linux_dsm_epyc7002/tools/perf/util/hist.c
Ingo Molnar adba163441 perf tools: Fix diverse comment typos
Go over the tools/ files that are maintained in Arnaldo's tree and
fix common typos: half of them were in comments, the other half
in JSON files.

No change in functionality intended.

Committer notes:

This was split from a larger patch as there are code that is,
additionally, maintained outside the kernel tree, so to ease
cherry-picking and/or backporting, split this into multiple patches.

Just typos in comments, no need to backport, reducing the possibility of
possible backporting artifacts.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20181203102200.GA104797@gmail.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2018-12-17 14:56:47 -03:00

2649 lines
62 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include "util.h"
#include "build-id.h"
#include "hist.h"
#include "map.h"
#include "session.h"
#include "namespaces.h"
#include "sort.h"
#include "units.h"
#include "evlist.h"
#include "evsel.h"
#include "annotate.h"
#include "srcline.h"
#include "thread.h"
#include "ui/progress.h"
#include <errno.h>
#include <math.h>
#include <inttypes.h>
#include <sys/param.h>
static bool hists__filter_entry_by_dso(struct hists *hists,
struct hist_entry *he);
static bool hists__filter_entry_by_thread(struct hists *hists,
struct hist_entry *he);
static bool hists__filter_entry_by_symbol(struct hists *hists,
struct hist_entry *he);
static bool hists__filter_entry_by_socket(struct hists *hists,
struct hist_entry *he);
u16 hists__col_len(struct hists *hists, enum hist_column col)
{
return hists->col_len[col];
}
void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
{
hists->col_len[col] = len;
}
bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
{
if (len > hists__col_len(hists, col)) {
hists__set_col_len(hists, col, len);
return true;
}
return false;
}
void hists__reset_col_len(struct hists *hists)
{
enum hist_column col;
for (col = 0; col < HISTC_NR_COLS; ++col)
hists__set_col_len(hists, col, 0);
}
static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
{
const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
if (hists__col_len(hists, dso) < unresolved_col_width &&
!symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
!symbol_conf.dso_list)
hists__set_col_len(hists, dso, unresolved_col_width);
}
void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
{
const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
int symlen;
u16 len;
/*
* +4 accounts for '[x] ' priv level info
* +2 accounts for 0x prefix on raw addresses
* +3 accounts for ' y ' symtab origin info
*/
if (h->ms.sym) {
symlen = h->ms.sym->namelen + 4;
if (verbose > 0)
symlen += BITS_PER_LONG / 4 + 2 + 3;
hists__new_col_len(hists, HISTC_SYMBOL, symlen);
} else {
symlen = unresolved_col_width + 4 + 2;
hists__new_col_len(hists, HISTC_SYMBOL, symlen);
hists__set_unres_dso_col_len(hists, HISTC_DSO);
}
len = thread__comm_len(h->thread);
if (hists__new_col_len(hists, HISTC_COMM, len))
hists__set_col_len(hists, HISTC_THREAD, len + 8);
if (h->ms.map) {
len = dso__name_len(h->ms.map->dso);
hists__new_col_len(hists, HISTC_DSO, len);
}
if (h->parent)
hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
if (h->branch_info) {
if (h->branch_info->from.sym) {
symlen = (int)h->branch_info->from.sym->namelen + 4;
if (verbose > 0)
symlen += BITS_PER_LONG / 4 + 2 + 3;
hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
symlen = dso__name_len(h->branch_info->from.map->dso);
hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
} else {
symlen = unresolved_col_width + 4 + 2;
hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
}
if (h->branch_info->to.sym) {
symlen = (int)h->branch_info->to.sym->namelen + 4;
if (verbose > 0)
symlen += BITS_PER_LONG / 4 + 2 + 3;
hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
symlen = dso__name_len(h->branch_info->to.map->dso);
hists__new_col_len(hists, HISTC_DSO_TO, symlen);
} else {
symlen = unresolved_col_width + 4 + 2;
hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
}
if (h->branch_info->srcline_from)
hists__new_col_len(hists, HISTC_SRCLINE_FROM,
strlen(h->branch_info->srcline_from));
if (h->branch_info->srcline_to)
hists__new_col_len(hists, HISTC_SRCLINE_TO,
strlen(h->branch_info->srcline_to));
}
if (h->mem_info) {
if (h->mem_info->daddr.sym) {
symlen = (int)h->mem_info->daddr.sym->namelen + 4
+ unresolved_col_width + 2;
hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
symlen);
hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
symlen + 1);
} else {
symlen = unresolved_col_width + 4 + 2;
hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
symlen);
hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
symlen);
}
if (h->mem_info->iaddr.sym) {
symlen = (int)h->mem_info->iaddr.sym->namelen + 4
+ unresolved_col_width + 2;
hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
symlen);
} else {
symlen = unresolved_col_width + 4 + 2;
hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
symlen);
}
if (h->mem_info->daddr.map) {
symlen = dso__name_len(h->mem_info->daddr.map->dso);
hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
symlen);
} else {
symlen = unresolved_col_width + 4 + 2;
hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
}
hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR,
unresolved_col_width + 4 + 2);
} else {
symlen = unresolved_col_width + 4 + 2;
hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
}
hists__new_col_len(hists, HISTC_CGROUP_ID, 20);
hists__new_col_len(hists, HISTC_CPU, 3);
hists__new_col_len(hists, HISTC_SOCKET, 6);
hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
hists__new_col_len(hists, HISTC_MEM_TLB, 22);
hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
if (h->srcline) {
len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
hists__new_col_len(hists, HISTC_SRCLINE, len);
}
if (h->srcfile)
hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
if (h->transaction)
hists__new_col_len(hists, HISTC_TRANSACTION,
hist_entry__transaction_len());
if (h->trace_output)
hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
}
void hists__output_recalc_col_len(struct hists *hists, int max_rows)
{
struct rb_node *next = rb_first(&hists->entries);
struct hist_entry *n;
int row = 0;
hists__reset_col_len(hists);
while (next && row++ < max_rows) {
n = rb_entry(next, struct hist_entry, rb_node);
if (!n->filtered)
hists__calc_col_len(hists, n);
next = rb_next(&n->rb_node);
}
}
static void he_stat__add_cpumode_period(struct he_stat *he_stat,
unsigned int cpumode, u64 period)
{
switch (cpumode) {
case PERF_RECORD_MISC_KERNEL:
he_stat->period_sys += period;
break;
case PERF_RECORD_MISC_USER:
he_stat->period_us += period;
break;
