mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 17:59:56 +07:00
60ffef065d
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications. For example, the fix in
commit 5e427ec2d0
("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.
After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out. Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.
This removes all the parisc uses of the __cpuinit macros.
[1] https://lkml.org/lkml/2013/5/20/589
Acked-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Helge Deller <deller@gmx.de>
Cc: linux-parisc@vger.kernel.org
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
1497 lines
42 KiB
C
1497 lines
42 KiB
C
/*
|
|
* arch/parisc/kernel/firmware.c - safe PDC access routines
|
|
*
|
|
* PDC == Processor Dependent Code
|
|
*
|
|
* See http://www.parisc-linux.org/documentation/index.html
|
|
* for documentation describing the entry points and calling
|
|
* conventions defined below.
|
|
*
|
|
* Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
|
|
* Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
|
|
* Copyright 2003 Grant Grundler <grundler parisc-linux org>
|
|
* Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
|
|
* Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
/* I think it would be in everyone's best interest to follow this
|
|
* guidelines when writing PDC wrappers:
|
|
*
|
|
* - the name of the pdc wrapper should match one of the macros
|
|
* used for the first two arguments
|
|
* - don't use caps for random parts of the name
|
|
* - use the static PDC result buffers and "copyout" to structs
|
|
* supplied by the caller to encapsulate alignment restrictions
|
|
* - hold pdc_lock while in PDC or using static result buffers
|
|
* - use __pa() to convert virtual (kernel) pointers to physical
|
|
* ones.
|
|
* - the name of the struct used for pdc return values should equal
|
|
* one of the macros used for the first two arguments to the
|
|
* corresponding PDC call
|
|
* - keep the order of arguments
|
|
* - don't be smart (setting trailing NUL bytes for strings, return
|
|
* something useful even if the call failed) unless you are sure
|
|
* it's not going to affect functionality or performance
|
|
*
|
|
* Example:
|
|
* int pdc_cache_info(struct pdc_cache_info *cache_info )
|
|
* {
|
|
* int retval;
|
|
*
|
|
* spin_lock_irq(&pdc_lock);
|
|
* retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
|
|
* convert_to_wide(pdc_result);
|
|
* memcpy(cache_info, pdc_result, sizeof(*cache_info));
|
|
* spin_unlock_irq(&pdc_lock);
|
|
*
|
|
* return retval;
|
|
* }
|
|
* prumpf 991016
|
|
*/
|
|
|
|
#include <stdarg.h>
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/string.h>
|
|
#include <linux/spinlock.h>
|
|
|
|
#include <asm/page.h>
|
|
#include <asm/pdc.h>
|
|
#include <asm/pdcpat.h>
|
|
#include <asm/processor.h> /* for boot_cpu_data */
|
|
|
|
static DEFINE_SPINLOCK(pdc_lock);
|
|
extern unsigned long pdc_result[NUM_PDC_RESULT];
|
|
extern unsigned long pdc_result2[NUM_PDC_RESULT];
|
|
|
|
#ifdef CONFIG_64BIT
|
|
#define WIDE_FIRMWARE 0x1
|
|
#define NARROW_FIRMWARE 0x2
|
|
|
|
/* Firmware needs to be initially set to narrow to determine the
|
|
* actual firmware width. */
|
|
int parisc_narrow_firmware __read_mostly = 1;
|
|
#endif
|
|
|
|
/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
|
|
* and MEM_PDC calls are always the same width as the OS.
|
|
* Some PAT boxes may have 64-bit IODC I/O.
|
|
*
|
|
* Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
|
|
* 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
|
|
* This allowed wide kernels to run on Cxxx boxes.
|
|
* We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
|
|
* when running a 64-bit kernel on such boxes (e.g. C200 or C360).
|
|
*/
|
|
|
|
#ifdef CONFIG_64BIT
|
|
long real64_call(unsigned long function, ...);
|
|
#endif
|
|
long real32_call(unsigned long function, ...);
|
|
|
|
#ifdef CONFIG_64BIT
|
|
# define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
|
|
# define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
|
|
#else
|
|
# define MEM_PDC (unsigned long)PAGE0->mem_pdc
|
|
# define mem_pdc_call(args...) real32_call(MEM_PDC, args)
|
|
#endif
|
|
|
|
|
|
/**
|
|
* f_extend - Convert PDC addresses to kernel addresses.
|
|
* @address: Address returned from PDC.
|
|
*
|
|
* This function is used to convert PDC addresses into kernel addresses
|
|
* when the PDC address size and kernel address size are different.
