linux_dsm_epyc7002/drivers/scsi/bnx2fc/bnx2fc_hwi.c
Bhanu Prakash Gollapudi e7f4fed5fa [SCSI] bnx2fc: Map the doorbell register between offload and enable requests
We used to map doorbell register after FW enable request is complete.
This causes a race condition when unsolicited event is received, and FW
sends a CQE for it. Since the doorbell is not mapped, driver does not
arm CQ, which means FW will not notify the driver for further CQ
completions.  To resolve this, map the doorbell between offload and
enable, so that driver is ready to receive the unsolicited packets and
arm the CQ as soon as FW enable is performed.

Signed-off-by: Bhanu Prakash Gollapudi <bprakash@broadcom.com>
Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2013-01-30 10:48:48 +11:00

2178 lines
62 KiB
C

/* bnx2fc_hwi.c: Broadcom NetXtreme II Linux FCoE offload driver.
* This file contains the code that low level functions that interact
* with 57712 FCoE firmware.
*
* Copyright (c) 2008 - 2011 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation.
*
* Written by: Bhanu Prakash Gollapudi (bprakash@broadcom.com)
*/
#include "bnx2fc.h"
DECLARE_PER_CPU(struct bnx2fc_percpu_s, bnx2fc_percpu);
static void bnx2fc_fastpath_notification(struct bnx2fc_hba *hba,
struct fcoe_kcqe *new_cqe_kcqe);
static void bnx2fc_process_ofld_cmpl(struct bnx2fc_hba *hba,
struct fcoe_kcqe *ofld_kcqe);
static void bnx2fc_process_enable_conn_cmpl(struct bnx2fc_hba *hba,
struct fcoe_kcqe *ofld_kcqe);
static void bnx2fc_init_failure(struct bnx2fc_hba *hba, u32 err_code);
static void bnx2fc_process_conn_destroy_cmpl(struct bnx2fc_hba *hba,
struct fcoe_kcqe *destroy_kcqe);
int bnx2fc_send_stat_req(struct bnx2fc_hba *hba)
{
struct fcoe_kwqe_stat stat_req;
struct kwqe *kwqe_arr[2];
int num_kwqes = 1;
int rc = 0;
memset(&stat_req, 0x00, sizeof(struct fcoe_kwqe_stat));
stat_req.hdr.op_code = FCOE_KWQE_OPCODE_STAT;
stat_req.hdr.flags =
(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
stat_req.stat_params_addr_lo = (u32) hba->stats_buf_dma;
stat_req.stat_params_addr_hi = (u32) ((u64)hba->stats_buf_dma >> 32);
kwqe_arr[0] = (struct kwqe *) &stat_req;
if (hba->cnic && hba->cnic->submit_kwqes)
rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
return rc;
}
/**
* bnx2fc_send_fw_fcoe_init_msg - initiates initial handshake with FCoE f/w
*
* @hba: adapter structure pointer
*
* Send down FCoE firmware init KWQEs which initiates the initial handshake
* with the f/w.
*
*/
int bnx2fc_send_fw_fcoe_init_msg(struct bnx2fc_hba *hba)
{
struct fcoe_kwqe_init1 fcoe_init1;
struct fcoe_kwqe_init2 fcoe_init2;
struct fcoe_kwqe_init3 fcoe_init3;
struct kwqe *kwqe_arr[3];
int num_kwqes = 3;
int rc = 0;
if (!hba->cnic) {
printk(KERN_ERR PFX "hba->cnic NULL during fcoe fw init\n");
return -ENODEV;
}
/* fill init1 KWQE */
memset(&fcoe_init1, 0x00, sizeof(struct fcoe_kwqe_init1));
fcoe_init1.hdr.op_code = FCOE_KWQE_OPCODE_INIT1;
fcoe_init1.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
fcoe_init1.num_tasks = BNX2FC_MAX_TASKS;
fcoe_init1.sq_num_wqes = BNX2FC_SQ_WQES_MAX;
fcoe_init1.rq_num_wqes = BNX2FC_RQ_WQES_MAX;
fcoe_init1.rq_buffer_log_size = BNX2FC_RQ_BUF_LOG_SZ;
fcoe_init1.cq_num_wqes = BNX2FC_CQ_WQES_MAX;
fcoe_init1.dummy_buffer_addr_lo = (u32) hba->dummy_buf_dma;
fcoe_init1.dummy_buffer_addr_hi = (u32) ((u64)hba->dummy_buf_dma >> 32);
fcoe_init1.task_list_pbl_addr_lo = (u32) hba->task_ctx_bd_dma;
fcoe_init1.task_list_pbl_addr_hi =
(u32) ((u64) hba->task_ctx_bd_dma >> 32);
fcoe_init1.mtu = BNX2FC_MINI_JUMBO_MTU;
fcoe_init1.flags = (PAGE_SHIFT <<
FCOE_KWQE_INIT1_LOG_PAGE_SIZE_SHIFT);
fcoe_init1.num_sessions_log = BNX2FC_NUM_MAX_SESS_LOG;
/* fill init2 KWQE */
memset(&fcoe_init2, 0x00, sizeof(struct fcoe_kwqe_init2));
fcoe_init2.hdr.op_code = FCOE_KWQE_OPCODE_INIT2;
fcoe_init2.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
fcoe_init2.hsi_major_version = FCOE_HSI_MAJOR_VERSION;
fcoe_init2.hsi_minor_version = FCOE_HSI_MINOR_VERSION;
fcoe_init2.hash_tbl_pbl_addr_lo = (u32) hba->hash_tbl_pbl_dma;
fcoe_init2.hash_tbl_pbl_addr_hi = (u32)
((u64) hba->hash_tbl_pbl_dma >> 32);
fcoe_init2.t2_hash_tbl_addr_lo = (u32) hba->t2_hash_tbl_dma;
fcoe_init2.t2_hash_tbl_addr_hi = (u32)
((u64) hba->t2_hash_tbl_dma >> 32);
fcoe_init2.t2_ptr_hash_tbl_addr_lo = (u32) hba->t2_hash_tbl_ptr_dma;
fcoe_init2.t2_ptr_hash_tbl_addr_hi = (u32)
((u64) hba->t2_hash_tbl_ptr_dma >> 32);
fcoe_init2.free_list_count = BNX2FC_NUM_MAX_SESS;
/* fill init3 KWQE */
memset(&fcoe_init3, 0x00, sizeof(struct fcoe_kwqe_init3));
fcoe_init3.hdr.op_code = FCOE_KWQE_OPCODE_INIT3;
fcoe_init3.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
fcoe_init3.error_bit_map_lo = 0xffffffff;
fcoe_init3.error_bit_map_hi = 0xffffffff;
fcoe_init3.perf_config = 1;
kwqe_arr[0] = (struct kwqe *) &fcoe_init1;
kwqe_arr[1] = (struct kwqe *) &fcoe_init2;
kwqe_arr[2] = (struct kwqe *) &fcoe_init3;
if (hba->cnic && hba->cnic->submit_kwqes)
rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
return rc;
}
int bnx2fc_send_fw_fcoe_destroy_msg(struct bnx2fc_hba *hba)
{
struct fcoe_kwqe_destroy fcoe_destroy;
struct kwqe *kwqe_arr[2];
int num_kwqes = 1;
int rc = -1;
/* fill destroy KWQE */
memset(&fcoe_destroy, 0x00, sizeof(struct fcoe_kwqe_destroy));
fcoe_destroy.hdr.op_code = FCOE_KWQE_OPCODE_DESTROY;
fcoe_destroy.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
kwqe_arr[0] = (struct kwqe *) &fcoe_destroy;
if (hba->cnic && hba->cnic->submit_kwqes)
rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
return rc;
}
/**
* bnx2fc_send_session_ofld_req - initiates FCoE Session offload process
*
* @port: port structure pointer
* @tgt: bnx2fc_rport structure pointer
*/
int bnx2fc_send_session_ofld_req(struct fcoe_port *port,
struct bnx2fc_rport *tgt)
{
struct fc_lport *lport = port->lport;
struct bnx2fc_interface *interface = port->priv;
struct fcoe_ctlr *ctlr = bnx2fc_to_ctlr(interface);
struct bnx2fc_hba *hba = interface->hba;
struct kwqe *kwqe_arr[4];
struct fcoe_kwqe_conn_offload1 ofld_req1;
struct fcoe_kwqe_conn_offload2 ofld_req2;
struct fcoe_kwqe_conn_offload3 ofld_req3;
struct fcoe_kwqe_conn_offload4 ofld_req4;
struct fc_rport_priv *rdata = tgt->rdata;
struct fc_rport *rport = tgt->rport;
int num_kwqes = 4;
u32 port_id;
int rc = 0;
u16 conn_id;
/* Initialize offload request 1 structure */
memset(&ofld_req1, 0x00, sizeof(struct fcoe_kwqe_conn_offload1));
ofld_req1.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN1;
ofld_req1.hdr.flags =
(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
conn_id = (u16)tgt->fcoe_conn_id;
ofld_req1.fcoe_conn_id = conn_id;
ofld_req1.sq_addr_lo = (u32) tgt->sq_dma;
ofld_req1.sq_addr_hi = (u32)((u64) tgt->sq_dma >> 32);
ofld_req1.rq_pbl_addr_lo = (u32) tgt->rq_pbl_dma;
ofld_req1.rq_pbl_addr_hi = (u32)((u64) tgt->rq_pbl_dma >> 32);
ofld_req1.rq_first_pbe_addr_lo = (u32) tgt->rq_dma;
ofld_req1.rq_first_pbe_addr_hi =
(u32)((u64) tgt->rq_dma >> 32);
ofld_req1.rq_prod = 0x8000;
/* Initialize offload request 2 structure */
memset(&ofld_req2, 0x00, sizeof(struct fcoe_kwqe_conn_offload2));
ofld_req2.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN2;
ofld_req2.hdr.flags =
(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
ofld_req2.tx_max_fc_pay_len = rdata->maxframe_size;
ofld_req2.cq_addr_lo = (u32) tgt->cq_dma;
ofld_req2.cq_addr_hi = (u32)((u64)tgt->cq_dma >> 32);
ofld_req2.xferq_addr_lo = (u32) tgt->xferq_dma;
ofld_req2.xferq_addr_hi = (u32)((u64)tgt->xferq_dma >> 32);
ofld_req2.conn_db_addr_lo = (u32)tgt->conn_db_dma;