case PERF_RECORD_MISC_GUEST_KERNEL:
he_stat->period_guest_sys += period;
break;
case PERF_RECORD_MISC_GUEST_USER:
he_stat->period_guest_us += period;
break;
default:
break;
}
}
static void he_stat__add_period(struct he_stat *he_stat, u64 period,
u64 weight)
{
he_stat->period += period;
he_stat->weight += weight;
he_stat->nr_events += 1;
}
static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
{
dest->period += src->period;
dest->period_sys += src->period_sys;
dest->period_us += src->period_us;
dest->period_guest_sys += src->period_guest_sys;
dest->period_guest_us += src->period_guest_us;
dest->nr_events += src->nr_events;
dest->weight += src->weight;
}
static void he_stat__decay(struct he_stat *he_stat)
{
he_stat->period = (he_stat->period * 7) / 8;
he_stat->nr_events = (he_stat->nr_events * 7) / 8;
/* XXX need decay for weight too? */
}
static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
{
u64 prev_period = he->stat.period;
u64 diff;
if (prev_period == 0)
return true;
he_stat__decay(&he->stat);
if (symbol_conf.cumulate_callchain)
he_stat__decay(he->stat_acc);
decay_callchain(he->callchain);
diff = prev_period - he->stat.period;
if (!he->depth) {
hists->stats.total_period -= diff;
if (!he->filtered)
hists->stats.total_non_filtered_period -= diff;
}
if (!he->leaf) {
struct hist_entry *child;
struct rb_node *node = rb_first(&he->hroot_out);
while (node) {
child = rb_entry(node, struct hist_entry, rb_node);
node = rb_next(node);
if (hists__decay_entry(hists, child))
hists__delete_entry(hists, child);
}
}
return he->stat.period == 0;
}
static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
{
struct rb_root *root_in;
struct rb_root *root_out;
if (he->parent_he) {
root_in = &he->parent_he->hroot_in;
root_out = &he->parent_he->hroot_out;
} else {
if (hists__has(hists, need_collapse))
root_in = &hists->entries_collapsed;
else
root_in = hists->entries_in;
root_out = &hists->entries;
}
rb_erase(&he->rb_node_in, root_in);
rb_erase(&he->rb_node, root_out);
--hists->nr_entries;
if (!he->filtered)
--hists->nr_non_filtered_entries;
hist_entry__delete(he);
}
void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
{
struct rb_node *next = rb_first(&hists->entries);
struct hist_entry *n;
while (next) {
n = rb_entry(next, struct hist_entry, rb_node);
next = rb_next(&n->rb_node);
if (((zap_user && n->level == '.') ||
(zap_kernel && n->level != '.') ||
hists__decay_entry(hists, n))) {
hists__delete_entry(hists, n);
}
}
}
void hists__delete_entries(struct hists *hists)
{
struct rb_node *next = rb_first(&hists->entries);
struct hist_entry *n;
while (next) {
n = rb_entry(next, struct hist_entry, rb_node);
next = rb_next(&n->rb_node);
hists__delete_entry(hists, n);
}
}
/*
* histogram, sorted on item, collects periods
*/
static int hist_entry__init(struct hist_entry *he,
struct hist_entry *template,
bool sample_self,
size_t callchain_size)
{
*he = *template;
he->callchain_size = callchain_size;
if (symbol_conf.cumulate_callchain) {
he->stat_acc = malloc(sizeof(he->stat));
if (he->stat_acc == NULL)
return -ENOMEM;
memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
if (!sample_self)
memset(&he->stat, 0, sizeof(he->stat));
}
map__get(he->ms.map);
if (he->branch_info) {
/*
* This branch info is (a part of) allocated from
* sample__resolve_bstack() and will be freed after
* adding new entries. So we need to save a copy.
*/
he->branch_info = malloc(sizeof(*he->branch_info));
if (he->branch_info == NULL) {
map__zput(he->ms.map);
free(he->stat_acc);
return -ENOMEM;
}
memcpy(he->branch_info, template->branch_info,
sizeof(*he->branch_info));
map__get(he->branch_info->from.map);
map__get(he->branch_info->to.map);
}
if (he->mem_info) {
map__get(he->mem_info->iaddr.map);
map__get(he->mem_info->daddr.map);
}
if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
callchain_init(he->callchain);
if (he->raw_data) {
he->raw_data = memdup(he->raw_data, he->raw_size);
if (he->raw_data == NULL) {
map__put(he->ms.map);
if (he->branch_info) {
map__put(he->branch_info->from.map);
map__put(he->branch_info->to.map);
free(he->branch_info);
}
if (he->mem_info) {
map__put(he->mem_info->iaddr.map);
map__put(he->mem_info->daddr.map);
}
free(he->stat_acc);
return -ENOMEM;
}
}
INIT_LIST_HEAD(&he->pairs.node);
thread__get(he->thread);
he->hroot_in = RB_ROOT;
he->hroot_out = RB_ROOT;
if (!symbol_conf.report_hierarchy)
he->leaf = true;
return 0;
}
static void *hist_entry__zalloc(size_t size)
{
return zalloc(size + sizeof(struct hist_entry));
}
static void hist_entry__free(void *ptr)
{
free(ptr);
}
static struct hist_entry_ops default_ops = {
.new = hist_entry__zalloc,
.free = hist_entry__free,
};
static struct hist_entry *hist_entry__new(struct hist_entry *template,
bool sample_self)
{
struct hist_entry_ops *ops = template->ops;
size_t callchain_size = 0;
struct hist_entry *he;
int err = 0;
if (!ops)
ops = template->ops = &default_ops;
if (symbol_conf.use_callchain)
callchain_size = sizeof(struct callchain_root);
he = ops->new(callchain_size);
if (he) {
err = hist_entry__init(he, template, sample_self, callchain_size);
if (err) {
ops->free(he);
he = NULL;
}
}
return he;
}
static u8 symbol__parent_filter(const struct symbol *parent)
{
if (symbol_conf.exclude_other && parent == NULL)
return 1 << HIST_FILTER__PARENT;
return 0;
}
static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
{
if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain)
return;
he->hists->callchain_period += period;
if (!he->filtered)
he->hists->callchain_non_filtered_period += period;
}
static struct hist_entry *hists__findnew_entry(struct hists *hists,
struct hist_entry *entry,
struct addr_location *al,
bool sample_self)
{
struct rb_node **p;
struct rb_node *parent = NULL;
struct hist_entry *he;
int64_t cmp;
u64 period = entry->stat.period;
u64 weight = entry->stat.weight;
p = &hists->entries_in->rb_node;
while (*p != NULL) {
parent = *p;
he = rb_entry(parent, struct hist_entry, rb_node_in);
/*
* Make sure that it receives arguments in a same order as
* hist_entry__collapse() so that we can use an appropriate
* function when searching an entry regardless which sort
* keys were used.
*/
cmp = hist_entry__cmp(he, entry);
if (!cmp) {
if (sample_self) {
he_stat__add_period(&he->stat, period, weight);
hist_entry__add_callchain_period(he, period);
}
if (symbol_conf.cumulate_callchain)
he_stat__add_period(he->stat_acc, period, weight);
/*
* This mem info was allocated from sample__resolve_mem
* and will not be used anymore.
*/
mem_info__zput(entry->mem_info);
/* If the map of an existing hist_entry has
* become out-of-date due to an exec() or
* similar, update it. Otherwise we will
* mis-adjust symbol addresses when computing
* the history counter to increment.