|
|
*/
|
|
static unsigned long f_extend(unsigned long address)
|
|
{
|
|
#ifdef CONFIG_64BIT
|
|
if(unlikely(parisc_narrow_firmware)) {
|
|
if((address & 0xff000000) == 0xf0000000)
|
|
return 0xf0f0f0f000000000UL | (u32)address;
|
|
|
|
if((address & 0xf0000000) == 0xf0000000)
|
|
return 0xffffffff00000000UL | (u32)address;
|
|
}
|
|
#endif
|
|
return address;
|
|
}
|
|
|
|
/**
|
|
* convert_to_wide - Convert the return buffer addresses into kernel addresses.
|
|
* @address: The return buffer from PDC.
|
|
*
|
|
* This function is used to convert the return buffer addresses retrieved from PDC
|
|
* into kernel addresses when the PDC address size and kernel address size are
|
|
* different.
|
|
*/
|
|
static void convert_to_wide(unsigned long *addr)
|
|
{
|
|
#ifdef CONFIG_64BIT
|
|
int i;
|
|
unsigned int *p = (unsigned int *)addr;
|
|
|
|
if(unlikely(parisc_narrow_firmware)) {
|
|
for(i = 31; i >= 0; --i)
|
|
addr[i] = p[i];
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_64BIT
|
|
void set_firmware_width_unlocked(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
|
|
__pa(pdc_result), 0);
|
|
convert_to_wide(pdc_result);
|
|
if (pdc_result[0] != NARROW_FIRMWARE)
|
|
parisc_narrow_firmware = 0;
|
|
}
|
|
|
|
/**
|
|
* set_firmware_width - Determine if the firmware is wide or narrow.
|
|
*
|
|
* This function must be called before any pdc_* function that uses the
|
|
* convert_to_wide function.
|
|
*/
|
|
void set_firmware_width(void)
|
|
{
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
set_firmware_width_unlocked();
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
}
|
|
#else
|
|
void set_firmware_width_unlocked(void)
|
|
{
|
|
return;
|
|
}
|
|
|
|
void set_firmware_width(void)
|
|
{
|
|
return;
|
|
}
|
|
#endif /*CONFIG_64BIT*/
|
|
|
|
/**
|
|
* pdc_emergency_unlock - Unlock the linux pdc lock
|
|
*
|
|
* This call unlocks the linux pdc lock in case we need some PDC functions
|
|
* (like pdc_add_valid) during kernel stack dump.
|
|
*/
|
|
void pdc_emergency_unlock(void)
|
|
{
|
|
/* Spinlock DEBUG code freaks out if we unconditionally unlock */
|
|
if (spin_is_locked(&pdc_lock))
|
|
spin_unlock(&pdc_lock);
|
|
}
|
|
|
|
|
|
/**
|
|
* pdc_add_valid - Verify address can be accessed without causing a HPMC.
|
|
* @address: Address to be verified.
|
|
*
|
|
* This PDC call attempts to read from the specified address and verifies
|
|
* if the address is valid.
|
|
*
|
|
* The return value is PDC_OK (0) in case accessing this address is valid.
|
|
*/
|
|
int pdc_add_valid(unsigned long address)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
EXPORT_SYMBOL(pdc_add_valid);
|
|
|
|
/**
|
|
* pdc_chassis_info - Return chassis information.
|
|
* @result: The return buffer.
|
|
* @chassis_info: The memory buffer address.
|
|
* @len: The size of the memory buffer address.
|
|
*
|
|
* An HVERSION dependent call for returning the chassis information.
|
|
*/
|
|
int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
|
|
memcpy(&pdc_result2, led_info, len);
|
|
retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
|
|
__pa(pdc_result), __pa(pdc_result2), len);
|
|
memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
|
|
memcpy(led_info, pdc_result2, len);
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
|
|
* @retval: -1 on error, 0 on success. Other value are PDC errors
|
|
*
|
|
* Must be correctly formatted or expect system crash
|
|
*/
|
|
#ifdef CONFIG_64BIT
|
|
int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
|
|
{
|
|
int retval = 0;
|
|
unsigned long flags;
|
|
|
|
if (!is_pdc_pat())
|
|
return -1;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* pdc_chassis_disp - Updates chassis code
|
|
* @retval: -1 on error, 0 on success
|
|
*/
|
|
int pdc_chassis_disp(unsigned long disp)
|
|
{
|
|
int retval = 0;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* pdc_chassis_warn - Fetches chassis warnings
|
|
* @retval: -1 on error, 0 on success
|
|
*/
|
|
int pdc_chassis_warn(unsigned long *warn)
|
|
{
|
|
int retval = 0;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
|
|
*warn = pdc_result[0];
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
|
|
{
|
|
int ret;
|
|
|
|
ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
|
|
convert_to_wide(pdc_result);
|
|
pdc_coproc_info->ccr_functional = pdc_result[0];
|
|
pdc_coproc_info->ccr_present = pdc_result[1];
|
|
pdc_coproc_info->revision = pdc_result[17];
|
|
pdc_coproc_info->model = pdc_result[18];
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* pdc_coproc_cfg - To identify coprocessors attached to the processor.