ofld_req2.conn_db_addr_hi = (u32)((u64)tgt->conn_db_dma >> 32);
/* Initialize offload request 3 structure */
memset(&ofld_req3, 0x00, sizeof(struct fcoe_kwqe_conn_offload3));
ofld_req3.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN3;
ofld_req3.hdr.flags =
(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
ofld_req3.vlan_tag = interface->vlan_id <<
FCOE_KWQE_CONN_OFFLOAD3_VLAN_ID_SHIFT;
ofld_req3.vlan_tag |= 3 << FCOE_KWQE_CONN_OFFLOAD3_PRIORITY_SHIFT;
port_id = fc_host_port_id(lport->host);
if (port_id == 0) {
BNX2FC_HBA_DBG(lport, "ofld_req: port_id = 0, link down?\n");
return -EINVAL;
}
/*
* Store s_id of the initiator for further reference. This will
* be used during disable/destroy during linkdown processing as
* when the lport is reset, the port_id also is reset to 0
*/
tgt->sid = port_id;
ofld_req3.s_id[0] = (port_id & 0x000000FF);
ofld_req3.s_id[1] = (port_id & 0x0000FF00) >> 8;
ofld_req3.s_id[2] = (port_id & 0x00FF0000) >> 16;
port_id = rport->port_id;
ofld_req3.d_id[0] = (port_id & 0x000000FF);
ofld_req3.d_id[1] = (port_id & 0x0000FF00) >> 8;
ofld_req3.d_id[2] = (port_id & 0x00FF0000) >> 16;
ofld_req3.tx_total_conc_seqs = rdata->max_seq;
ofld_req3.tx_max_conc_seqs_c3 = rdata->max_seq;
ofld_req3.rx_max_fc_pay_len = lport->mfs;
ofld_req3.rx_total_conc_seqs = BNX2FC_MAX_SEQS;
ofld_req3.rx_max_conc_seqs_c3 = BNX2FC_MAX_SEQS;
ofld_req3.rx_open_seqs_exch_c3 = 1;
ofld_req3.confq_first_pbe_addr_lo = tgt->confq_dma;
ofld_req3.confq_first_pbe_addr_hi = (u32)((u64) tgt->confq_dma >> 32);
/* set mul_n_port_ids supported flag to 0, until it is supported */
ofld_req3.flags = 0;
/*
ofld_req3.flags |= (((lport->send_sp_features & FC_SP_FT_MNA) ? 1:0) <<
FCOE_KWQE_CONN_OFFLOAD3_B_MUL_N_PORT_IDS_SHIFT);
*/
/* Info from PLOGI response */
ofld_req3.flags |= (((rdata->sp_features & FC_SP_FT_EDTR) ? 1 : 0) <<
FCOE_KWQE_CONN_OFFLOAD3_B_E_D_TOV_RES_SHIFT);
ofld_req3.flags |= (((rdata->sp_features & FC_SP_FT_SEQC) ? 1 : 0) <<
FCOE_KWQE_CONN_OFFLOAD3_B_CONT_INCR_SEQ_CNT_SHIFT);
/*
* Info from PRLI response, this info is used for sequence level error
* recovery support
*/
if (tgt->dev_type == TYPE_TAPE) {
ofld_req3.flags |= 1 <<
FCOE_KWQE_CONN_OFFLOAD3_B_CONF_REQ_SHIFT;
ofld_req3.flags |= (((rdata->flags & FC_RP_FLAGS_REC_SUPPORTED)
? 1 : 0) <<
FCOE_KWQE_CONN_OFFLOAD3_B_REC_VALID_SHIFT);
}
/* vlan flag */
ofld_req3.flags |= (interface->vlan_enabled <<
FCOE_KWQE_CONN_OFFLOAD3_B_VLAN_FLAG_SHIFT);
/* C2_VALID and ACK flags are not set as they are not supported */
/* Initialize offload request 4 structure */
memset(&ofld_req4, 0x00, sizeof(struct fcoe_kwqe_conn_offload4));
ofld_req4.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN4;
ofld_req4.hdr.flags =
(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
ofld_req4.e_d_tov_timer_val = lport->e_d_tov / 20;
ofld_req4.src_mac_addr_lo[0] = port->data_src_addr[5];
/* local mac */
ofld_req4.src_mac_addr_lo[1] = port->data_src_addr[4];
ofld_req4.src_mac_addr_mid[0] = port->data_src_addr[3];
ofld_req4.src_mac_addr_mid[1] = port->data_src_addr[2];
ofld_req4.src_mac_addr_hi[0] = port->data_src_addr[1];
ofld_req4.src_mac_addr_hi[1] = port->data_src_addr[0];
ofld_req4.dst_mac_addr_lo[0] = ctlr->dest_addr[5];
/* fcf mac */
ofld_req4.dst_mac_addr_lo[1] = ctlr->dest_addr[4];
ofld_req4.dst_mac_addr_mid[0] = ctlr->dest_addr[3];
ofld_req4.dst_mac_addr_mid[1] = ctlr->dest_addr[2];
ofld_req4.dst_mac_addr_hi[0] = ctlr->dest_addr[1];
ofld_req4.dst_mac_addr_hi[1] = ctlr->dest_addr[0];
ofld_req4.lcq_addr_lo = (u32) tgt->lcq_dma;
ofld_req4.lcq_addr_hi = (u32)((u64) tgt->lcq_dma >> 32);
ofld_req4.confq_pbl_base_addr_lo = (u32) tgt->confq_pbl_dma;
ofld_req4.confq_pbl_base_addr_hi =
(u32)((u64) tgt->confq_pbl_dma >> 32);
kwqe_arr[0] = (struct kwqe *) &ofld_req1;
kwqe_arr[1] = (struct kwqe *) &ofld_req2;
kwqe_arr[2] = (struct kwqe *) &ofld_req3;
kwqe_arr[3] = (struct kwqe *) &ofld_req4;
if (hba->cnic && hba->cnic->submit_kwqes)
rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
return rc;
}
/**
* bnx2fc_send_session_enable_req - initiates FCoE Session enablement
*
* @port: port structure pointer
* @tgt: bnx2fc_rport structure pointer
*/
int bnx2fc_send_session_enable_req(struct fcoe_port *port,
struct bnx2fc_rport *tgt)
{
struct kwqe *kwqe_arr[2];
struct bnx2fc_interface *interface = port->priv;
struct fcoe_ctlr *ctlr = bnx2fc_to_ctlr(interface);
struct bnx2fc_hba *hba = interface->hba;
struct fcoe_kwqe_conn_enable_disable enbl_req;
struct fc_lport *lport = port->lport;
struct fc_rport *rport = tgt->rport;
int num_kwqes = 1;
int rc = 0;
u32 port_id;
memset(&enbl_req, 0x00,
sizeof(struct fcoe_kwqe_conn_enable_disable));
enbl_req.hdr.op_code = FCOE_KWQE_OPCODE_ENABLE_CONN;
enbl_req.hdr.flags =
(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
enbl_req.src_mac_addr_lo[0] = port->data_src_addr[5];
/* local mac */
enbl_req.src_mac_addr_lo[1] = port->data_src_addr[4];
enbl_req.src_mac_addr_mid[0] = port->data_src_addr[3];
enbl_req.src_mac_addr_mid[1] = port->data_src_addr[2];
enbl_req.src_mac_addr_hi[0] = port->data_src_addr[1];
enbl_req.src_mac_addr_hi[1] = port->data_src_addr[0];
memcpy(tgt->src_addr, port->data_src_addr, ETH_ALEN);
enbl_req.dst_mac_addr_lo[0] = ctlr->dest_addr[5];
enbl_req.dst_mac_addr_lo[1] = ctlr->dest_addr[4];
enbl_req.dst_mac_addr_mid[0] = ctlr->dest_addr[3];
enbl_req.dst_mac_addr_mid[1] = ctlr->dest_addr[2];
enbl_req.dst_mac_addr_hi[0] = ctlr->dest_addr[1];
enbl_req.dst_mac_addr_hi[1] = ctlr->dest_addr[0];
port_id = fc_host_port_id(lport->host);
if (port_id != tgt->sid) {
printk(KERN_ERR PFX "WARN: enable_req port_id = 0x%x,"
"sid = 0x%x\n", port_id, tgt->sid);
port_id = tgt->sid;
}
enbl_req.s_id[0] = (port_id & 0x000000FF);
enbl_req.s_id[1] = (port_id & 0x0000FF00) >> 8;
enbl_req.s_id[2] = (port_id & 0x00FF0000) >> 16;
port_id = rport->port_id;
enbl_req.d_id[0] = (port_id & 0x000000FF);
enbl_req.d_id[1] = (port_id & 0x0000FF00) >> 8;
enbl_req.d_id[2] = (port_id & 0x00FF0000) >> 16;
enbl_req.vlan_tag = interface->vlan_id <<
FCOE_KWQE_CONN_ENABLE_DISABLE_VLAN_ID_SHIFT;
enbl_req.vlan_tag |= 3 << FCOE_KWQE_CONN_ENABLE_DISABLE_PRIORITY_SHIFT;
enbl_req.vlan_flag = interface->vlan_enabled;
enbl_req.context_id = tgt->context_id;
enbl_req.conn_id = tgt->fcoe_conn_id;
kwqe_arr[0] = (struct kwqe *) &enbl_req;
if (hba->cnic && hba->cnic->submit_kwqes)
rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
return rc;
}
/**
* bnx2fc_send_session_disable_req - initiates FCoE Session disable
*
* @port: port structure pointer
* @tgt: bnx2fc_rport structure pointer
*/
int bnx2fc_send_session_disable_req(struct fcoe_port *port,
struct bnx2fc_rport *tgt)
{
struct bnx2fc_interface *interface = port->priv;
struct fcoe_ctlr *ctlr = bnx2fc_to_ctlr(interface);
struct bnx2fc_hba *hba = interface->hba;
struct fcoe_kwqe_conn_enable_disable disable_req;
struct kwqe *kwqe_arr[2];
struct fc_rport *rport = tgt->rport;
int num_kwqes = 1;
int rc = 0;
u32 port_id;
memset(&disable_req, 0x00,
sizeof(struct fcoe_kwqe_conn_enable_disable));
disable_req.hdr.op_code = FCOE_KWQE_OPCODE_DISABLE_CONN;
disable_req.hdr.flags =
(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
disable_req.src_mac_addr_lo[0] = tgt->src_addr[5];
disable_req.src_mac_addr_lo[1] = tgt->src_addr[4];
disable_req.src_mac_addr_mid[0] = tgt->src_addr[3];
disable_req.src_mac_addr_mid[1] = tgt->src_addr[2];
disable_req.src_mac_addr_hi[0] = tgt->src_addr[1];
disable_req.src_mac_addr_hi[1] = tgt->src_addr[0];
disable_req.dst_mac_addr_lo[0] = ctlr->dest_addr[5];