*/
if (he->ms.map != entry->ms.map) {
map__put(he->ms.map);
he->ms.map = map__get(entry->ms.map);
}
goto out;
}
if (cmp < 0)
p = &(*p)->rb_left;
else
p = &(*p)->rb_right;
}
he = hist_entry__new(entry, sample_self);
if (!he)
return NULL;
if (sample_self)
hist_entry__add_callchain_period(he, period);
hists->nr_entries++;
rb_link_node(&he->rb_node_in, parent, p);
rb_insert_color(&he->rb_node_in, hists->entries_in);
out:
if (sample_self)
he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
if (symbol_conf.cumulate_callchain)
he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
return he;
}
static struct hist_entry*
__hists__add_entry(struct hists *hists,
struct addr_location *al,
struct symbol *sym_parent,
struct branch_info *bi,
struct mem_info *mi,
struct perf_sample *sample,
bool sample_self,
struct hist_entry_ops *ops)
{
struct namespaces *ns = thread__namespaces(al->thread);
struct hist_entry entry = {
.thread = al->thread,
.comm = thread__comm(al->thread),
.cgroup_id = {
.dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0,
.ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0,
},
.ms = {
.map = al->map,
.sym = al->sym,
},
.srcline = al->srcline ? strdup(al->srcline) : NULL,
.socket = al->socket,
.cpu = al->cpu,
.cpumode = al->cpumode,
.ip = al->addr,
.level = al->level,
.stat = {
.nr_events = 1,
.period = sample->period,
.weight = sample->weight,
},
.parent = sym_parent,
.filtered = symbol__parent_filter(sym_parent) | al->filtered,
.hists = hists,
.branch_info = bi,
.mem_info = mi,
.transaction = sample->transaction,
.raw_data = sample->raw_data,
.raw_size = sample->raw_size,
.ops = ops,
}, *he = hists__findnew_entry(hists, &entry, al, sample_self);
if (!hists->has_callchains && he && he->callchain_size != 0)
hists->has_callchains = true;
return he;
}
struct hist_entry *hists__add_entry(struct hists *hists,
struct addr_location *al,
struct symbol *sym_parent,
struct branch_info *bi,
struct mem_info *mi,
struct perf_sample *sample,
bool sample_self)
{
return __hists__add_entry(hists, al, sym_parent, bi, mi,
sample, sample_self, NULL);
}
struct hist_entry *hists__add_entry_ops(struct hists *hists,
struct hist_entry_ops *ops,
struct addr_location *al,
struct symbol *sym_parent,
struct branch_info *bi,
struct mem_info *mi,
struct perf_sample *sample,
bool sample_self)
{
return __hists__add_entry(hists, al, sym_parent, bi, mi,
sample, sample_self, ops);
}
static int
iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
struct addr_location *al __maybe_unused)
{
return 0;
}
static int
iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
struct addr_location *al __maybe_unused)
{
return 0;
}
static int
iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
{
struct perf_sample *sample = iter->sample;
struct mem_info *mi;
mi = sample__resolve_mem(sample, al);
if (mi == NULL)
return -ENOMEM;
iter->priv = mi;
return 0;
}
static int
iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
{
u64 cost;
struct mem_info *mi = iter->priv;
struct hists *hists = evsel__hists(iter->evsel);
struct perf_sample *sample = iter->sample;
struct hist_entry *he;
if (mi == NULL)
return -EINVAL;
cost = sample->weight;
if (!cost)
cost = 1;
/*
* must pass period=weight in order to get the correct
* sorting from hists__collapse_resort() which is solely
* based on periods. We want sorting be done on nr_events * weight
* and this is indirectly achieved by passing period=weight here
* and the he_stat__add_period() function.
*/
sample->period = cost;
he = hists__add_entry(hists, al, iter->parent, NULL, mi,
sample, true);
if (!he)
return -ENOMEM;
iter->he = he;
return 0;
}
static int
iter_finish_mem_entry(struct hist_entry_iter *iter,
struct addr_location *al __maybe_unused)
{
struct perf_evsel *evsel = iter->evsel;
struct hists *hists = evsel__hists(evsel);
struct hist_entry *he = iter->he;
int err = -EINVAL;
if (he == NULL)
goto out;
hists__inc_nr_samples(hists, he->filtered);
err = hist_entry__append_callchain(he, iter->sample);
out:
/*
* We don't need to free iter->priv (mem_info) here since the mem info
* was either already freed in hists__findnew_entry() or passed to a
* new hist entry by hist_entry__new().
*/
iter->priv = NULL;
iter->he = NULL;
return err;
}
static int
iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
{
struct branch_info *bi;
struct perf_sample *sample = iter->sample;
bi = sample__resolve_bstack(sample, al);
if (!bi)
return -ENOMEM;
iter->curr = 0;
iter->total = sample->branch_stack->nr;
iter->priv = bi;
return 0;
}
static int
iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused,
struct addr_location *al __maybe_unused)
{
return 0;
}
static int
iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
{
struct branch_info *bi = iter->priv;
int i = iter->curr;
if (bi == NULL)
return 0;
if (iter->curr >= iter->total)
return 0;
al->map = bi[i].to.map;
al->sym = bi[i].to.sym;
al->addr = bi[i].to.addr;
return 1;
}
static int
iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
{
struct branch_info *bi;
struct perf_evsel *evsel = iter->evsel;
struct hists *hists = evsel__hists(evsel);
struct perf_sample *sample = iter->sample;
struct hist_entry *he = NULL;
int i = iter->curr;
int err = 0;
bi = iter->priv;
if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym))
goto out;
/*
* The report shows the percentage of total branches captured
* and not events sampled. Thus we use a pseudo period of 1.
*/
sample->period = 1;
sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
sample, true);
if (he == NULL)
return -ENOMEM;
hists__inc_nr_samples(hists, he->filtered);
out:
iter->he = he;
iter->curr++;
return err;
}
static int
iter_finish_branch_entry(struct hist_entry_iter *iter,
struct addr_location *al __maybe_unused)
{
zfree(&iter->priv);
iter->he = NULL;
return iter->curr >= iter->total ? 0 : -1;
}
static int
iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
struct addr_location *al __maybe_unused)
{
return 0;
}
static int
iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
{
struct perf_evsel *evsel = iter->evsel;
struct perf_sample *sample = iter->sample;
struct hist_entry *he;
he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
sample, true);
if (he == NULL)
return -ENOMEM;
iter->he = he;
return 0;
}
static int
iter_finish_normal_entry(struct hist_entry_iter *iter,
struct addr_location *al __maybe_unused)
{
struct hist_entry *he = iter->he;
struct perf_evsel *evsel = iter->evsel;
struct perf_sample *sample = iter->sample;
if (he == NULL)
return 0;
iter->he = NULL;
hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
return hist_entry__append_callchain(he, sample);
}
static int
iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
struct addr_location *al __maybe_unused)
{
struct hist_entry **he_cache;
callchain_cursor_commit(&callchain_cursor);
/*
* This is for detecting cycles or recursions so that they're
* cumulated only one time to prevent entries more than 100%
* overhead.
*/
he_cache = malloc(sizeof(*he_cache) * (callchain_cursor.nr + 1));
if (he_cache == NULL)
return -ENOMEM;
iter->priv = he_cache;
iter->curr = 0;
return 0;
}
static int
iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
struct addr_location *al)
{
struct perf_evsel *evsel = iter->evsel;
struct hists *hists = evsel__hists(evsel);
struct perf_sample *sample = iter->sample;
struct hist_entry **he_cache = iter->priv;
struct hist_entry *he;
int err = 0;
he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
sample, true);
if (he == NULL)
return -ENOMEM;
iter->he = he;
he_cache[iter->curr++] = he;
hist_entry__append_callchain(he, sample);
/*
* We need to re-initialize the cursor since callchain_append()
* advanced the cursor to the end.
*/
callchain_cursor_commit(&callchain_cursor);
hists__inc_nr_samples(hists, he->filtered);
return err;
}
static int
iter_next_cumulative_entry(struct hist_entry_iter *iter,
struct addr_location *al)
{
struct callchain_cursor_node *node;
node = callchain_cursor_current(&callchain_cursor);
if (node == NULL)
return 0;
return fill_callchain_info(al, node, iter->hide_unresolved);
}
static int
iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
struct addr_location *al)
{
struct perf_evsel *evsel = iter->evsel;
struct perf_sample *sample = iter->sample;
struct hist_entry **he_cache = iter->priv;
struct hist_entry *he;
struct hist_entry he_tmp = {
.hists = evsel__hists(evsel),
.cpu = al->cpu,
.thread = al->thread,
.comm = thread__comm(al->thread),
.ip = al->addr,
.ms = {
.map = al->map,
.sym = al->sym,
},
.srcline = al->srcline ? strdup(al->srcline) : NULL,
.parent = iter->parent,
.raw_data = sample->raw_data,
.raw_size = sample->raw_size,
};
int i;
struct callchain_cursor cursor;
callchain_cursor_snapshot(&cursor, &callchain_cursor);
callchain_cursor_advance(&callchain_cursor);
/*
* Check if there's duplicate entries in the callchain.
* It's possible that it has cycles or recursive calls.