|
|
* @pdc_coproc_info: Return buffer address.
|
|
*
|
|
* This PDC call returns the presence and status of all the coprocessors
|
|
* attached to the processor.
|
|
*/
|
|
int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
|
|
{
|
|
int ret;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* pdc_iodc_read - Read data from the modules IODC.
|
|
* @actcnt: The actual number of bytes.
|
|
* @hpa: The HPA of the module for the iodc read.
|
|
* @index: The iodc entry point.
|
|
* @iodc_data: A buffer memory for the iodc options.
|
|
* @iodc_data_size: Size of the memory buffer.
|
|
*
|
|
* This PDC call reads from the IODC of the module specified by the hpa
|
|
* argument.
|
|
*/
|
|
int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
|
|
void *iodc_data, unsigned int iodc_data_size)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
|
|
index, __pa(pdc_result2), iodc_data_size);
|
|
convert_to_wide(pdc_result);
|
|
*actcnt = pdc_result[0];
|
|
memcpy(iodc_data, pdc_result2, iodc_data_size);
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
EXPORT_SYMBOL(pdc_iodc_read);
|
|
|
|
/**
|
|
* pdc_system_map_find_mods - Locate unarchitected modules.
|
|
* @pdc_mod_info: Return buffer address.
|
|
* @mod_path: pointer to dev path structure.
|
|
* @mod_index: fixed address module index.
|
|
*
|
|
* To locate and identify modules which reside at fixed I/O addresses, which
|
|
* do not self-identify via architected bus walks.
|
|
*/
|
|
int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
|
|
struct pdc_module_path *mod_path, long mod_index)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
|
|
__pa(pdc_result2), mod_index);
|
|
convert_to_wide(pdc_result);
|
|
memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
|
|
memcpy(mod_path, pdc_result2, sizeof(*mod_path));
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* pdc_system_map_find_addrs - Retrieve additional address ranges.
|
|
* @pdc_addr_info: Return buffer address.
|
|
* @mod_index: Fixed address module index.
|
|
* @addr_index: Address range index.
|
|
*
|
|
* Retrieve additional information about subsequent address ranges for modules
|
|
* with multiple address ranges.
|
|
*/
|
|
int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
|
|
long mod_index, long addr_index)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
|
|
mod_index, addr_index);
|
|
convert_to_wide(pdc_result);
|
|
memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* pdc_model_info - Return model information about the processor.
|
|
* @model: The return buffer.
|
|
*
|
|
* Returns the version numbers, identifiers, and capabilities from the processor module.
|
|
*/
|
|
int pdc_model_info(struct pdc_model *model)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
|
|
convert_to_wide(pdc_result);
|
|
memcpy(model, pdc_result, sizeof(*model));
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* pdc_model_sysmodel - Get the system model name.
|
|
* @name: A char array of at least 81 characters.
|
|
*
|
|
* Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
|
|
* Using OS_ID_HPUX will return the equivalent of the 'modelname' command
|
|
* on HP/UX.
|
|
*/
|
|
int pdc_model_sysmodel(char *name)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
|
|
OS_ID_HPUX, __pa(name));
|
|
convert_to_wide(pdc_result);
|
|
|
|
if (retval == PDC_OK) {
|
|
name[pdc_result[0]] = '\0'; /* add trailing '\0' */
|
|
} else {
|
|
name[0] = 0;
|
|
}
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* pdc_model_versions - Identify the version number of each processor.
|
|
* @cpu_id: The return buffer.
|
|
* @id: The id of the processor to check.
|
|
*
|
|
* Returns the version number for each processor component.