disable_req.dst_mac_addr_lo[1] = ctlr->dest_addr[4];
disable_req.dst_mac_addr_mid[0] = ctlr->dest_addr[3];
disable_req.dst_mac_addr_mid[1] = ctlr->dest_addr[2];
disable_req.dst_mac_addr_hi[0] = ctlr->dest_addr[1];
disable_req.dst_mac_addr_hi[1] = ctlr->dest_addr[0];
port_id = tgt->sid;
disable_req.s_id[0] = (port_id & 0x000000FF);
disable_req.s_id[1] = (port_id & 0x0000FF00) >> 8;
disable_req.s_id[2] = (port_id & 0x00FF0000) >> 16;
port_id = rport->port_id;
disable_req.d_id[0] = (port_id & 0x000000FF);
disable_req.d_id[1] = (port_id & 0x0000FF00) >> 8;
disable_req.d_id[2] = (port_id & 0x00FF0000) >> 16;
disable_req.context_id = tgt->context_id;
disable_req.conn_id = tgt->fcoe_conn_id;
disable_req.vlan_tag = interface->vlan_id <<
FCOE_KWQE_CONN_ENABLE_DISABLE_VLAN_ID_SHIFT;
disable_req.vlan_tag |=
3 << FCOE_KWQE_CONN_ENABLE_DISABLE_PRIORITY_SHIFT;
disable_req.vlan_flag = interface->vlan_enabled;
kwqe_arr[0] = (struct kwqe *) &disable_req;
if (hba->cnic && hba->cnic->submit_kwqes)
rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
return rc;
}
/**
* bnx2fc_send_session_destroy_req - initiates FCoE Session destroy
*
* @port: port structure pointer
* @tgt: bnx2fc_rport structure pointer
*/
int bnx2fc_send_session_destroy_req(struct bnx2fc_hba *hba,
struct bnx2fc_rport *tgt)
{
struct fcoe_kwqe_conn_destroy destroy_req;
struct kwqe *kwqe_arr[2];
int num_kwqes = 1;
int rc = 0;
memset(&destroy_req, 0x00, sizeof(struct fcoe_kwqe_conn_destroy));
destroy_req.hdr.op_code = FCOE_KWQE_OPCODE_DESTROY_CONN;
destroy_req.hdr.flags =
(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
destroy_req.context_id = tgt->context_id;
destroy_req.conn_id = tgt->fcoe_conn_id;
kwqe_arr[0] = (struct kwqe *) &destroy_req;
if (hba->cnic && hba->cnic->submit_kwqes)
rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
return rc;
}
static bool is_valid_lport(struct bnx2fc_hba *hba, struct fc_lport *lport)
{
struct bnx2fc_lport *blport;
spin_lock_bh(&hba->hba_lock);
list_for_each_entry(blport, &hba->vports, list) {
if (blport->lport == lport) {
spin_unlock_bh(&hba->hba_lock);
return true;
}
}
spin_unlock_bh(&hba->hba_lock);
return false;
}
static void bnx2fc_unsol_els_work(struct work_struct *work)
{
struct bnx2fc_unsol_els *unsol_els;
struct fc_lport *lport;
struct bnx2fc_hba *hba;
struct fc_frame *fp;
unsol_els = container_of(work, struct bnx2fc_unsol_els, unsol_els_work);
lport = unsol_els->lport;
fp = unsol_els->fp;
hba = unsol_els->hba;
if (is_valid_lport(hba, lport))
fc_exch_recv(lport, fp);
kfree(unsol_els);
}
void bnx2fc_process_l2_frame_compl(struct bnx2fc_rport *tgt,
unsigned char *buf,
u32 frame_len, u16 l2_oxid)
{
struct fcoe_port *port = tgt->port;
struct fc_lport *lport = port->lport;
struct bnx2fc_interface *interface = port->priv;
struct bnx2fc_unsol_els *unsol_els;
struct fc_frame_header *fh;
struct fc_frame *fp;
struct sk_buff *skb;
u32 payload_len;
u32 crc;
u8 op;
unsol_els = kzalloc(sizeof(*unsol_els), GFP_ATOMIC);
if (!unsol_els) {
BNX2FC_TGT_DBG(tgt, "Unable to allocate unsol_work\n");
return;
}
BNX2FC_TGT_DBG(tgt, "l2_frame_compl l2_oxid = 0x%x, frame_len = %d\n",
l2_oxid, frame_len);
payload_len = frame_len - sizeof(struct fc_frame_header);
fp = fc_frame_alloc(lport, payload_len);
if (!fp) {
printk(KERN_ERR PFX "fc_frame_alloc failure\n");
kfree(unsol_els);
return;
}
fh = (struct fc_frame_header *) fc_frame_header_get(fp);
/* Copy FC Frame header and payload into the frame */
memcpy(fh, buf, frame_len);
if (l2_oxid != FC_XID_UNKNOWN)
fh->fh_ox_id = htons(l2_oxid);
skb = fp_skb(fp);
if ((fh->fh_r_ctl == FC_RCTL_ELS_REQ) ||
(fh->fh_r_ctl == FC_RCTL_ELS_REP)) {
if (fh->fh_type == FC_TYPE_ELS) {
op = fc_frame_payload_op(fp);
if ((op == ELS_TEST) || (op == ELS_ESTC) ||
(op == ELS_FAN) || (op == ELS_CSU)) {
/*
* No need to reply for these
* ELS requests
*/
printk(KERN_ERR PFX "dropping ELS 0x%x\n", op);
kfree_skb(skb);
kfree(unsol_els);
return;
}
}
crc = fcoe_fc_crc(fp);
fc_frame_init(fp);
fr_dev(fp) = lport;
fr_sof(fp) = FC_SOF_I3;
fr_eof(fp) = FC_EOF_T;
fr_crc(fp) = cpu_to_le32(~crc);
unsol_els->lport = lport;
unsol_els->hba = interface->hba;
unsol_els->fp = fp;
INIT_WORK(&unsol_els->unsol_els_work, bnx2fc_unsol_els_work);
queue_work(bnx2fc_wq, &unsol_els->unsol_els_work);
} else {
BNX2FC_HBA_DBG(lport, "fh_r_ctl = 0x%x\n", fh->fh_r_ctl);
kfree_skb(skb);
kfree(unsol_els);
}
}
static void bnx2fc_process_unsol_compl(struct bnx2fc_rport *tgt, u16 wqe)
{
u8 num_rq;
struct fcoe_err_report_entry *err_entry;
unsigned char *rq_data;
unsigned char *buf = NULL, *buf1;
int i;
u16 xid;
u32 frame_len, len;
struct bnx2fc_cmd *io_req = NULL;
struct fcoe_task_ctx_entry *task, *task_page;
struct bnx2fc_interface *interface = tgt->port->priv;
struct bnx2fc_hba *hba = interface->hba;
int task_idx, index;
int rc = 0;
u64 err_warn_bit_map;
u8 err_warn = 0xff;
BNX2FC_TGT_DBG(tgt, "Entered UNSOL COMPLETION wqe = 0x%x\n", wqe);
switch (wqe & FCOE_UNSOLICITED_CQE_SUBTYPE) {
case FCOE_UNSOLICITED_FRAME_CQE_TYPE:
frame_len = (wqe & FCOE_UNSOLICITED_CQE_PKT_LEN) >>
FCOE_UNSOLICITED_CQE_PKT_LEN_SHIFT;
num_rq = (frame_len + BNX2FC_RQ_BUF_SZ - 1) / BNX2FC_RQ_BUF_SZ;
spin_lock_bh(&tgt->tgt_lock);
rq_data = (unsigned char *)bnx2fc_get_next_rqe(tgt, num_rq);
spin_unlock_bh(&tgt->tgt_lock);
if (rq_data) {
buf = rq_data;
} else {
buf1 = buf = kmalloc((num_rq * BNX2FC_RQ_BUF_SZ),
GFP_ATOMIC);
if (!buf1) {
BNX2FC_TGT_DBG(tgt, "Memory alloc failure\n");
break;
}
for (i = 0; i < num_rq; i++) {
spin_lock_bh(&tgt->tgt_lock);
rq_data = (unsigned char *)
bnx2fc_get_next_rqe(tgt, 1);
spin_unlock_bh(&tgt->tgt_lock);
len = BNX2FC_RQ_BUF_SZ;
memcpy(buf1, rq_data, len);
buf1 += len;
}
}
bnx2fc_process_l2_frame_compl(tgt, buf, frame_len,
FC_XID_UNKNOWN);
if (buf != rq_data)
kfree(buf);
spin_lock_bh(&tgt->tgt_lock);
bnx2fc_return_rqe(tgt, num_rq);
spin_unlock_bh(&tgt->tgt_lock);
break;
case FCOE_ERROR_DETECTION_CQE_TYPE:
/*
* In case of error reporting CQE a single RQ entry
* is consumed.
*/
spin_lock_bh(&tgt->tgt_lock);
num_rq = 1;
err_entry = (struct fcoe_err_report_entry *)
bnx2fc_get_next_rqe(tgt, 1);
xid = err_entry->fc_hdr.ox_id;
BNX2FC_TGT_DBG(tgt, "Unsol Error Frame OX_ID = 0x%x\n", xid);
BNX2FC_TGT_DBG(tgt, "err_warn_bitmap = %08x:%08x\n",
err_entry->data.err_warn_bitmap_hi,
err_entry->data.err_warn_bitmap_lo);
BNX2FC_TGT_DBG(tgt, "buf_offsets - tx = 0x%x, rx = 0x%x\n",
err_entry->data.tx_buf_off, err_entry->data.rx_buf_off);
if (xid > BNX2FC_MAX_XID) {
BNX2FC_TGT_DBG(tgt, "xid(0x%x) out of FW range\n",
xid);
goto ret_err_rqe;
}
task_idx = xid / BNX2FC_TASKS_PER_PAGE;
index = xid % BNX2FC_TASKS_PER_PAGE;
task_page = (struct fcoe_task_ctx_entry *)
hba->task_ctx[task_idx];
task = &(task_page[index]);
io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid];
if (!io_req)
goto ret_err_rqe;
if (io_req->cmd_type != BNX2FC_SCSI_CMD) {
printk(KERN_ERR PFX "err_warn: Not a SCSI cmd\n");
goto ret_err_rqe;
}
if (test_and_clear_bit(BNX2FC_FLAG_IO_CLEANUP,
&io_req->req_flags)) {
BNX2FC_IO_DBG(io_req, "unsol_err: cleanup in "
"progress.. ignore unsol err\n");
goto ret_err_rqe;
}
err_warn_bit_map = (u64)
((u64)err_entry->data.err_warn_bitmap_hi << 32) |
(u64)err_entry->data.err_warn_bitmap_lo;
for (i = 0; i < BNX2FC_NUM_ERR_BITS; i++) {
if (err_warn_bit_map & (u64)((u64)1 << i)) {
err_warn = i;
break;
}
}
/*
* If ABTS is already in progress, and FW error is
* received after that, do not cancel the timeout_work
* and let the error recovery continue by explicitly
* logging out the target, when the ABTS eventually
* times out.