*/
for (i = 0; i < iter->curr; i++) {
if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
/* to avoid calling callback function */
iter->he = NULL;
return 0;
}
}
he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
sample, false);
if (he == NULL)
return -ENOMEM;
iter->he = he;
he_cache[iter->curr++] = he;
if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
callchain_append(he->callchain, &cursor, sample->period);
return 0;
}
static int
iter_finish_cumulative_entry(struct hist_entry_iter *iter,
struct addr_location *al __maybe_unused)
{
zfree(&iter->priv);
iter->he = NULL;
return 0;
}
const struct hist_iter_ops hist_iter_mem = {
.prepare_entry = iter_prepare_mem_entry,
.add_single_entry = iter_add_single_mem_entry,
.next_entry = iter_next_nop_entry,
.add_next_entry = iter_add_next_nop_entry,
.finish_entry = iter_finish_mem_entry,
};
const struct hist_iter_ops hist_iter_branch = {
.prepare_entry = iter_prepare_branch_entry,
.add_single_entry = iter_add_single_branch_entry,
.next_entry = iter_next_branch_entry,
.add_next_entry = iter_add_next_branch_entry,
.finish_entry = iter_finish_branch_entry,
};
const struct hist_iter_ops hist_iter_normal = {
.prepare_entry = iter_prepare_normal_entry,
.add_single_entry = iter_add_single_normal_entry,
.next_entry = iter_next_nop_entry,
.add_next_entry = iter_add_next_nop_entry,
.finish_entry = iter_finish_normal_entry,
};
const struct hist_iter_ops hist_iter_cumulative = {
.prepare_entry = iter_prepare_cumulative_entry,
.add_single_entry = iter_add_single_cumulative_entry,
.next_entry = iter_next_cumulative_entry,
.add_next_entry = iter_add_next_cumulative_entry,
.finish_entry = iter_finish_cumulative_entry,
};
int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
int max_stack_depth, void *arg)
{
int err, err2;
struct map *alm = NULL;
if (al)
alm = map__get(al->map);
err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
iter->evsel, al, max_stack_depth);
if (err)
return err;
err = iter->ops->prepare_entry(iter, al);
if (err)
goto out;
err = iter->ops->add_single_entry(iter, al);
if (err)
goto out;
if (iter->he && iter->add_entry_cb) {
err = iter->add_entry_cb(iter, al, true, arg);
if (err)
goto out;
}
while (iter->ops->next_entry(iter, al)) {
err = iter->ops->add_next_entry(iter, al);
if (err)
break;
if (iter->he && iter->add_entry_cb) {
err = iter->add_entry_cb(iter, al, false, arg);
if (err)
goto out;
}
}
out:
err2 = iter->ops->finish_entry(iter, al);
if (!err)
err = err2;
map__put(alm);
return err;
}
int64_t
hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
{
struct hists *hists = left->hists;
struct perf_hpp_fmt *fmt;
int64_t cmp = 0;
hists__for_each_sort_list(hists, fmt) {
if (perf_hpp__is_dynamic_entry(fmt) &&
!perf_hpp__defined_dynamic_entry(fmt, hists))
continue;
cmp = fmt->cmp(fmt, left, right);
if (cmp)
break;
}
return cmp;
}
int64_t
hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
{
struct hists *hists = left->hists;
struct perf_hpp_fmt *fmt;
int64_t cmp = 0;
hists__for_each_sort_list(hists, fmt) {
if (perf_hpp__is_dynamic_entry(fmt) &&
!perf_hpp__defined_dynamic_entry(fmt, hists))
continue;
cmp = fmt->collapse(fmt, left, right);
if (cmp)
break;
}
return cmp;
}
void hist_entry__delete(struct hist_entry *he)
{
struct hist_entry_ops *ops = he->ops;
thread__zput(he->thread);
map__zput(he->ms.map);
if (he->branch_info) {
map__zput(he->branch_info->from.map);
map__zput(he->branch_info->to.map);
free_srcline(he->branch_info->srcline_from);
free_srcline(he->branch_info->srcline_to);
zfree(&he->branch_info);
}
if (he->mem_info) {
map__zput(he->mem_info->iaddr.map);
map__zput(he->mem_info->daddr.map);
mem_info__zput(he->mem_info);
}
zfree(&he->stat_acc);
free_srcline(he->srcline);
if (he->srcfile && he->srcfile[0])
free(he->srcfile);
free_callchain(he->callchain);
free(he->trace_output);
free(he->raw_data);
ops->free(he);
}
/*
* If this is not the last column, then we need to pad it according to the
* pre-calculated max length for this column, otherwise don't bother adding
* spaces because that would break viewing this with, for instance, 'less',
* that would show tons of trailing spaces when a long C++ demangled method
* names is sampled.
*/
int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
struct perf_hpp_fmt *fmt, int printed)
{
if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
const int width = fmt->width(fmt, hpp, he->hists);
if (printed < width) {
advance_hpp(hpp, printed);
printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
}
}
return printed;
}
/*
* collapse the histogram
*/
static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
enum hist_filter type);
typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
static bool check_thread_entry(struct perf_hpp_fmt *fmt)
{
return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
}
static void hist_entry__check_and_remove_filter(struct hist_entry *he,
enum hist_filter type,
fmt_chk_fn check)
{
struct perf_hpp_fmt *fmt;
bool type_match = false;
struct hist_entry *parent = he->parent_he;
switch (type) {
case HIST_FILTER__THREAD:
if (symbol_conf.comm_list == NULL &&
symbol_conf.pid_list == NULL &&
symbol_conf.tid_list == NULL)
return;
break;
case HIST_FILTER__DSO:
if (symbol_conf.dso_list == NULL)
return;
break;
case HIST_FILTER__SYMBOL:
if (symbol_conf.sym_list == NULL)
return;
break;
case HIST_FILTER__PARENT:
case HIST_FILTER__GUEST:
case HIST_FILTER__HOST:
case HIST_FILTER__SOCKET:
case HIST_FILTER__C2C:
default:
return;
}
/* if it's filtered by own fmt, it has to have filter bits */
perf_hpp_list__for_each_format(he->hpp_list, fmt) {
if (check(fmt)) {
type_match = true;
break;
}
}
if (type_match) {
/*
* If the filter is for current level entry, propagate
* filter marker to parents. The marker bit was
* already set by default so it only needs to clear
* non-filtered entries.
*/
if (!(he->filtered & (1 << type))) {
while (parent) {
parent->filtered &= ~(1 << type);
parent = parent->parent_he;
}
}
} else {
/*
* If current entry doesn't have matching formats, set
* filter marker for upper level entries. it will be
* cleared if its lower level entries is not filtered.
*
* For lower-level entries, it inherits parent's
* filter bit so that lower level entries of a
* non-filtered entry won't set the filter marker.
