF_PU1_XO_THERM, 0, SCALE_XOTHERM)
VADC_CHAN_NO_SCALE(LR_MUX1_PU2_BAT_THERM, 0)
VADC_CHAN_NO_SCALE(LR_MUX2_PU2_BAT_ID, 0)
VADC_CHAN_NO_SCALE(LR_MUX3_PU2_XO_THERM, 0)
VADC_CHAN_NO_SCALE(LR_MUX4_PU2_AMUX_THM1, 0)
VADC_CHAN_NO_SCALE(LR_MUX5_PU2_AMUX_THM2, 0)
VADC_CHAN_NO_SCALE(LR_MUX6_PU2_AMUX_THM3, 0)
VADC_CHAN_NO_SCALE(LR_MUX7_PU2_AMUX_HW_ID, 0)
VADC_CHAN_NO_SCALE(LR_MUX8_PU2_AMUX_THM4, 0)
VADC_CHAN_NO_SCALE(LR_MUX9_PU2_AMUX_THM5, 0)
VADC_CHAN_NO_SCALE(LR_MUX10_PU2_AMUX_USB_ID, 0)
VADC_CHAN_NO_SCALE(LR_MUX3_BUF_PU2_XO_THERM, 0)
VADC_CHAN_NO_SCALE(LR_MUX1_PU1_PU2_BAT_THERM, 0)
VADC_CHAN_NO_SCALE(LR_MUX2_PU1_PU2_BAT_ID, 0)
VADC_CHAN_NO_SCALE(LR_MUX3_PU1_PU2_XO_THERM, 0)
VADC_CHAN_NO_SCALE(LR_MUX4_PU1_PU2_AMUX_THM1, 0)
VADC_CHAN_NO_SCALE(LR_MUX5_PU1_PU2_AMUX_THM2, 0)
VADC_CHAN_NO_SCALE(LR_MUX6_PU1_PU2_AMUX_THM3, 0)
VADC_CHAN_NO_SCALE(LR_MUX7_PU1_PU2_AMUX_HW_ID, 0)
VADC_CHAN_NO_SCALE(LR_MUX8_PU1_PU2_AMUX_THM4, 0)
VADC_CHAN_NO_SCALE(LR_MUX9_PU1_PU2_AMUX_THM5, 0)
VADC_CHAN_NO_SCALE(LR_MUX10_PU1_PU2_AMUX_USB_ID, 0)
VADC_CHAN_NO_SCALE(LR_MUX3_BUF_PU1_PU2_XO_THERM, 0)
};
static int vadc_get_dt_channel_data(struct device *dev,
struct vadc_channel_prop *prop,
struct device_node *node)
{
const char *name = node->name;
u32 chan, value, varr[2];
int ret;
ret = of_property_read_u32(node, "reg", &chan);
if (ret) {
dev_err(dev, "invalid channel number %s\n", name);
return ret;
}
if (chan > VADC_CHAN_MAX || chan < VADC_CHAN_MIN) {
dev_err(dev, "%s invalid channel number %d\n", name, chan);
return -EINVAL;
}
/* the channel has DT description */
prop->channel = chan;
ret = of_property_read_u32(node, "qcom,decimation", &value);
if (!ret) {
ret = qcom_vadc_decimation_from_dt(value);
if (ret < 0) {
dev_err(dev, "%02x invalid decimation %d\n",
chan, value);
return ret;
}
prop->decimation = ret;
} else {
prop->decimation = VADC_DEF_DECIMATION;
}
ret = of_property_read_u32_array(node, "qcom,pre-scaling", varr, 2);
if (!ret) {
ret = vadc_prescaling_from_dt(varr[0], varr[1]);
if (ret < 0) {
dev_err(dev, "%02x invalid pre-scaling <%d %d>\n",
chan, varr[0], varr[1]);
return ret;
}
prop->prescale = ret;
} else {
prop->prescale = vadc_chans[prop->channel].prescale_index;
}
ret = of_property_read_u32(node, "qcom,hw-settle-time", &value);
if (!ret) {
ret = vadc_hw_settle_time_from_dt(value);
if (ret < 0) {
dev_err(dev, "%02x invalid hw-settle-time %d us\n",
chan, value);
return ret;
}
prop->hw_settle_time = ret;
} else {
prop->hw_settle_time = VADC_DEF_HW_SETTLE_TIME;
}
ret = of_property_read_u32(node, "qcom,avg-samples", &value);
if (!ret) {
ret = vadc_avg_samples_from_dt(value);
if (ret < 0) {
dev_err(dev, "%02x invalid avg-samples %d\n",
chan, value);
return ret;
}
prop->avg_samples = ret;
} else {
prop->avg_samples = VADC_DEF_AVG_SAMPLES;
}
if (of_property_read_bool(node, "qcom,ratiometric"))
prop->calibration = VADC_CALIB_RATIOMETRIC;
else
prop->calibration = VADC_CALIB_ABSOLUTE;
dev_dbg(dev, "%02x name %s\n", chan, name);
return 0;
}
static int vadc_get_dt_data(struct vadc_priv *vadc, struct device_node *node)
{
const struct vadc_channels *vadc_chan;
struct iio_chan_spec *iio_chan;
struct vadc_channel_prop prop;
struct device_node *child;
unsigned int index = 0;
int ret;
vadc->nchannels = of_get_available_child_count(node);
if (!vadc->nchannels)
return -EINVAL;
vadc->iio_chans = devm_kcalloc(vadc->dev, vadc->nchannels,
sizeof(*vadc->iio_chans), GFP_KERNEL);
if (!vadc->iio_chans)
return -ENOMEM;
vadc->chan_props = devm_kcalloc(vadc->dev, vadc->nchannels,
sizeof(*vadc->chan_props), GFP_KERNEL);
if (!vadc->chan_props)
return -ENOMEM;
iio_chan = vadc->iio_chans;
for_each_available_child_of_node(node, child) {
ret = vadc_get_dt_channel_data(vadc->dev, &prop, child);