*/
if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) {
printk(KERN_ERR PFX "err_warn: io_req (0x%x) already "
"in ABTS processing\n", xid);
goto ret_err_rqe;
}
BNX2FC_TGT_DBG(tgt, "err = 0x%x\n", err_warn);
if (tgt->dev_type != TYPE_TAPE)
goto skip_rec;
switch (err_warn) {
case FCOE_ERROR_CODE_REC_TOV_TIMER_EXPIRATION:
case FCOE_ERROR_CODE_DATA_OOO_RO:
case FCOE_ERROR_CODE_COMMON_INCORRECT_SEQ_CNT:
case FCOE_ERROR_CODE_DATA_SOFI3_SEQ_ACTIVE_SET:
case FCOE_ERROR_CODE_FCP_RSP_OPENED_SEQ:
case FCOE_ERROR_CODE_DATA_SOFN_SEQ_ACTIVE_RESET:
BNX2FC_TGT_DBG(tgt, "REC TOV popped for xid - 0x%x\n",
xid);
memcpy(&io_req->err_entry, err_entry,
sizeof(struct fcoe_err_report_entry));
if (!test_bit(BNX2FC_FLAG_SRR_SENT,
&io_req->req_flags)) {
spin_unlock_bh(&tgt->tgt_lock);
rc = bnx2fc_send_rec(io_req);
spin_lock_bh(&tgt->tgt_lock);
if (rc)
goto skip_rec;
} else
printk(KERN_ERR PFX "SRR in progress\n");
goto ret_err_rqe;
break;
default:
break;
}
skip_rec:
set_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags);
/*
* Cancel the timeout_work, as we received IO
* completion with FW error.
*/
if (cancel_delayed_work(&io_req->timeout_work))
kref_put(&io_req->refcount, bnx2fc_cmd_release);
rc = bnx2fc_initiate_abts(io_req);
if (rc != SUCCESS) {
printk(KERN_ERR PFX "err_warn: initiate_abts "
"failed xid = 0x%x. issue cleanup\n",
io_req->xid);
bnx2fc_initiate_cleanup(io_req);
}
ret_err_rqe:
bnx2fc_return_rqe(tgt, 1);
spin_unlock_bh(&tgt->tgt_lock);
break;
case FCOE_WARNING_DETECTION_CQE_TYPE:
/*
*In case of warning reporting CQE a single RQ entry
* is consumes.
*/
spin_lock_bh(&tgt->tgt_lock);
num_rq = 1;
err_entry = (struct fcoe_err_report_entry *)
bnx2fc_get_next_rqe(tgt, 1);
xid = cpu_to_be16(err_entry->fc_hdr.ox_id);
BNX2FC_TGT_DBG(tgt, "Unsol Warning Frame OX_ID = 0x%x\n", xid);
BNX2FC_TGT_DBG(tgt, "err_warn_bitmap = %08x:%08x",
err_entry->data.err_warn_bitmap_hi,
err_entry->data.err_warn_bitmap_lo);
BNX2FC_TGT_DBG(tgt, "buf_offsets - tx = 0x%x, rx = 0x%x",
err_entry->data.tx_buf_off, err_entry->data.rx_buf_off);
if (xid > BNX2FC_MAX_XID) {
BNX2FC_TGT_DBG(tgt, "xid(0x%x) out of FW range\n", xid);
goto ret_warn_rqe;
}
err_warn_bit_map = (u64)
((u64)err_entry->data.err_warn_bitmap_hi << 32) |
(u64)err_entry->data.err_warn_bitmap_lo;
for (i = 0; i < BNX2FC_NUM_ERR_BITS; i++) {
if (err_warn_bit_map & (u64) (1 << i)) {
err_warn = i;
break;
}
}
BNX2FC_TGT_DBG(tgt, "warn = 0x%x\n", err_warn);
task_idx = xid / BNX2FC_TASKS_PER_PAGE;
index = xid % BNX2FC_TASKS_PER_PAGE;
task_page = (struct fcoe_task_ctx_entry *)
interface->hba->task_ctx[task_idx];
task = &(task_page[index]);
io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid];
if (!io_req)
goto ret_warn_rqe;
if (io_req->cmd_type != BNX2FC_SCSI_CMD) {
printk(KERN_ERR PFX "err_warn: Not a SCSI cmd\n");
goto ret_warn_rqe;
}
memcpy(&io_req->err_entry, err_entry,
sizeof(struct fcoe_err_report_entry));
if (err_warn == FCOE_ERROR_CODE_REC_TOV_TIMER_EXPIRATION)
/* REC_TOV is not a warning code */
BUG_ON(1);
else
BNX2FC_TGT_DBG(tgt, "Unsolicited warning\n");
ret_warn_rqe:
bnx2fc_return_rqe(tgt, 1);
spin_unlock_bh(&tgt->tgt_lock);
break;
default:
printk(KERN_ERR PFX "Unsol Compl: Invalid CQE Subtype\n");
break;
}
}
void bnx2fc_process_cq_compl(struct bnx2fc_rport *tgt, u16 wqe)
{
struct fcoe_task_ctx_entry *task;
struct fcoe_task_ctx_entry *task_page;
struct fcoe_port *port = tgt->port;
struct bnx2fc_interface *interface = port->priv;
struct bnx2fc_hba *hba = interface->hba;
struct bnx2fc_cmd *io_req;
int task_idx, index;
u16 xid;
u8 cmd_type;
u8 rx_state = 0;
u8 num_rq;
spin_lock_bh(&tgt->tgt_lock);
xid = wqe & FCOE_PEND_WQ_CQE_TASK_ID;
if (xid >= BNX2FC_MAX_TASKS) {
printk(KERN_ERR PFX "ERROR:xid out of range\n");
spin_unlock_bh(&tgt->tgt_lock);
return;
}
task_idx = xid / BNX2FC_TASKS_PER_PAGE;
index = xid % BNX2FC_TASKS_PER_PAGE;
task_page = (struct fcoe_task_ctx_entry *)hba->task_ctx[task_idx];
task = &(task_page[index]);
num_rq = ((task->rxwr_txrd.var_ctx.rx_flags &
FCOE_TCE_RX_WR_TX_RD_VAR_NUM_RQ_WQE) >>
FCOE_TCE_RX_WR_TX_RD_VAR_NUM_RQ_WQE_SHIFT);
io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid];
if (io_req == NULL) {
printk(KERN_ERR PFX "ERROR? cq_compl - io_req is NULL\n");
spin_unlock_bh(&tgt->tgt_lock);
return;
}
/* Timestamp IO completion time */
cmd_type = io_req->cmd_type;
rx_state = ((task->rxwr_txrd.var_ctx.rx_flags &
FCOE_TCE_RX_WR_TX_RD_VAR_RX_STATE) >>
FCOE_TCE_RX_WR_TX_RD_VAR_RX_STATE_SHIFT);
/* Process other IO completion types */
switch (cmd_type) {
case BNX2FC_SCSI_CMD:
if (rx_state == FCOE_TASK_RX_STATE_COMPLETED) {
bnx2fc_process_scsi_cmd_compl(io_req, task, num_rq);
spin_unlock_bh(&tgt->tgt_lock);
return;
}
if (rx_state == FCOE_TASK_RX_STATE_ABTS_COMPLETED)
bnx2fc_process_abts_compl(io_req, task, num_rq);
else if (rx_state ==
FCOE_TASK_RX_STATE_EXCHANGE_CLEANUP_COMPLETED)
bnx2fc_process_cleanup_compl(io_req, task, num_rq);
else
printk(KERN_ERR PFX "Invalid rx state - %d\n",
rx_state);
break;
case BNX2FC_TASK_MGMT_CMD:
BNX2FC_IO_DBG(io_req, "Processing TM complete\n");
bnx2fc_process_tm_compl(io_req, task, num_rq);
break;
case BNX2FC_ABTS:
/*
* ABTS request received by firmware. ABTS response
* will be delivered to the task belonging to the IO
* that was aborted
*/
BNX2FC_IO_DBG(io_req, "cq_compl- ABTS sent out by fw\n");
kref_put(&io_req->refcount, bnx2fc_cmd_release);
break;
case BNX2FC_ELS:
if (rx_state == FCOE_TASK_RX_STATE_COMPLETED)
bnx2fc_process_els_compl(io_req, task, num_rq);
else if (rx_state == FCOE_TASK_RX_STATE_ABTS_COMPLETED)
bnx2fc_process_abts_compl(io_req, task, num_rq);
else if (rx_state ==
FCOE_TASK_RX_STATE_EXCHANGE_CLEANUP_COMPLETED)
bnx2fc_process_cleanup_compl(io_req, task, num_rq);
else
printk(KERN_ERR PFX "Invalid rx state = %d\n",
rx_state);
break;
case BNX2FC_CLEANUP:
BNX2FC_IO_DBG(io_req, "cq_compl- cleanup resp rcvd\n");
kref_put(&io_req->refcount, bnx2fc_cmd_release);
break;
case BNX2FC_SEQ_CLEANUP:
BNX2FC_IO_DBG(io_req, "cq_compl(0x%x) - seq cleanup resp\n",
io_req->xid);
bnx2fc_process_seq_cleanup_compl(io_req, task, rx_state);
kref_put(&io_req->refcount, bnx2fc_cmd_release);
break;
default:
printk(KERN_ERR PFX "Invalid cmd_type %d\n", cmd_type);
break;
}
spin_unlock_bh(&tgt->tgt_lock);
}
void bnx2fc_arm_cq(struct bnx2fc_rport *tgt)
{
struct b577xx_fcoe_rx_doorbell *rx_db = &tgt->rx_db;
u32 msg;
wmb();
rx_db->doorbell_cq_cons = tgt->cq_cons_idx | (tgt->cq_curr_toggle_bit <<
FCOE_CQE_TOGGLE_BIT_SHIFT);
msg = *((u32 *)rx_db);
writel(cpu_to_le32(msg), tgt->ctx_base);
mmiowb();
}
struct bnx2fc_work *bnx2fc_alloc_work(struct bnx2fc_rport *tgt, u16 wqe)
{
struct bnx2fc_work *work;
work = kzalloc(sizeof(struct bnx2fc_work), GFP_ATOMIC);
if (!work)
return NULL;
INIT_LIST_HEAD(&work->list);
work->tgt = tgt;
work->wqe = wqe;
return work;
}
int bnx2fc_process_new_cqes(struct bnx2fc_rport *tgt)
{
struct fcoe_cqe *cq;
u32 cq_cons;
struct fcoe_cqe *cqe;
u32 num_free_sqes = 0;
u32 num_cqes = 0;
u16 wqe;
/*
* cq_lock is a low contention lock used to protect
* the CQ data structure from being freed up during
* the upload operation
*/
spin_lock_bh(&tgt->cq_lock);
if (!tgt->cq) {
printk(KERN_ERR PFX "process_new_cqes: cq is NULL\n");
spin_unlock_bh(&tgt->cq_lock);
return 0;
}
cq = tgt->cq;
cq_cons = tgt->cq_cons_idx;
cqe = &cq[cq_cons];
while (((wqe = cqe->wqe) & FCOE_CQE_TOGGLE_BIT) ==
(tgt->cq_curr_toggle_bit <<
FCOE_CQE_TOGGLE_BIT_SHIFT)) {
/* new entry on the cq */
if (wqe & FCOE_CQE_CQE_TYPE) {
/* Unsolicited event notification */