|
|
*
|
|
* This comment was here before, but I do not know what it means :( -RB
|
|
* id: 0 = cpu revision, 1 = boot-rom-version
|
|
*/
|
|
int pdc_model_versions(unsigned long *versions, int id)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
|
|
convert_to_wide(pdc_result);
|
|
*versions = pdc_result[0];
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* pdc_model_cpuid - Returns the CPU_ID.
|
|
* @cpu_id: The return buffer.
|
|
*
|
|
* Returns the CPU_ID value which uniquely identifies the cpu portion of
|
|
* the processor module.
|
|
*/
|
|
int pdc_model_cpuid(unsigned long *cpu_id)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
|
|
retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
|
|
convert_to_wide(pdc_result);
|
|
*cpu_id = pdc_result[0];
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* pdc_model_capabilities - Returns the platform capabilities.
|
|
* @capabilities: The return buffer.
|
|
*
|
|
* Returns information about platform support for 32- and/or 64-bit
|
|
* OSes, IO-PDIR coherency, and virtual aliasing.
|
|
*/
|
|
int pdc_model_capabilities(unsigned long *capabilities)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
|
|
retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
|
|
convert_to_wide(pdc_result);
|
|
if (retval == PDC_OK) {
|
|
*capabilities = pdc_result[0];
|
|
} else {
|
|
*capabilities = PDC_MODEL_OS32;
|
|
}
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* pdc_cache_info - Return cache and TLB information.
|
|
* @cache_info: The return buffer.
|
|
*
|
|
* Returns information about the processor's cache and TLB.
|
|
*/
|
|
int pdc_cache_info(struct pdc_cache_info *cache_info)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
|
|
convert_to_wide(pdc_result);
|
|
memcpy(cache_info, pdc_result, sizeof(*cache_info));
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* pdc_spaceid_bits - Return whether Space ID hashing is turned on.
|
|
* @space_bits: Should be 0, if not, bad mojo!
|
|
*
|
|
* Returns information about Space ID hashing.
|
|
*/
|
|
int pdc_spaceid_bits(unsigned long *space_bits)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
pdc_result[0] = 0;
|
|
retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
|
|
convert_to_wide(pdc_result);
|
|
*space_bits = pdc_result[0];
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
#ifndef CONFIG_PA20
|
|
/**
|
|
* pdc_btlb_info - Return block TLB information.
|
|
* @btlb: The return buffer.
|
|
*
|
|
* Returns information about the hardware Block TLB.
|
|
*/
|
|
int pdc_btlb_info(struct pdc_btlb_info *btlb)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
|
|
memcpy(btlb, pdc_result, sizeof(*btlb));
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
if(retval < 0) {
|
|
btlb->max_size = 0;
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* pdc_mem_map_hpa - Find fixed module information.
|
|
* @address: The return buffer
|
|
* @mod_path: pointer to dev path structure.
|
|
*
|
|
* This call was developed for S700 workstations to allow the kernel to find
|
|
* the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
|
|
* call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
|
|
* call.
|
|
*
|
|
* This call is supported by all existing S700 workstations (up to Gecko).
|
|
*/
|
|
int pdc_mem_map_hpa(struct pdc_memory_map *address,
|
|
struct pdc_module_path *mod_path)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
memcpy(pdc_result2, mod_path, sizeof(*mod_path));
|
|
retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
|
|
__pa(pdc_result2));
|
|
memcpy(address, pdc_result, sizeof(*address));
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
#endif /* !CONFIG_PA20 */
|
|
|
|
/**
|
|
* pdc_lan_station_id - Get the LAN address.
|
|
* @lan_addr: The return buffer.
|
|
* @hpa: The network device HPA.
|
|
*
|
|
* Get the LAN station address when it is not directly available from the LAN hardware.
|
|
*/
|
|
int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
|
|
__pa(pdc_result), hpa);
|
|
if (retval < 0) {
|
|
/* FIXME: else read MAC from NVRAM */
|
|
memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
|
|
} else {
|
|
memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
|
|
}
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
EXPORT_SYMBOL(pdc_lan_station_id);
|
|
|
|
/**
|
|
* pdc_stable_read - Read data from Stable Storage.
|
|
* @staddr: Stable Storage address to access.
|
|
* @memaddr: The memory address where Stable Storage data shall be copied.
|
|
* @count: number of bytes to transfer. count is multiple of 4.
|
|
*
|
|
* This PDC call reads from the Stable Storage address supplied in staddr
|
|
* and copies count bytes to the memory address memaddr.
|
|
* The call will fail if staddr+count > PDC_STABLE size.