if (ret) {
of_node_put(child);
return ret;
}
prop.scale_fn_type = vadc_chans[prop.channel].scale_fn_type;
vadc->chan_props[index] = prop;
vadc_chan = &vadc_chans[prop.channel];
iio_chan->channel = prop.channel;
iio_chan->datasheet_name = vadc_chan->datasheet_name;
iio_chan->info_mask_separate = vadc_chan->info_mask;
iio_chan->type = vadc_chan->type;
iio_chan->indexed = 1;
iio_chan->address = index++;
iio_chan++;
}
/* These channels are mandatory, they are used as reference points */
if (!vadc_get_channel(vadc, VADC_REF_1250MV)) {
dev_err(vadc->dev, "Please define 1.25V channel\n");
return -ENODEV;
}
if (!vadc_get_channel(vadc, VADC_REF_625MV)) {
dev_err(vadc->dev, "Please define 0.625V channel\n");
return -ENODEV;
}
if (!vadc_get_channel(vadc, VADC_VDD_VADC)) {
dev_err(vadc->dev, "Please define VDD channel\n");
return -ENODEV;
}
if (!vadc_get_channel(vadc, VADC_GND_REF)) {
dev_err(vadc->dev, "Please define GND channel\n");
return -ENODEV;
}
return 0;
}
static irqreturn_t vadc_isr(int irq, void *dev_id)
{
struct vadc_priv *vadc = dev_id;
complete(&vadc->complete);
return IRQ_HANDLED;
}
static int vadc_check_revision(struct vadc_priv *vadc)
{
u8 val;
int ret;
ret = vadc_read(vadc, VADC_PERPH_TYPE, &val);
if (ret)
return ret;
if (val < VADC_PERPH_TYPE_ADC) {
dev_err(vadc->dev, "%d is not ADC\n", val);
return -ENODEV;
}
ret = vadc_read(vadc, VADC_PERPH_SUBTYPE, &val);
if (ret)
return ret;
if (val < VADC_PERPH_SUBTYPE_VADC) {
dev_err(vadc->dev, "%d is not VADC\n", val);
return -ENODEV;
}
ret = vadc_read(vadc, VADC_REVISION2, &val);
if (ret)
return ret;
if (val < VADC_REVISION2_SUPPORTED_VADC) {
dev_err(vadc->dev, "revision %d not supported\n", val);
return -ENODEV;
}
return 0;
}
static int vadc_probe(struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node;
struct device *dev = &pdev->dev;
struct iio_dev *indio_dev;
struct vadc_priv *vadc;
struct regmap *regmap;
int ret, irq_eoc;
u32 reg;
regmap = dev_get_regmap(dev->parent, NULL);
if (!regmap)
return -ENODEV;
ret = of_property_read_u32(node, "reg", &reg);
if (ret < 0)
return ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*vadc));
if (!indio_dev)
return -ENOMEM;
vadc = iio_priv(indio_dev);
vadc->regmap = regmap;
vadc->dev = dev;
vadc->base = reg;
vadc->are_ref_measured = false;
init_completion(&vadc->complete);
mutex_init(&vadc->lock);
ret = vadc_check_revision(vadc);
if (ret)
return ret;
ret = vadc_get_dt_data(vadc, node);
if (ret)
return ret;
irq_eoc = platform_get_irq(pdev, 0);
if (irq_eoc < 0) {
if (irq_eoc == -EPROBE_DEFER || irq_eoc == -EINVAL)
return irq_eoc;
vadc->poll_eoc = true;
} else {
ret = devm_request_irq(dev, irq_eoc, vadc_isr, 0,
"spmi-vadc", vadc);
if (ret)
return ret;
}
ret = vadc_reset(vadc);
if (ret) {
dev_err(dev, "reset failed\n");
return ret;
}
ret = vadc_measure_ref_points(vadc);
if (ret)
return ret;
indio_dev->dev.parent = dev;
indio_dev->dev.of_node = node;
indio_dev->name = pdev->name;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &vadc_info;
indio_dev->channels = vadc->iio_chans;
indio_dev->num_channels = vadc->nchannels;
return devm_iio_device_register(dev, indio_dev);
}
static const struct of_device_id vadc_match_table[] = {
{ .compatible = "qcom,spmi-vadc" },
{ }
};
MODULE_DEVICE_TABLE(of, vadc_match_table);
static struct platform_driver vadc_driver = {
.driver = {
.name = "qcom-spmi-vadc",
.of_match_table = vadc_match_table,
},
.probe = vadc_probe,
};
module_platform_driver(vadc_driver);
MODULE_ALIAS("platform:qcom-spmi-vadc");
MODULE_DESCRIPTION("Qualcomm SPMI PMIC voltage ADC driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Stanimir Varbanov <svarbanov@mm-sol.com>");
MODULE_AUTHOR("Ivan T. Ivanov <iivanov@mm-sol.com>");