bnx2fc_process_unsol_compl(tgt, wqe);
} else {
/* Pending work request completion */
struct bnx2fc_work *work = NULL;
struct bnx2fc_percpu_s *fps = NULL;
unsigned int cpu = wqe % num_possible_cpus();
fps = &per_cpu(bnx2fc_percpu, cpu);
spin_lock_bh(&fps->fp_work_lock);
if (unlikely(!fps->iothread))
goto unlock;
work = bnx2fc_alloc_work(tgt, wqe);
if (work)
list_add_tail(&work->list,
&fps->work_list);
unlock:
spin_unlock_bh(&fps->fp_work_lock);
/* Pending work request completion */
if (fps->iothread && work)
wake_up_process(fps->iothread);
else
bnx2fc_process_cq_compl(tgt, wqe);
num_free_sqes++;
}
cqe++;
tgt->cq_cons_idx++;
num_cqes++;
if (tgt->cq_cons_idx == BNX2FC_CQ_WQES_MAX) {
tgt->cq_cons_idx = 0;
cqe = cq;
tgt->cq_curr_toggle_bit =
1 - tgt->cq_curr_toggle_bit;
}
}
if (num_cqes) {
/* Arm CQ only if doorbell is mapped */
if (tgt->ctx_base)
bnx2fc_arm_cq(tgt);
atomic_add(num_free_sqes, &tgt->free_sqes);
}
spin_unlock_bh(&tgt->cq_lock);
return 0;
}
/**
* bnx2fc_fastpath_notification - process global event queue (KCQ)
*
* @hba: adapter structure pointer
* @new_cqe_kcqe: pointer to newly DMA'd KCQ entry
*
* Fast path event notification handler
*/
static void bnx2fc_fastpath_notification(struct bnx2fc_hba *hba,
struct fcoe_kcqe *new_cqe_kcqe)
{
u32 conn_id = new_cqe_kcqe->fcoe_conn_id;
struct bnx2fc_rport *tgt = hba->tgt_ofld_list[conn_id];
if (!tgt) {
printk(KERN_ERR PFX "conn_id 0x%x not valid\n", conn_id);
return;
}
bnx2fc_process_new_cqes(tgt);
}
/**
* bnx2fc_process_ofld_cmpl - process FCoE session offload completion
*
* @hba: adapter structure pointer
* @ofld_kcqe: connection offload kcqe pointer
*
* handle session offload completion, enable the session if offload is
* successful.
*/
static void bnx2fc_process_ofld_cmpl(struct bnx2fc_hba *hba,
struct fcoe_kcqe *ofld_kcqe)
{
struct bnx2fc_rport *tgt;
struct fcoe_port *port;
struct bnx2fc_interface *interface;
u32 conn_id;
u32 context_id;
conn_id = ofld_kcqe->fcoe_conn_id;
context_id = ofld_kcqe->fcoe_conn_context_id;
tgt = hba->tgt_ofld_list[conn_id];
if (!tgt) {
printk(KERN_ALERT PFX "ERROR:ofld_cmpl: No pending ofld req\n");
return;
}
BNX2FC_TGT_DBG(tgt, "Entered ofld compl - context_id = 0x%x\n",
ofld_kcqe->fcoe_conn_context_id);
port = tgt->port;
interface = tgt->port->priv;
if (hba != interface->hba) {
printk(KERN_ERR PFX "ERROR:ofld_cmpl: HBA mis-match\n");
goto ofld_cmpl_err;
}
/*
* cnic has allocated a context_id for this session; use this
* while enabling the session.
*/
tgt->context_id = context_id;
if (ofld_kcqe->completion_status) {
if (ofld_kcqe->completion_status ==
FCOE_KCQE_COMPLETION_STATUS_CTX_ALLOC_FAILURE) {
printk(KERN_ERR PFX "unable to allocate FCoE context "
"resources\n");
set_bit(BNX2FC_FLAG_CTX_ALLOC_FAILURE, &tgt->flags);
}
} else {
/* FW offload request successfully completed */
set_bit(BNX2FC_FLAG_OFFLOADED, &tgt->flags);
}
ofld_cmpl_err:
set_bit(BNX2FC_FLAG_OFLD_REQ_CMPL, &tgt->flags);
wake_up_interruptible(&tgt->ofld_wait);
}
/**
* bnx2fc_process_enable_conn_cmpl - process FCoE session enable completion
*
* @hba: adapter structure pointer
* @ofld_kcqe: connection offload kcqe pointer
*
* handle session enable completion, mark the rport as ready
*/
static void bnx2fc_process_enable_conn_cmpl(struct bnx2fc_hba *hba,
struct fcoe_kcqe *ofld_kcqe)
{
struct bnx2fc_rport *tgt;
struct bnx2fc_interface *interface;
u32 conn_id;
u32 context_id;
context_id = ofld_kcqe->fcoe_conn_context_id;
conn_id = ofld_kcqe->fcoe_conn_id;
tgt = hba->tgt_ofld_list[conn_id];
if (!tgt) {
printk(KERN_ERR PFX "ERROR:enbl_cmpl: No pending ofld req\n");
return;
}
BNX2FC_TGT_DBG(tgt, "Enable compl - context_id = 0x%x\n",
ofld_kcqe->fcoe_conn_context_id);
/*
* context_id should be the same for this target during offload
* and enable
*/
if (tgt->context_id != context_id) {
printk(KERN_ERR PFX "context id mis-match\n");
return;
}
interface = tgt->port->priv;
if (hba != interface->hba) {
printk(KERN_ERR PFX "bnx2fc-enbl_cmpl: HBA mis-match\n");
goto enbl_cmpl_err;
}
if (!ofld_kcqe->completion_status)
/* enable successful - rport ready for issuing IOs */
set_bit(BNX2FC_FLAG_ENABLED, &tgt->flags);
enbl_cmpl_err:
set_bit(BNX2FC_FLAG_OFLD_REQ_CMPL, &tgt->flags);
wake_up_interruptible(&tgt->ofld_wait);
}
static void bnx2fc_process_conn_disable_cmpl(struct bnx2fc_hba *hba,
struct fcoe_kcqe *disable_kcqe)
{
struct bnx2fc_rport *tgt;
u32 conn_id;
conn_id = disable_kcqe->fcoe_conn_id;
tgt = hba->tgt_ofld_list[conn_id];
if (!tgt) {
printk(KERN_ERR PFX "ERROR: disable_cmpl: No disable req\n");
return;
}
BNX2FC_TGT_DBG(tgt, PFX "disable_cmpl: conn_id %d\n", conn_id);
if (disable_kcqe->completion_status) {
printk(KERN_ERR PFX "Disable failed with cmpl status %d\n",
disable_kcqe->completion_status);
set_bit(BNX2FC_FLAG_DISABLE_FAILED, &tgt->flags);
set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags);
wake_up_interruptible(&tgt->upld_wait);
} else {
/* disable successful */
BNX2FC_TGT_DBG(tgt, "disable successful\n");
clear_bit(BNX2FC_FLAG_OFFLOADED, &tgt->flags);
clear_bit(BNX2FC_FLAG_ENABLED, &tgt->flags);
set_bit(BNX2FC_FLAG_DISABLED, &tgt->flags);
set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags);
wake_up_interruptible(&tgt->upld_wait);
}
}
static void bnx2fc_process_conn_destroy_cmpl(struct bnx2fc_hba *hba,
struct fcoe_kcqe *destroy_kcqe)
{
struct bnx2fc_rport *tgt;
u32 conn_id;
conn_id = destroy_kcqe->fcoe_conn_id;
tgt = hba->tgt_ofld_list[conn_id];
if (!tgt) {
printk(KERN_ERR PFX "destroy_cmpl: No destroy req\n");
return;
}
BNX2FC_TGT_DBG(tgt, "destroy_cmpl: conn_id %d\n", conn_id);
if (destroy_kcqe->completion_status) {
printk(KERN_ERR PFX "Destroy conn failed, cmpl status %d\n",
destroy_kcqe->completion_status);
return;
} else {
/* destroy successful */
BNX2FC_TGT_DBG(tgt, "upload successful\n");
clear_bit(BNX2FC_FLAG_DISABLED, &tgt->flags);
set_bit(BNX2FC_FLAG_DESTROYED, &tgt->flags);
set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags);
wake_up_interruptible(&tgt->upld_wait);
}
}
static void bnx2fc_init_failure(struct bnx2fc_hba *hba, u32 err_code)
{
switch (err_code) {
case FCOE_KCQE_COMPLETION_STATUS_INVALID_OPCODE:
printk(KERN_ERR PFX "init_failure due to invalid opcode\n");
break;
case FCOE_KCQE_COMPLETION_STATUS_CTX_ALLOC_FAILURE:
printk(KERN_ERR PFX "init failed due to ctx alloc failure\n");
break;
case FCOE_KCQE_COMPLETION_STATUS_NIC_ERROR:
printk(KERN_ERR PFX "init_failure due to NIC error\n");
break;
case FCOE_KCQE_COMPLETION_STATUS_ERROR:
printk(KERN_ERR PFX "init failure due to compl status err\n");
break;
case FCOE_KCQE_COMPLETION_STATUS_WRONG_HSI_VERSION:
printk(KERN_ERR PFX "init failure due to HSI mismatch\n");
break;
default:
printk(KERN_ERR PFX "Unknown Error code %d\n", err_code);
}
}
/**
* bnx2fc_indicae_kcqe - process KCQE
*
* @hba: adapter structure pointer
* @kcqe: kcqe pointer
* @num_cqe: Number of completion queue elements
*
* Generic KCQ event handler
*/
void bnx2fc_indicate_kcqe(void *context, struct kcqe *kcq[],
u32 num_cqe)
{
struct bnx2fc_hba *hba = (struct bnx2fc_hba *)context;
int i = 0;
struct fcoe_kcqe *kcqe = NULL;
while (i < num_cqe) {
kcqe = (struct fcoe_kcqe *) kcq[i++];
switch (kcqe->op_code) {
case FCOE_KCQE_OPCODE_CQ_EVENT_NOTIFICATION:
bnx2fc_fastpath_notification(hba, kcqe);
break;
case FCOE_KCQE_OPCODE_OFFLOAD_CONN:
bnx2fc_process_ofld_cmpl(hba, kcqe);
break;
case FCOE_KCQE_OPCODE_ENABLE_CONN:
bnx2fc_process_enable_conn_cmpl(hba, kcqe);
break;
case FCOE_KCQE_OPCODE_INIT_FUNC:
if (kcqe->completion_status !=
FCOE_KCQE_COMPLETION_STATUS_SUCCESS) {
bnx2fc_init_failure(hba,
kcqe->completion_status);
} else {
set_bit(ADAPTER_STATE_UP, &hba->adapter_state);
bnx2fc_get_link_state(hba);
printk(KERN_INFO PFX "[%.2x]: FCOE_INIT passed\n",
(u8)hba->pcidev->bus->number);
}
break;
case FCOE_KCQE_OPCODE_DESTROY_FUNC:
if (kcqe->completion_status !=
FCOE_KCQE_COMPLETION_STATUS_SUCCESS) {
printk(KERN_ERR PFX "DESTROY failed\n");
} else {
printk(KERN_ERR PFX "DESTROY success\n");
}
set_bit(BNX2FC_FLAG_DESTROY_CMPL, &hba->flags);
wake_up_interruptible(&hba->destroy_wait);
break;
case FCOE_KCQE_OPCODE_DISABLE_CONN:
bnx2fc_process_conn_disable_cmpl(hba, kcqe);
break;
case FCOE_KCQE_OPCODE_DESTROY_CONN:
bnx2fc_process_conn_destroy_cmpl(hba, kcqe);
break;
case FCOE_KCQE_OPCODE_STAT_FUNC:
if (kcqe->completion_status !=
FCOE_KCQE_COMPLETION_STATUS_SUCCESS)
printk(KERN_ERR PFX "STAT failed\n");
complete(&hba->stat_req_done);
break;
case FCOE_KCQE_OPCODE_FCOE_ERROR:
/* fall thru */
default:
printk(KERN_ERR PFX "unknown opcode 0x%x\n",
kcqe->op_code);
}
}
}
void bnx2fc_add_2_sq(struct bnx2fc_rport *tgt, u16 xid)
{
struct fcoe_sqe *sqe;
sqe = &tgt->sq[tgt->sq_prod_idx];
/* Fill SQ WQE */
sqe->wqe = xid << FCOE_SQE_TASK_ID_SHIFT;
sqe->wqe |= tgt->sq_curr_toggle_bit << FCOE_SQE_TOGGLE_BIT_SHIFT;
/* Advance SQ Prod Idx */
if (++tgt->sq_prod_idx == BNX2FC_SQ_WQES_MAX) {
tgt->sq_prod_idx = 0;
tgt->sq_curr_toggle_bit = 1 - tgt->sq_curr_toggle_bit;
}
}
void bnx2fc_ring_doorbell(struct bnx2fc_rport *tgt)
{
struct b577xx_doorbell_set_prod *sq_db = &tgt->sq_db;
u32 msg;
wmb();
sq_db->prod = tgt->sq_prod_idx |
(tgt->sq_curr_toggle_bit << 15);
msg = *((u32 *)sq_db);
writel(cpu_to_le32(msg), tgt->ctx_base);
mmiowb();
}
int bnx2fc_map_doorbell(struct bnx2fc_rport *tgt)
{
u32 context_id = tgt->context_id;
struct fcoe_port *port = tgt->port;
u32 reg_off;
resource_size_t reg_base;
struct bnx2fc_interface *interface = port->priv;
struct bnx2fc_hba *hba = interface->hba;
reg_base = pci_resource_start(hba->pcidev,
BNX2X_DOORBELL_PCI_BAR);
reg_off = BNX2FC_5771X_DB_PAGE_SIZE *
(context_id & 0x1FFFF) + DPM_TRIGER_TYPE;
tgt->ctx_base = ioremap_nocache(reg_base + reg_off, 4);
if (!tgt->ctx_base)
return -ENOMEM;
return 0;
}
char *bnx2fc_get_next_rqe(struct bnx2fc_rport *tgt, u8 num_items)
{
char *buf = (char *)tgt->rq + (tgt->rq_cons_idx * BNX2FC_RQ_BUF_SZ);
if (tgt->rq_cons_idx + num_items > BNX2FC_RQ_WQES_MAX)
return NULL;
tgt->rq_cons_idx += num_items;
if (tgt->rq_cons_idx >= BNX2FC_RQ_WQES_MAX)
tgt->rq_cons_idx -= BNX2FC_RQ_WQES_MAX;
return buf;
}
void bnx2fc_return_rqe(struct bnx2fc_rport *tgt, u8 num_items)
{
/* return the rq buffer */
u32 next_prod_idx = tgt->rq_prod_idx + num_items;
if ((next_prod_idx & 0x7fff) == BNX2FC_RQ_WQES_MAX) {
/* Wrap around RQ */
next_prod_idx += 0x8000 - BNX2FC_RQ_WQES_MAX;
}
tgt->rq_prod_idx = next_prod_idx;
tgt->conn_db->rq_prod = tgt->rq_prod_idx;
}
void bnx2fc_init_seq_cleanup_task(struct bnx2fc_cmd *seq_clnp_req,
struct fcoe_task_ctx_entry *task,
struct bnx2fc_cmd *orig_io_req,
u32 offset)
{
struct scsi_cmnd *sc_cmd = orig_io_req->sc_cmd;
struct bnx2fc_rport *tgt = seq_clnp_req->tgt;
struct bnx2fc_interface *interface = tgt->port->priv;
struct fcoe_bd_ctx *bd = orig_io_req->bd_tbl->bd_tbl;
struct fcoe_task_ctx_entry *orig_task;
struct fcoe_task_ctx_entry *task_page;
struct fcoe_ext_mul_sges_ctx *sgl;
u8 task_type = FCOE_TASK_TYPE_SEQUENCE_CLEANUP;
u8 orig_task_type;
u16 orig_xid = orig_io_req->xid;
u32 context_id = tgt->context_id;
u64 phys_addr = (u64)orig_io_req->bd_tbl->bd_tbl_dma;
u32 orig_offset = offset;
int bd_count;
int orig_task_idx, index;
int i;
memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
if (sc_cmd->sc_data_direction == DMA_TO_DEVICE)
orig_task_type = FCOE_TASK_TYPE_WRITE;
else
orig_task_type = FCOE_TASK_TYPE_READ;
/* Tx flags */
task->txwr_rxrd.const_ctx.tx_flags =
FCOE_TASK_TX_STATE_SEQUENCE_CLEANUP <<
FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
/* init flags */
task->txwr_rxrd.const_ctx.init_flags = task_type <<
FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
task->rxwr_txrd.const_ctx.init_flags = context_id <<
FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
task->rxwr_txrd.const_ctx.init_flags = context_id <<
FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
task->txwr_rxrd.union_ctx.cleanup.ctx.cleaned_task_id = orig_xid;
task->txwr_rxrd.union_ctx.cleanup.ctx.rolled_tx_seq_cnt = 0;
task->txwr_rxrd.union_ctx.cleanup.ctx.rolled_tx_data_offset = offset;
bd_count = orig_io_req->bd_tbl->bd_valid;
/* obtain the appropriate bd entry from relative offset */
for (i = 0; i < bd_count; i++) {
if (offset < bd[i].buf_len)
break;
offset -= bd[i].buf_len;
}
phys_addr += (i * sizeof(struct fcoe_bd_ctx));
if (orig_task_type == FCOE_TASK_TYPE_WRITE) {
task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo =
(u32)phys_addr;
task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi =
(u32)((u64)phys_addr >> 32);
task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size =
bd_count;
task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_off =
offset; /* adjusted offset */
task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_idx = i;
} else {
orig_task_idx = orig_xid / BNX2FC_TASKS_PER_PAGE;
index = orig_xid % BNX2FC_TASKS_PER_PAGE;
task_page = (struct fcoe_task_ctx_entry *)
interface->hba->task_ctx[orig_task_idx];
orig_task = &(task_page[index]);
/* Multiple SGEs were used for this IO */
sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl;
sgl->mul_sgl.cur_sge_addr.lo = (u32)phys_addr;
sgl->mul_sgl.cur_sge_addr.hi = (u32)((u64)phys_addr >> 32);
sgl->mul_sgl.sgl_size = bd_count;
sgl->mul_sgl.cur_sge_off = offset; /*adjusted offset */
sgl->mul_sgl.cur_sge_idx = i;
memset(&task->rxwr_only.rx_seq_ctx, 0,
sizeof(struct fcoe_rx_seq_ctx));
task->rxwr_only.rx_seq_ctx.low_exp_ro = orig_offset;
task->rxwr_only.rx_seq_ctx.high_exp_ro = orig_offset;
}
}
void bnx2fc_init_cleanup_task(struct bnx2fc_cmd *io_req,
struct fcoe_task_ctx_entry *task,
u16 orig_xid)
{
u8 task_type = FCOE_TASK_TYPE_EXCHANGE_CLEANUP;
struct bnx2fc_rport *tgt = io_req->tgt;
u32 context_id = tgt->context_id;
memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
/* Tx Write Rx Read */
/* init flags */
task->txwr_rxrd.const_ctx.init_flags = task_type <<
FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
if (tgt->dev_type == TYPE_TAPE)
task->txwr_rxrd.const_ctx.init_flags |=
FCOE_TASK_DEV_TYPE_TAPE <<
FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
else
task->txwr_rxrd.const_ctx.init_flags |=
FCOE_TASK_DEV_TYPE_DISK <<
FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
task->txwr_rxrd.union_ctx.cleanup.ctx.cleaned_task_id = orig_xid;
/* Tx flags */
task->txwr_rxrd.const_ctx.tx_flags =
FCOE_TASK_TX_STATE_EXCHANGE_CLEANUP <<
FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
/* Rx Read Tx Write */
task->rxwr_txrd.const_ctx.init_flags = context_id <<
FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
task->rxwr_txrd.var_ctx.rx_flags |= 1 <<
FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT;
}
void bnx2fc_init_mp_task(struct bnx2fc_cmd *io_req,
struct fcoe_task_ctx_entry *task)
{
struct bnx2fc_mp_req *mp_req = &(io_req->mp_req);
struct bnx2fc_rport *tgt = io_req->tgt;
struct fc_frame_header *fc_hdr;
struct fcoe_ext_mul_sges_ctx *sgl;
u8 task_type = 0;
u64 *hdr;
u64 temp_hdr[3];
u32 context_id;
/* Obtain task_type */
if ((io_req->cmd_type == BNX2FC_TASK_MGMT_CMD) ||