*/
if (parent == NULL)
he->filtered |= (1 << type);
else
he->filtered |= (parent->filtered & (1 << type));
}
}
static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
{
hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
check_thread_entry);
hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
perf_hpp__is_dso_entry);
hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
perf_hpp__is_sym_entry);
hists__apply_filters(he->hists, he);
}
static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
struct rb_root *root,
struct hist_entry *he,
struct hist_entry *parent_he,
struct perf_hpp_list *hpp_list)
{
struct rb_node **p = &root->rb_node;
struct rb_node *parent = NULL;
struct hist_entry *iter, *new;
struct perf_hpp_fmt *fmt;
int64_t cmp;
while (*p != NULL) {
parent = *p;
iter = rb_entry(parent, struct hist_entry, rb_node_in);
cmp = 0;
perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
cmp = fmt->collapse(fmt, iter, he);
if (cmp)
break;
}
if (!cmp) {
he_stat__add_stat(&iter->stat, &he->stat);
return iter;
}
if (cmp < 0)
p = &parent->rb_left;
else
p = &parent->rb_right;
}
new = hist_entry__new(he, true);
if (new == NULL)
return NULL;
hists->nr_entries++;
/* save related format list for output */
new->hpp_list = hpp_list;
new->parent_he = parent_he;
hist_entry__apply_hierarchy_filters(new);
/* some fields are now passed to 'new' */
perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
he->trace_output = NULL;
else
new->trace_output = NULL;
if (perf_hpp__is_srcline_entry(fmt))
he->srcline = NULL;
else
new->srcline = NULL;
if (perf_hpp__is_srcfile_entry(fmt))
he->srcfile = NULL;
else
new->srcfile = NULL;
}
rb_link_node(&new->rb_node_in, parent, p);
rb_insert_color(&new->rb_node_in, root);
return new;
}
static int hists__hierarchy_insert_entry(struct hists *hists,
struct rb_root *root,
struct hist_entry *he)
{
struct perf_hpp_list_node *node;
struct hist_entry *new_he = NULL;
struct hist_entry *parent = NULL;
int depth = 0;
int ret = 0;
list_for_each_entry(node, &hists->hpp_formats, list) {
/* skip period (overhead) and elided columns */
if (node->level == 0 || node->skip)
continue;
/* insert copy of 'he' for each fmt into the hierarchy */
new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
if (new_he == NULL) {
ret = -1;
break;
}
root = &new_he->hroot_in;
new_he->depth = depth++;
parent = new_he;
}
if (new_he) {
new_he->leaf = true;
if (hist_entry__has_callchains(new_he) &&
symbol_conf.use_callchain) {
callchain_cursor_reset(&callchain_cursor);
if (callchain_merge(&callchain_cursor,
new_he->callchain,
he->callchain) < 0)
ret = -1;
}
}
/* 'he' is no longer used */
hist_entry__delete(he);
/* return 0 (or -1) since it already applied filters */
return ret;
}
static int hists__collapse_insert_entry(struct hists *hists,
struct rb_root *root,
struct hist_entry *he)
{
struct rb_node **p = &root->rb_node;
struct rb_node *parent = NULL;
struct hist_entry *iter;
int64_t cmp;
if (symbol_conf.report_hierarchy)
return hists__hierarchy_insert_entry(hists, root, he);
while (*p != NULL) {
parent = *p;
iter = rb_entry(parent, struct hist_entry, rb_node_in);
cmp = hist_entry__collapse(iter, he);
if (!cmp) {
int ret = 0;
he_stat__add_stat(&iter->stat, &he->stat);
if (symbol_conf.cumulate_callchain)
he_stat__add_stat(iter->stat_acc, he->stat_acc);
if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) {
callchain_cursor_reset(&callchain_cursor);
if (callchain_merge(&callchain_cursor,
iter->callchain,
he->callchain) < 0)
ret = -1;
}
hist_entry__delete(he);
return ret;
}
if (cmp < 0)
p = &(*p)->rb_left;
else
p = &(*p)->rb_right;
}
hists->nr_entries++;
rb_link_node(&he->rb_node_in, parent, p);
rb_insert_color(&he->rb_node_in, root);
return 1;
}
struct rb_root *hists__get_rotate_entries_in(struct hists *hists)
{
struct rb_root *root;
pthread_mutex_lock(&hists->lock);
root = hists->entries_in;
if (++hists->entries_in > &hists->entries_in_array[1])
hists->entries_in = &hists->entries_in_array[0];
pthread_mutex_unlock(&hists->lock);
return root;
}
static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
{
hists__filter_entry_by_dso(hists, he);
hists__filter_entry_by_thread(hists, he);
hists__filter_entry_by_symbol(hists, he);
hists__filter_entry_by_socket(hists, he);
}
int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
{
struct rb_root *root;
struct rb_node *next;
struct hist_entry *n;
int ret;
if (!hists__has(hists, need_collapse))
return 0;
hists->nr_entries = 0;
root = hists__get_rotate_entries_in(hists);
next = rb_first(root);
while (next) {
if (session_done())
break;
n = rb_entry(next, struct hist_entry, rb_node_in);
next = rb_next(&n->rb_node_in);
rb_erase(&n->rb_node_in, root);
ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
if (ret < 0)
return -1;
if (ret) {
/*
* If it wasn't combined with one of the entries already
* collapsed, we need to apply the filters that may have
* been set by, say, the hist_browser.
*/
hists__apply_filters(hists, n);
}
if (prog)
ui_progress__update(prog, 1);
}
return 0;
}
static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
{
struct hists *hists = a->hists;
struct perf_hpp_fmt *fmt;
int64_t cmp = 0;
hists__for_each_sort_list(hists, fmt) {
if (perf_hpp__should_skip(fmt, a->hists))
continue;
cmp = fmt->sort(fmt, a, b);
if (cmp)
break;
}
return cmp;
}
static void hists__reset_filter_stats(struct hists *hists)
{
hists->nr_non_filtered_entries = 0;
hists->stats.total_non_filtered_period = 0;
}
void hists__reset_stats(struct hists *hists)
{
hists->nr_entries = 0;
hists->stats.total_period = 0;
hists__reset_filter_stats(hists);
}
static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
{
hists->nr_non_filtered_entries++;
hists->stats.total_non_filtered_period += h->stat.period;
}
void hists__inc_stats(struct hists *hists, struct hist_entry *h)
{
if (!h->filtered)
hists__inc_filter_stats(hists, h);
hists->nr_entries++;
hists->stats.total_period += h->stat.period;
}
static void hierarchy_recalc_total_periods(struct hists *hists)
{
struct rb_node *node;
struct hist_entry *he;
node = rb_first(&hists->entries);
hists->stats.total_period = 0;
hists->stats.total_non_filtered_period = 0;
/*
* recalculate total period using top-level entries only
* since lower level entries only see non-filtered entries
* but upper level entries have sum of both entries.