(io_req->cmd_type == BNX2FC_ELS)) {
task_type = FCOE_TASK_TYPE_MIDPATH;
} else if (io_req->cmd_type == BNX2FC_ABTS) {
task_type = FCOE_TASK_TYPE_ABTS;
}
memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
/* Setup the task from io_req for easy reference */
io_req->task = task;
BNX2FC_IO_DBG(io_req, "Init MP task for cmd_type = %d task_type = %d\n",
io_req->cmd_type, task_type);
/* Tx only */
if ((task_type == FCOE_TASK_TYPE_MIDPATH) ||
(task_type == FCOE_TASK_TYPE_UNSOLICITED)) {
task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo =
(u32)mp_req->mp_req_bd_dma;
task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi =
(u32)((u64)mp_req->mp_req_bd_dma >> 32);
task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size = 1;
}
/* Tx Write Rx Read */
/* init flags */
task->txwr_rxrd.const_ctx.init_flags = task_type <<
FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
if (tgt->dev_type == TYPE_TAPE)
task->txwr_rxrd.const_ctx.init_flags |=
FCOE_TASK_DEV_TYPE_TAPE <<
FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
else
task->txwr_rxrd.const_ctx.init_flags |=
FCOE_TASK_DEV_TYPE_DISK <<
FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
/* tx flags */
task->txwr_rxrd.const_ctx.tx_flags = FCOE_TASK_TX_STATE_INIT <<
FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
/* Rx Write Tx Read */
task->rxwr_txrd.const_ctx.data_2_trns = io_req->data_xfer_len;
/* rx flags */
task->rxwr_txrd.var_ctx.rx_flags |= 1 <<
FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT;
context_id = tgt->context_id;
task->rxwr_txrd.const_ctx.init_flags = context_id <<
FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
fc_hdr = &(mp_req->req_fc_hdr);
if (task_type == FCOE_TASK_TYPE_MIDPATH) {
fc_hdr->fh_ox_id = cpu_to_be16(io_req->xid);
fc_hdr->fh_rx_id = htons(0xffff);
task->rxwr_txrd.var_ctx.rx_id = 0xffff;
} else if (task_type == FCOE_TASK_TYPE_UNSOLICITED) {
fc_hdr->fh_rx_id = cpu_to_be16(io_req->xid);
}
/* Fill FC Header into middle path buffer */
hdr = (u64 *) &task->txwr_rxrd.union_ctx.tx_frame.fc_hdr;
memcpy(temp_hdr, fc_hdr, sizeof(temp_hdr));
hdr[0] = cpu_to_be64(temp_hdr[0]);
hdr[1] = cpu_to_be64(temp_hdr[1]);
hdr[2] = cpu_to_be64(temp_hdr[2]);
/* Rx Only */
if (task_type == FCOE_TASK_TYPE_MIDPATH) {
sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl;
sgl->mul_sgl.cur_sge_addr.lo = (u32)mp_req->mp_resp_bd_dma;
sgl->mul_sgl.cur_sge_addr.hi =
(u32)((u64)mp_req->mp_resp_bd_dma >> 32);
sgl->mul_sgl.sgl_size = 1;
}
}
void bnx2fc_init_task(struct bnx2fc_cmd *io_req,
struct fcoe_task_ctx_entry *task)
{
u8 task_type;
struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
struct io_bdt *bd_tbl = io_req->bd_tbl;
struct bnx2fc_rport *tgt = io_req->tgt;
struct fcoe_cached_sge_ctx *cached_sge;
struct fcoe_ext_mul_sges_ctx *sgl;
int dev_type = tgt->dev_type;
u64 *fcp_cmnd;
u64 tmp_fcp_cmnd[4];
u32 context_id;
int cnt, i;
int bd_count;
memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
/* Setup the task from io_req for easy reference */
io_req->task = task;
if (sc_cmd->sc_data_direction == DMA_TO_DEVICE)
task_type = FCOE_TASK_TYPE_WRITE;
else
task_type = FCOE_TASK_TYPE_READ;
/* Tx only */
bd_count = bd_tbl->bd_valid;
cached_sge = &task->rxwr_only.union_ctx.read_info.sgl_ctx.cached_sge;
if (task_type == FCOE_TASK_TYPE_WRITE) {
if ((dev_type == TYPE_DISK) && (bd_count == 1)) {
struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl;
task->txwr_only.sgl_ctx.cached_sge.cur_buf_addr.lo =
cached_sge->cur_buf_addr.lo =
fcoe_bd_tbl->buf_addr_lo;
task->txwr_only.sgl_ctx.cached_sge.cur_buf_addr.hi =
cached_sge->cur_buf_addr.hi =
fcoe_bd_tbl->buf_addr_hi;
task->txwr_only.sgl_ctx.cached_sge.cur_buf_rem =
cached_sge->cur_buf_rem =
fcoe_bd_tbl->buf_len;
task->txwr_rxrd.const_ctx.init_flags |= 1 <<
FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT;
} else {
task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo =
(u32)bd_tbl->bd_tbl_dma;
task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi =
(u32)((u64)bd_tbl->bd_tbl_dma >> 32);
task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size =
bd_tbl->bd_valid;
}
}
/*Tx Write Rx Read */
/* Init state to NORMAL */
task->txwr_rxrd.const_ctx.init_flags |= task_type <<
FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
if (dev_type == TYPE_TAPE) {
task->txwr_rxrd.const_ctx.init_flags |=
FCOE_TASK_DEV_TYPE_TAPE <<
FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
io_req->rec_retry = 0;
io_req->rec_retry = 0;
} else
task->txwr_rxrd.const_ctx.init_flags |=
FCOE_TASK_DEV_TYPE_DISK <<
FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
/* tx flags */
task->txwr_rxrd.const_ctx.tx_flags = FCOE_TASK_TX_STATE_NORMAL <<
FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
/* Set initial seq counter */
task->txwr_rxrd.union_ctx.tx_seq.ctx.seq_cnt = 1;
/* Fill FCP_CMND IU */
fcp_cmnd = (u64 *)
task->txwr_rxrd.union_ctx.fcp_cmd.opaque;
bnx2fc_build_fcp_cmnd(io_req, (struct fcp_cmnd *)&tmp_fcp_cmnd);
/* swap fcp_cmnd */
cnt = sizeof(struct fcp_cmnd) / sizeof(u64);
for (i = 0; i < cnt; i++) {
*fcp_cmnd = cpu_to_be64(tmp_fcp_cmnd[i]);
fcp_cmnd++;
}
/* Rx Write Tx Read */
task->rxwr_txrd.const_ctx.data_2_trns = io_req->data_xfer_len;
context_id = tgt->context_id;
task->rxwr_txrd.const_ctx.init_flags = context_id <<
FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
/* rx flags */
/* Set state to "waiting for the first packet" */
task->rxwr_txrd.var_ctx.rx_flags |= 1 <<
FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT;
task->rxwr_txrd.var_ctx.rx_id = 0xffff;
/* Rx Only */
if (task_type != FCOE_TASK_TYPE_READ)
return;
sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl;
bd_count = bd_tbl->bd_valid;
if (dev_type == TYPE_DISK) {
if (bd_count == 1) {
struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl;
cached_sge->cur_buf_addr.lo = fcoe_bd_tbl->buf_addr_lo;
cached_sge->cur_buf_addr.hi = fcoe_bd_tbl->buf_addr_hi;
cached_sge->cur_buf_rem = fcoe_bd_tbl->buf_len;
task->txwr_rxrd.const_ctx.init_flags |= 1 <<
FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT;
} else if (bd_count == 2) {
struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl;
cached_sge->cur_buf_addr.lo = fcoe_bd_tbl->buf_addr_lo;
cached_sge->cur_buf_addr.hi = fcoe_bd_tbl->buf_addr_hi;
cached_sge->cur_buf_rem = fcoe_bd_tbl->buf_len;
fcoe_bd_tbl++;
cached_sge->second_buf_addr.lo =
fcoe_bd_tbl->buf_addr_lo;
cached_sge->second_buf_addr.hi =
fcoe_bd_tbl->buf_addr_hi;
cached_sge->second_buf_rem = fcoe_bd_tbl->buf_len;
task->txwr_rxrd.const_ctx.init_flags |= 1 <<
FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT;
} else {
sgl->mul_sgl.cur_sge_addr.lo = (u32)bd_tbl->bd_tbl_dma;
sgl->mul_sgl.cur_sge_addr.hi =
(u32)((u64)bd_tbl->bd_tbl_dma >> 32);
sgl->mul_sgl.sgl_size = bd_count;
}
} else {
sgl->mul_sgl.cur_sge_addr.lo = (u32)bd_tbl->bd_tbl_dma;
sgl->mul_sgl.cur_sge_addr.hi =
(u32)((u64)bd_tbl->bd_tbl_dma >> 32);
sgl->mul_sgl.sgl_size = bd_count;
}
}
/**
* bnx2fc_setup_task_ctx - allocate and map task context
*
* @hba: pointer to adapter structure
*
* allocate memory for task context, and associated BD table to be used
* by firmware
*
*/
int bnx2fc_setup_task_ctx(struct bnx2fc_hba *hba)
{
int rc = 0;
struct regpair *task_ctx_bdt;
dma_addr_t addr;
int i;
/*
* Allocate task context bd table. A page size of bd table
* can map 256 buffers. Each buffer contains 32 task context
* entries. Hence the limit with one page is 8192 task context
* entries.
*/
hba->task_ctx_bd_tbl = dma_alloc_coherent(&hba->pcidev->dev,
PAGE_SIZE,
&hba->task_ctx_bd_dma,
GFP_KERNEL);
if (!hba->task_ctx_bd_tbl) {
printk(KERN_ERR PFX "unable to allocate task context BDT\n");
rc = -1;
goto out;
}
memset(hba->task_ctx_bd_tbl, 0, PAGE_SIZE);
/*
* Allocate task_ctx which is an array of pointers pointing to
* a page containing 32 task contexts
*/
hba->task_ctx = kzalloc((BNX2FC_TASK_CTX_ARR_SZ * sizeof(void *)),
GFP_KERNEL);
if (!hba->task_ctx) {
printk(KERN_ERR PFX "unable to allocate task context array\n");
rc = -1;
goto out1;
}
/*
* Allocate task_ctx_dma which is an array of dma addresses
*/
hba->task_ctx_dma = kmalloc((BNX2FC_TASK_CTX_ARR_SZ *
sizeof(dma_addr_t)), GFP_KERNEL);
if (!hba->task_ctx_dma) {
printk(KERN_ERR PFX "unable to alloc context mapping array\n");
rc = -1;
goto out2;
}
task_ctx_bdt = (struct regpair *)hba->task_ctx_bd_tbl;
for (i = 0; i < BNX2FC_TASK_CTX_ARR_SZ; i++) {
hba->task_ctx[i] = dma_alloc_coherent(&hba->pcidev->dev,
PAGE_SIZE,
&hba->task_ctx_dma[i],
GFP_KERNEL);
if (!hba->task_ctx[i]) {
printk(KERN_ERR PFX "unable to alloc task context\n");
rc = -1;
goto out3;
}
memset(hba->task_ctx[i], 0, PAGE_SIZE);
addr = (u64)hba->task_ctx_dma[i];
task_ctx_bdt->hi = cpu_to_le32((u64)addr >> 32);
task_ctx_bdt->lo = cpu_to_le32((u32)addr);
task_ctx_bdt++;
}
return 0;
out3:
for (i = 0; i < BNX2FC_TASK_CTX_ARR_SZ; i++) {
if (hba->task_ctx[i]) {
dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
hba->task_ctx[i], hba->task_ctx_dma[i]);
hba->task_ctx[i] = NULL;
}
}
kfree(hba->task_ctx_dma);
hba->task_ctx_dma = NULL;
out2:
kfree(hba->task_ctx);
hba->task_ctx = NULL;
out1:
dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
hba->task_ctx_bd_tbl, hba->task_ctx_bd_dma);
hba->task_ctx_bd_tbl = NULL;
out:
return rc;
}
void bnx2fc_free_task_ctx(struct bnx2fc_hba *hba)
{
int i;
if (hba->task_ctx_bd_tbl) {
dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
hba->task_ctx_bd_tbl,
hba->task_ctx_bd_dma);
hba->task_ctx_bd_tbl = NULL;
}
if (hba->task_ctx) {
for (i = 0; i < BNX2FC_TASK_CTX_ARR_SZ; i++) {
if (hba->task_ctx[i]) {
dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
hba->task_ctx[i],
hba->task_ctx_dma[i]);
hba->task_ctx[i] = NULL;
}
}
kfree(hba->task_ctx);
hba->task_ctx = NULL;
}
kfree(hba->task_ctx_dma);
hba->task_ctx_dma = NULL;
}
static void bnx2fc_free_hash_table(struct bnx2fc_hba *hba)
{
int i;
int segment_count;
int hash_table_size;
u32 *pbl;
segment_count = hba->hash_tbl_segment_count;
hash_table_size = BNX2FC_NUM_MAX_SESS * BNX2FC_MAX_ROWS_IN_HASH_TBL *
sizeof(struct fcoe_hash_table_entry);
pbl = hba->hash_tbl_pbl;
for (i = 0; i < segment_count; ++i) {
dma_addr_t dma_address;
dma_address = le32_to_cpu(*pbl);
++pbl;
dma_address += ((u64)le32_to_cpu(*pbl)) << 32;
++pbl;
dma_free_coherent(&hba->pcidev->dev,
BNX2FC_HASH_TBL_CHUNK_SIZE,
hba->hash_tbl_segments[i],
dma_address);
}
if (hba->hash_tbl_pbl) {
dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
hba->hash_tbl_pbl,
hba->hash_tbl_pbl_dma);
hba->hash_tbl_pbl = NULL;
}
}
static int bnx2fc_allocate_hash_table(struct bnx2fc_hba *hba)
{
int i;
int hash_table_size;
int segment_count;
int segment_array_size;
int dma_segment_array_size;
dma_addr_t *dma_segment_array;
u32 *pbl;
hash_table_size = BNX2FC_NUM_MAX_SESS * BNX2FC_MAX_ROWS_IN_HASH_TBL *
sizeof(struct fcoe_hash_table_entry);
segment_count = hash_table_size + BNX2FC_HASH_TBL_CHUNK_SIZE - 1;
segment_count /= BNX2FC_HASH_TBL_CHUNK_SIZE;
hba->hash_tbl_segment_count = segment_count;
segment_array_size = segment_count * sizeof(*hba->hash_tbl_segments);
hba->hash_tbl_segments = kzalloc(segment_array_size, GFP_KERNEL);
if (!hba->hash_tbl_segments) {
printk(KERN_ERR PFX "hash table pointers alloc failed\n");
return -ENOMEM;
}
dma_segment_array_size = segment_count * sizeof(*dma_segment_array);
dma_segment_array = kzalloc(dma_segment_array_size, GFP_KERNEL);
if (!dma_segment_array) {
printk(KERN_ERR PFX "hash table pointers (dma) alloc failed\n");
return -ENOMEM;
}
for (i = 0; i < segment_count; ++i) {
hba->hash_tbl_segments[i] =
dma_alloc_coherent(&hba->pcidev->dev,
BNX2FC_HASH_TBL_CHUNK_SIZE,
&dma_segment_array[i],
GFP_KERNEL);
if (!hba->hash_tbl_segments[i]) {
printk(KERN_ERR PFX "hash segment alloc failed\n");
while (--i >= 0) {
dma_free_coherent(&hba->pcidev->dev,
BNX2FC_HASH_TBL_CHUNK_SIZE,
hba->hash_tbl_segments[i],
dma_segment_array[i]);
hba->hash_tbl_segments[i] = NULL;
}
kfree(dma_segment_array);
return -ENOMEM;
}
memset(hba->hash_tbl_segments[i], 0,
BNX2FC_HASH_TBL_CHUNK_SIZE);
}
hba->hash_tbl_pbl = dma_alloc_coherent(&hba->pcidev->dev,
PAGE_SIZE,
&hba->hash_tbl_pbl_dma,
GFP_KERNEL);
if (!hba->hash_tbl_pbl) {
printk(KERN_ERR PFX "hash table pbl alloc failed\n");
kfree(dma_segment_array);
return -ENOMEM;
}
memset(hba->hash_tbl_pbl, 0, PAGE_SIZE);
pbl = hba->hash_tbl_pbl;
for (i = 0; i < segment_count; ++i) {
u64 paddr = dma_segment_array[i];
*pbl = cpu_to_le32((u32) paddr);
++pbl;
*pbl = cpu_to_le32((u32) (paddr >> 32));
++pbl;
}
pbl = hba->hash_tbl_pbl;
i = 0;
while (*pbl && *(pbl + 1)) {
u32 lo;
u32 hi;
lo = *pbl;
++pbl;
hi = *pbl;
++pbl;
++i;
}
kfree(dma_segment_array);
return 0;
}
/**
* bnx2fc_setup_fw_resc - Allocate and map hash table and dummy buffer
*
* @hba: Pointer to adapter structure
*
*/
int bnx2fc_setup_fw_resc(struct bnx2fc_hba *hba)
{
u64 addr;
u32 mem_size;
int i;
if (bnx2fc_allocate_hash_table(hba))
return -ENOMEM;
mem_size = BNX2FC_NUM_MAX_SESS * sizeof(struct regpair);
hba->t2_hash_tbl_ptr = dma_alloc_coherent(&hba->pcidev->dev, mem_size,
&hba->t2_hash_tbl_ptr_dma,
GFP_KERNEL);
if (!hba->t2_hash_tbl_ptr) {
printk(KERN_ERR PFX "unable to allocate t2 hash table ptr\n");
bnx2fc_free_fw_resc(hba);
return -ENOMEM;
}
memset(hba->t2_hash_tbl_ptr, 0x00, mem_size);
mem_size = BNX2FC_NUM_MAX_SESS *
sizeof(struct fcoe_t2_hash_table_entry);
hba->t2_hash_tbl = dma_alloc_coherent(&hba->pcidev->dev, mem_size,
&hba->t2_hash_tbl_dma,
GFP_KERNEL);
if (!hba->t2_hash_tbl) {
printk(KERN_ERR PFX "unable to allocate t2 hash table\n");
bnx2fc_free_fw_resc(hba);
return -ENOMEM;
}
memset(hba->t2_hash_tbl, 0x00, mem_size);
for (i = 0; i < BNX2FC_NUM_MAX_SESS; i++) {
addr = (unsigned long) hba->t2_hash_tbl_dma +
((i+1) * sizeof(struct fcoe_t2_hash_table_entry));
hba->t2_hash_tbl[i].next.lo = addr & 0xffffffff;
hba->t2_hash_tbl[i].next.hi = addr >> 32;
}
hba->dummy_buffer = dma_alloc_coherent(&hba->pcidev->dev,
PAGE_SIZE, &hba->dummy_buf_dma,
GFP_KERNEL);
if (!hba->dummy_buffer) {
printk(KERN_ERR PFX "unable to alloc MP Dummy Buffer\n");
bnx2fc_free_fw_resc(hba);
return -ENOMEM;
}
hba->stats_buffer = dma_alloc_coherent(&hba->pcidev->dev,
PAGE_SIZE,
&hba->stats_buf_dma,
GFP_KERNEL);
if (!hba->stats_buffer) {
printk(KERN_ERR PFX "unable to alloc Stats Buffer\n");
bnx2fc_free_fw_resc(hba);
return -ENOMEM;
}
memset(hba->stats_buffer, 0x00, PAGE_SIZE);
return 0;
}
void bnx2fc_free_fw_resc(struct bnx2fc_hba *hba)
{
u32 mem_size;
if (hba->stats_buffer) {
dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
hba->stats_buffer, hba->stats_buf_dma);
hba->stats_buffer = NULL;
}
if (hba->dummy_buffer) {
dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
hba->dummy_buffer, hba->dummy_buf_dma);
hba->dummy_buffer = NULL;
}
if (hba->t2_hash_tbl_ptr) {
mem_size = BNX2FC_NUM_MAX_SESS * sizeof(struct regpair);
dma_free_coherent(&hba->pcidev->dev, mem_size,
hba->t2_hash_tbl_ptr,
hba->t2_hash_tbl_ptr_dma);
hba->t2_hash_tbl_ptr = NULL;
}
if (hba->t2_hash_tbl) {
mem_size = BNX2FC_NUM_MAX_SESS *
sizeof(struct fcoe_t2_hash_table_entry);
dma_free_coherent(&hba->pcidev->dev, mem_size,
hba->t2_hash_tbl, hba->t2_hash_tbl_dma);
hba->t2_hash_tbl = NULL;
}
bnx2fc_free_hash_table(hba);
}