*/
while (node) {
he = rb_entry(node, struct hist_entry, rb_node);
node = rb_next(node);
hists->stats.total_period += he->stat.period;
if (!he->filtered)
hists->stats.total_non_filtered_period += he->stat.period;
}
}
static void hierarchy_insert_output_entry(struct rb_root *root,
struct hist_entry *he)
{
struct rb_node **p = &root->rb_node;
struct rb_node *parent = NULL;
struct hist_entry *iter;
struct perf_hpp_fmt *fmt;
while (*p != NULL) {
parent = *p;
iter = rb_entry(parent, struct hist_entry, rb_node);
if (hist_entry__sort(he, iter) > 0)
p = &parent->rb_left;
else
p = &parent->rb_right;
}
rb_link_node(&he->rb_node, parent, p);
rb_insert_color(&he->rb_node, root);
/* update column width of dynamic entry */
perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
if (perf_hpp__is_dynamic_entry(fmt))
fmt->sort(fmt, he, NULL);
}
}
static void hists__hierarchy_output_resort(struct hists *hists,
struct ui_progress *prog,
struct rb_root *root_in,
struct rb_root *root_out,
u64 min_callchain_hits,
bool use_callchain)
{
struct rb_node *node;
struct hist_entry *he;
*root_out = RB_ROOT;
node = rb_first(root_in);
while (node) {
he = rb_entry(node, struct hist_entry, rb_node_in);
node = rb_next(node);
hierarchy_insert_output_entry(root_out, he);
if (prog)
ui_progress__update(prog, 1);
hists->nr_entries++;
if (!he->filtered) {
hists->nr_non_filtered_entries++;
hists__calc_col_len(hists, he);
}
if (!he->leaf) {
hists__hierarchy_output_resort(hists, prog,
&he->hroot_in,
&he->hroot_out,
min_callchain_hits,
use_callchain);
continue;
}
if (!use_callchain)
continue;
if (callchain_param.mode == CHAIN_GRAPH_REL) {
u64 total = he->stat.period;
if (symbol_conf.cumulate_callchain)
total = he->stat_acc->period;
min_callchain_hits = total * (callchain_param.min_percent / 100);
}
callchain_param.sort(&he->sorted_chain, he->callchain,
min_callchain_hits, &callchain_param);
}
}
static void __hists__insert_output_entry(struct rb_root *entries,
struct hist_entry *he,
u64 min_callchain_hits,
bool use_callchain)
{
struct rb_node **p = &entries->rb_node;
struct rb_node *parent = NULL;
struct hist_entry *iter;
struct perf_hpp_fmt *fmt;
if (use_callchain) {
if (callchain_param.mode == CHAIN_GRAPH_REL) {
u64 total = he->stat.period;
if (symbol_conf.cumulate_callchain)
total = he->stat_acc->period;
min_callchain_hits = total * (callchain_param.min_percent / 100);
}
callchain_param.sort(&he->sorted_chain, he->callchain,
min_callchain_hits, &callchain_param);
}
while (*p != NULL) {
parent = *p;
iter = rb_entry(parent, struct hist_entry, rb_node);
if (hist_entry__sort(he, iter) > 0)
p = &(*p)->rb_left;
else
p = &(*p)->rb_right;
}
rb_link_node(&he->rb_node, parent, p);
rb_insert_color(&he->rb_node, entries);
perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
if (perf_hpp__is_dynamic_entry(fmt) &&
perf_hpp__defined_dynamic_entry(fmt, he->hists))
fmt->sort(fmt, he, NULL); /* update column width */
}
}
static void output_resort(struct hists *hists, struct ui_progress *prog,
bool use_callchain, hists__resort_cb_t cb)
{
struct rb_root *root;
struct rb_node *next;
struct hist_entry *n;
u64 callchain_total;
u64 min_callchain_hits;
callchain_total = hists->callchain_period;
if (symbol_conf.filter_relative)
callchain_total = hists->callchain_non_filtered_period;
min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
hists__reset_stats(hists);
hists__reset_col_len(hists);
if (symbol_conf.report_hierarchy) {
hists__hierarchy_output_resort(hists, prog,
&hists->entries_collapsed,
&hists->entries,
min_callchain_hits,
use_callchain);
hierarchy_recalc_total_periods(hists);
return;
}
if (hists__has(hists, need_collapse))
root = &hists->entries_collapsed;
else
root = hists->entries_in;
next = rb_first(root);
hists->entries = RB_ROOT;
while (next) {
n = rb_entry(next, struct hist_entry, rb_node_in);
next = rb_next(&n->rb_node_in);
if (cb && cb(n))
continue;
__hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
hists__inc_stats(hists, n);
if (!n->filtered)
hists__calc_col_len(hists, n);
if (prog)
ui_progress__update(prog, 1);
}
}
void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog)
{
bool use_callchain;
if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
use_callchain = evsel__has_callchain(evsel);
else
use_callchain = symbol_conf.use_callchain;
use_callchain |= symbol_conf.show_branchflag_count;
output_resort(evsel__hists(evsel), prog, use_callchain, NULL);
}
void hists__output_resort(struct hists *hists, struct ui_progress *prog)
{
output_resort(hists, prog, symbol_conf.use_callchain, NULL);
}
void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
hists__resort_cb_t cb)
{
output_resort(hists, prog, symbol_conf.use_callchain, cb);
}
static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
{
if (he->leaf || hmd == HMD_FORCE_SIBLING)
return false;
if (he->unfolded || hmd == HMD_FORCE_CHILD)
return true;
return false;
}
struct rb_node *rb_hierarchy_last(struct rb_node *node)
{
struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
while (can_goto_child(he, HMD_NORMAL)) {
node = rb_last(&he->hroot_out);
he = rb_entry(node, struct hist_entry, rb_node);
}
return node;
}
struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
{
struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
if (can_goto_child(he, hmd))
node = rb_first(&he->hroot_out);
else
node = rb_next(node);
while (node == NULL) {
he = he->parent_he;
if (he == NULL)
break;
node = rb_next(&he->rb_node);
}
return node;
}
struct rb_node *rb_hierarchy_prev(struct rb_node *node)
{
struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
node = rb_prev(node);
if (node)
return rb_hierarchy_last(node);
he = he->parent_he;
if (he == NULL)
return NULL;
return &he->rb_node;
}
bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
{
struct rb_node *node;
struct hist_entry *child;
float percent;
if (he->leaf)
return false;
node = rb_first(&he->hroot_out);
child = rb_entry(node, struct hist_entry, rb_node);
while (node && child->filtered) {
node = rb_next(node);
child = rb_entry(node, struct hist_entry, rb_node);
}
if (node)
percent = hist_entry__get_percent_limit(child);
else
percent = 0;
return node && percent >= limit;
}
static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
enum hist_filter filter)
{
h->filtered &= ~(1 << filter);
if (symbol_conf.report_hierarchy) {
struct hist_entry *parent = h->parent_he;
while (parent) {
he_stat__add_stat(&parent->stat, &h->stat);
parent->filtered &= ~(1 << filter);
if (parent->filtered)
goto next;
/* force fold unfiltered entry for simplicity */
parent->unfolded = false;
parent->has_no_entry = false;
parent->row_offset = 0;
parent->nr_rows = 0;
next:
parent = parent->parent_he;
}
}
if (h->filtered)
return;
/* force fold unfiltered entry for simplicity */
h->unfolded = false;
h->has_no_entry = false;
h->row_offset = 0;
h->nr_rows = 0;
hists->stats.nr_non_filtered_samples += h->stat.nr_events;
hists__inc_filter_stats(hists, h);
hists__calc_col_len(hists, h);
}
static bool hists__filter_entry_by_dso(struct hists *hists,
struct hist_entry *he)
{
if (hists->dso_filter != NULL &&
(he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
he->filtered |= (1 << HIST_FILTER__DSO);
return true;
}
return false;
}
static bool hists__filter_entry_by_thread(struct hists *hists,
struct hist_entry *he)
{
if (hists->thread_filter != NULL &&
he->thread != hists->thread_filter) {
he->filtered |= (1 << HIST_FILTER__THREAD);
return true;
}
return false;
}
static bool hists__filter_entry_by_symbol(struct hists *hists,
struct hist_entry *he)
{
if (hists->symbol_filter_str != NULL &&
(!he->ms.sym || strstr(he->ms.sym->name,
hists->symbol_filter_str) == NULL)) {
he->filtered |= (1 << HIST_FILTER__SYMBOL);
return true;
}
return false;
}
static bool hists__filter_entry_by_socket(struct hists *hists,
struct hist_entry *he)
{
if ((hists->socket_filter > -1) &&
(he->socket != hists->socket_filter)) {
he->filtered |= (1 << HIST_FILTER__SOCKET);
return true;
}
return false;
}
typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
{
struct rb_node *nd;
hists->stats.nr_non_filtered_samples = 0;
hists__reset_filter_stats(hists);
hists__reset_col_len(hists);
for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) {
struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
if (filter(hists, h))
continue;
hists__remove_entry_filter(hists, h, type);
}
}
static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he)
{
struct rb_node **p = &root->rb_node;
struct rb_node *parent = NULL;
struct hist_entry *iter;
struct rb_root new_root = RB_ROOT;
struct rb_node *nd;
while (*p != NULL) {
parent = *p;
iter = rb_entry(parent, struct hist_entry, rb_node);
if (hist_entry__sort(he, iter) > 0)
p = &(*p)->rb_left;
else
p = &(*p)->rb_right;
}
rb_link_node(&he->rb_node, parent, p);
rb_insert_color(&he->rb_node, root);
if (he->leaf || he->filtered)
return;
nd = rb_first(&he->hroot_out);
while (nd) {
struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
nd = rb_next(nd);
rb_erase(&h->rb_node, &he->hroot_out);
resort_filtered_entry(&new_root, h);
}
he->hroot_out = new_root;
}
static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
{
struct rb_node *nd;
struct rb_root new_root = RB_ROOT;
hists->stats.nr_non_filtered_samples = 0;
hists__reset_filter_stats(hists);
hists__reset_col_len(hists);
nd = rb_first(&hists->entries);
while (nd) {
struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
int ret;
ret = hist_entry__filter(h, type, arg);
/*
* case 1. non-matching type
* zero out the period, set filter marker and move to child
*/
if (ret < 0) {
memset(&h->stat, 0, sizeof(h->stat));
h->filtered |= (1 << type);
nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
}
/*
* case 2. matched type (filter out)
* set filter marker and move to next
*/
else if (ret == 1) {
h->filtered |= (1 << type);
nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
}
/*
* case 3. ok (not filtered)
* add period to hists and parents, erase the filter marker
* and move to next sibling
*/
else {
hists__remove_entry_filter(hists, h, type);
nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
}
}
hierarchy_recalc_total_periods(hists);
/*
* resort output after applying a new filter since filter in a lower
* hierarchy can change periods in a upper hierarchy.
*/
nd = rb_first(&hists->entries);
while (nd) {
struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
nd = rb_next(nd);
rb_erase(&h->rb_node, &hists->entries);
resort_filtered_entry(&new_root, h);
}
hists->entries = new_root;
}
void hists__filter_by_thread(struct hists *hists)
{
if (symbol_conf.report_hierarchy)
hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
hists->thread_filter);
else
hists__filter_by_type(hists, HIST_FILTER__THREAD,
hists__filter_entry_by_thread);
}
void hists__filter_by_dso(struct hists *hists)
{
if (symbol_conf.report_hierarchy)
hists__filter_hierarchy(hists, HIST_FILTER__DSO,
hists->dso_filter);
else
hists__filter_by_type(hists, HIST_FILTER__DSO,
hists__filter_entry_by_dso);
}
void hists__filter_by_symbol(struct hists *hists)
{
if (symbol_conf.report_hierarchy)
hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
hists->symbol_filter_str);
else
hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
hists__filter_entry_by_symbol);
}
void hists__filter_by_socket(struct hists *hists)
{
if (symbol_conf.report_hierarchy)
hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
&hists->socket_filter);
else
hists__filter_by_type(hists, HIST_FILTER__SOCKET,
hists__filter_entry_by_socket);
}
void events_stats__inc(struct events_stats *stats, u32 type)
{
++stats->nr_events[0];
++stats->nr_events[type];
}
void hists__inc_nr_events(struct hists *hists, u32 type)
{
events_stats__inc(&hists->stats, type);
}
void hists__inc_nr_samples(struct hists *hists, bool filtered)
{
events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
if (!filtered)
hists->stats.nr_non_filtered_samples++;
}
static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
struct hist_entry *pair)
{
struct rb_root *root;
struct rb_node **p;
struct rb_node *parent = NULL;
struct hist_entry *he;
int64_t cmp;
if (hists__has(hists, need_collapse))
root = &hists->entries_collapsed;
else
root = hists->entries_in;
p = &root->rb_node;
while (*p != NULL) {
parent = *p;
he = rb_entry(parent, struct hist_entry, rb_node_in);
cmp = hist_entry__collapse(he, pair);
if (!cmp)
goto out;
if (cmp < 0)
p = &(*p)->rb_left;
else
p = &(*p)->rb_right;
}
he = hist_entry__new(pair, true);
if (he) {
memset(&he->stat, 0, sizeof(he->stat));
he->hists = hists;
if (symbol_conf.cumulate_callchain)
memset(he->stat_acc, 0, sizeof(he->stat));
rb_link_node(&he->rb_node_in, parent, p);
rb_insert_color(&he->rb_node_in, root);
hists__inc_stats(hists, he);
he->dummy = true;
}
out:
return he;
}
static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
struct rb_root *root,
struct hist_entry *pair)
{
struct rb_node **p;
struct rb_node *parent = NULL;
struct hist_entry *he;
struct perf_hpp_fmt *fmt;
p = &root->rb_node;
while (*p != NULL) {
int64_t cmp = 0;
parent = *p;
he = rb_entry(parent, struct hist_entry, rb_node_in);
perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
cmp = fmt->collapse(fmt, he, pair);
if (cmp)
break;
}
if (!cmp)
goto out;
if (cmp < 0)
p = &parent->rb_left;
else
p = &parent->rb_right;
}
he = hist_entry__new(pair, true);
if (he) {
rb_link_node(&he->rb_node_in, parent, p);
rb_insert_color(&he->rb_node_in, root);
he->dummy = true;
he->hists = hists;
memset(&he->stat, 0, sizeof(he->stat));
hists__inc_stats(hists, he);
}
out:
return he;
}
static struct hist_entry *hists__find_entry(struct hists *hists,
struct hist_entry *he)
{
struct rb_node *n;
if (hists__has(hists, need_collapse))
n = hists->entries_collapsed.rb_node;
else
n = hists->entries_in->rb_node;
while (n) {
struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
int64_t cmp = hist_entry__collapse(iter, he);
if (cmp < 0)
n = n->rb_left;
else if (cmp > 0)
n = n->rb_right;
else
return iter;
}
return NULL;
}
static struct hist_entry *hists__find_hierarchy_entry(struct rb_root *root,
struct hist_entry *he)
{
struct rb_node *n = root->rb_node;
while (n) {
struct hist_entry *iter;
struct perf_hpp_fmt *fmt;
int64_t cmp = 0;
iter = rb_entry(n, struct hist_entry, rb_node_in);
perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
cmp = fmt->collapse(fmt, iter, he);
if (cmp)
break;
}
if (cmp < 0)
n = n->rb_left;
else if (cmp > 0)
n = n->rb_right;
else
return iter;
}
return NULL;
}
static void hists__match_hierarchy(struct rb_root *leader_root,
struct rb_root *other_root)
{
struct rb_node *nd;
struct hist_entry *pos, *pair;
for (nd = rb_first(leader_root); nd; nd = rb_next(nd)) {
pos = rb_entry(nd, struct hist_entry, rb_node_in);
pair = hists__find_hierarchy_entry(other_root, pos);
if (pair) {
hist_entry__add_pair(pair, pos);
hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
}
}
}
/*
* Look for pairs to link to the leader buckets (hist_entries):
*/
void hists__match(struct hists *leader, struct hists *other)
{
struct rb_root *root;
struct rb_node *nd;
struct hist_entry *pos, *pair;
if (symbol_conf.report_hierarchy) {
/* hierarchy report always collapses entries */
return hists__match_hierarchy(&leader->entries_collapsed,
&other->entries_collapsed);
}
if (hists__has(leader, need_collapse))
root = &leader->entries_collapsed;
else
root = leader->entries_in;
for (nd = rb_first(root); nd; nd = rb_next(nd)) {
pos = rb_entry(nd, struct hist_entry, rb_node_in);
pair = hists__find_entry(other, pos);
if (pair)
hist_entry__add_pair(pair, pos);
}
}
static int hists__link_hierarchy(struct hists *leader_hists,
struct hist_entry *parent,
struct rb_root *leader_root,
struct rb_root *other_root)
{
struct rb_node *nd;
struct hist_entry *pos, *leader;
for (nd = rb_first(other_root); nd; nd = rb_next(nd)) {
pos = rb_entry(nd, struct hist_entry, rb_node_in);
if (hist_entry__has_pairs(pos)) {
bool found = false;
list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
if (leader->hists == leader_hists) {
found = true;
break;
}
}
if (!found)
return -1;
} else {
leader = add_dummy_hierarchy_entry(leader_hists,
leader_root, pos);
if (leader == NULL)
return -1;
/* do not point parent in the pos */
leader->parent_he = parent;
hist_entry__add_pair(pos, leader);
}
if (!pos->leaf) {
if (hists__link_hierarchy(leader_hists, leader,
&leader->hroot_in,
&pos->hroot_in) < 0)
return -1;
}
}
return 0;
}
/*
* Look for entries in the other hists that are not present in the leader, if
* we find them, just add a dummy entry on the leader hists, with period=0,
* nr_events=0, to serve as the list header.
*/
int hists__link(struct hists *leader, struct hists *other)
{
struct rb_root *root;
struct rb_node *nd;
struct hist_entry *pos, *pair;
if (symbol_conf.report_hierarchy) {
/* hierarchy report always collapses entries */
return hists__link_hierarchy(leader, NULL,
&leader->entries_collapsed,
&other->entries_collapsed);
}
if (hists__has(other, need_collapse))
root = &other->entries_collapsed;
else
root = other->entries_in;
for (nd = rb_first(root); nd; nd = rb_next(nd)) {
pos = rb_entry(nd, struct hist_entry, rb_node_in);
if (!hist_entry__has_pairs(pos)) {
pair = hists__add_dummy_entry(leader, pos);
if (pair == NULL)
return -1;
hist_entry__add_pair(pos, pair);
}
}
return 0;
}
void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
struct perf_sample *sample, bool nonany_branch_mode)
{
struct branch_info *bi;
/* If we have branch cycles always annotate them. */
if (bs && bs->nr && bs->entries[0].flags.cycles) {
int i;
bi = sample__resolve_bstack(sample, al);
if (bi) {
struct addr_map_symbol *prev = NULL;
/*
* Ignore errors, still want to process the
* other entries.
*
* For non standard branch modes always
* force no IPC (prev == NULL)
*
* Note that perf stores branches reversed from
* program order!
*/
for (i = bs->nr - 1; i >= 0; i--) {
addr_map_symbol__account_cycles(&bi[i].from,
nonany_branch_mode ? NULL : prev,
bi[i].flags.cycles);
prev = &bi[i].to;
}
free(bi);
}
}
}
size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp)
{
struct perf_evsel *pos;
size_t ret = 0;
evlist__for_each_entry(evlist, pos) {
ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
}
return ret;
}
u64 hists__total_period(struct hists *hists)
{
return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
hists->stats.total_period;
}
int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq)
{
char unit;
int printed;
const struct dso *dso = hists->dso_filter;
const struct thread *thread = hists->thread_filter;
int socket_id = hists->socket_filter;
unsigned long nr_samples = hists->stats.nr_events[PERF_RECORD_SAMPLE];
u64 nr_events = hists->stats.total_period;
struct perf_evsel *evsel = hists_to_evsel(hists);
const char *ev_name = perf_evsel__name(evsel);
char buf[512], sample_freq_str[64] = "";
size_t buflen = sizeof(buf);
char ref[30] = " show reference callgraph, ";
bool enable_ref = false;
if (symbol_conf.filter_relative) {
nr_samples = hists->stats.nr_non_filtered_samples;
nr_events = hists->stats.total_non_filtered_period;
}
if (perf_evsel__is_group_event(evsel)) {
struct perf_evsel *pos;
perf_evsel__group_desc(evsel, buf, buflen);
ev_name = buf;
for_each_group_member(pos, evsel) {
struct hists *pos_hists = evsel__hists(pos);
if (symbol_conf.filter_relative) {
nr_samples += pos_hists->stats.nr_non_filtered_samples;
nr_events += pos_hists->stats.total_non_filtered_period;
} else {
nr_samples += pos_hists->stats.nr_events[PERF_RECORD_SAMPLE];
nr_events += pos_hists->stats.total_period;
}
}
}
if (symbol_conf.show_ref_callgraph &&
strstr(ev_name, "call-graph=no"))
enable_ref = true;
if (show_freq)
scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->attr.sample_freq);
nr_samples = convert_unit(nr_samples, &unit);
printed = scnprintf(bf, size,
"Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64,
nr_samples, unit, evsel->nr_members > 1 ? "s" : "",
ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events);
if (hists->uid_filter_str)
printed += snprintf(bf + printed, size - printed,
", UID: %s", hists->uid_filter_str);
if (thread) {
if (hists__has(hists, thread)) {
printed += scnprintf(bf + printed, size - printed,
", Thread: %s(%d)",
(thread->comm_set ? thread__comm_str(thread) : ""),
thread->tid);
} else {
printed += scnprintf(bf + printed, size - printed,
", Thread: %s",
(thread->comm_set ? thread__comm_str(thread) : ""));
}
}
if (dso)
printed += scnprintf(bf + printed, size - printed,
", DSO: %s", dso->short_name);
if (socket_id > -1)
printed += scnprintf(bf + printed, size - printed,
", Processor Socket: %d", socket_id);
return printed;
}
int parse_filter_percentage(const struct option *opt __maybe_unused,
const char *arg, int unset __maybe_unused)
{
if (!strcmp(arg, "relative"))
symbol_conf.filter_relative = true;
else if (!strcmp(arg, "absolute"))
symbol_conf.filter_relative = false;
else {
pr_debug("Invalid percentage: %s\n", arg);
return -1;
}
return 0;
}
int perf_hist_config(const char *var, const char *value)
{
if (!strcmp(var, "hist.percentage"))
return parse_filter_percentage(NULL, value, 0);
return 0;
}
int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
{
memset(hists, 0, sizeof(*hists));
hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
hists->entries_in = &hists->entries_in_array[0];
hists->entries_collapsed = RB_ROOT;
hists->entries = RB_ROOT;
pthread_mutex_init(&hists->lock, NULL);
hists->socket_filter = -1;
hists->hpp_list = hpp_list;
INIT_LIST_HEAD(&hists->hpp_formats);
return 0;
}
static void hists__delete_remaining_entries(struct rb_root *root)
{
struct rb_node *node;
struct hist_entry *he;
while (!RB_EMPTY_ROOT(root)) {
node = rb_first(root);
rb_erase(node, root);
he = rb_entry(node, struct hist_entry, rb_node_in);
hist_entry__delete(he);
}
}
static void hists__delete_all_entries(struct hists *hists)
{
hists__delete_entries(hists);
hists__delete_remaining_entries(&hists->entries_in_array[0]);
hists__delete_remaining_entries(&hists->entries_in_array[1]);
hists__delete_remaining_entries(&hists->entries_collapsed);
}
static void hists_evsel__exit(struct perf_evsel *evsel)
{
struct hists *hists = evsel__hists(evsel);
struct perf_hpp_fmt *fmt, *pos;
struct perf_hpp_list_node *node, *tmp;
hists__delete_all_entries(hists);
list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
list_del(&fmt->list);
free(fmt);
}
list_del(&node->list);
free(node);
}
}
static int hists_evsel__init(struct perf_evsel *evsel)
{
struct hists *hists = evsel__hists(evsel);
__hists__init(hists, &perf_hpp_list);
return 0;
}
/*
* XXX We probably need a hists_evsel__exit() to free the hist_entries
* stored in the rbtree...
*/
int hists__init(void)
{
int err = perf_evsel__object_config(sizeof(struct hists_evsel),
hists_evsel__init,
hists_evsel__exit);
if (err)
fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
return err;
}
void perf_hpp_list__init(struct perf_hpp_list *list)
{
INIT_LIST_HEAD(&list->fields);
INIT_LIST_HEAD(&list->sorts);
}