|
|
*/
|
|
int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
|
|
__pa(pdc_result), count);
|
|
convert_to_wide(pdc_result);
|
|
memcpy(memaddr, pdc_result, count);
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
EXPORT_SYMBOL(pdc_stable_read);
|
|
|
|
/**
|
|
* pdc_stable_write - Write data to Stable Storage.
|
|
* @staddr: Stable Storage address to access.
|
|
* @memaddr: The memory address where Stable Storage data shall be read from.
|
|
* @count: number of bytes to transfer. count is multiple of 4.
|
|
*
|
|
* This PDC call reads count bytes from the supplied memaddr address,
|
|
* and copies count bytes to the Stable Storage address staddr.
|
|
* The call will fail if staddr+count > PDC_STABLE size.
|
|
*/
|
|
int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
memcpy(pdc_result, memaddr, count);
|
|
convert_to_wide(pdc_result);
|
|
retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
|
|
__pa(pdc_result), count);
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
EXPORT_SYMBOL(pdc_stable_write);
|
|
|
|
/**
|
|
* pdc_stable_get_size - Get Stable Storage size in bytes.
|
|
* @size: pointer where the size will be stored.
|
|
*
|
|
* This PDC call returns the number of bytes in the processor's Stable
|
|
* Storage, which is the number of contiguous bytes implemented in Stable
|
|
* Storage starting from staddr=0. size in an unsigned 64-bit integer
|
|
* which is a multiple of four.
|
|
*/
|
|
int pdc_stable_get_size(unsigned long *size)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
|
|
*size = pdc_result[0];
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
EXPORT_SYMBOL(pdc_stable_get_size);
|
|
|
|
/**
|
|
* pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
|
|
*
|
|
* This PDC call is meant to be used to check the integrity of the current
|
|
* contents of Stable Storage.
|
|
*/
|
|
int pdc_stable_verify_contents(void)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
EXPORT_SYMBOL(pdc_stable_verify_contents);
|
|
|
|
/**
|
|
* pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
|
|
* the validity indicator.
|
|
*
|
|
* This PDC call will erase all contents of Stable Storage. Use with care!
|
|
*/
|
|
int pdc_stable_initialize(void)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
EXPORT_SYMBOL(pdc_stable_initialize);
|
|
|
|
/**
|
|
* pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
|
|
* @hwpath: fully bc.mod style path to the device.
|
|
* @initiator: the array to return the result into
|
|
*
|
|
* Get the SCSI operational parameters from PDC.
|
|
* Needed since HPUX never used BIOS or symbios card NVRAM.
|
|
* Most ncr/sym cards won't have an entry and just use whatever
|
|
* capabilities of the card are (eg Ultra, LVD). But there are
|
|
* several cases where it's useful:
|
|
* o set SCSI id for Multi-initiator clusters,
|
|
* o cable too long (ie SE scsi 10Mhz won't support 6m length),
|
|
* o bus width exported is less than what the interface chip supports.
|
|
*/
|
|
int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
|
|
/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
|
|
#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
|
|
strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
|
|
|
|
retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
|
|
__pa(pdc_result), __pa(hwpath));
|
|
if (retval < PDC_OK)
|
|
goto out;
|
|
|
|
if (pdc_result[0] < 16) {
|
|
initiator->host_id = pdc_result[0];
|
|
} else {
|
|
initiator->host_id = -1;
|
|
}
|
|
|
|
/*
|
|
* Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns
|
|
* 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
|
|
*/
|
|
switch (pdc_result[1]) {
|
|
case 1: initiator->factor = 50; break;
|
|
case 2: initiator->factor = 25; break;
|
|
case 5: initiator->factor = 12; break;
|
|
case 25: initiator->factor = 10; break;
|
|
case 20: initiator->factor = 12; break;
|
|
case 40: initiator->factor = 10; break;
|
|
default: initiator->factor = -1; break;
|
|
}
|
|
|
|
if (IS_SPROCKETS()) {
|
|
initiator->width = pdc_result[4];
|
|
initiator->mode = pdc_result[5];
|
|
} else {
|
|
initiator->width = -1;
|
|
initiator->mode = -1;
|
|
}
|
|
|
|
out:
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return (retval >= PDC_OK);
|
|
}
|
|
EXPORT_SYMBOL(pdc_get_initiator);
|
|
|
|
|
|
/**
|
|
* pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
|
|
* @num_entries: The return value.
|
|
* @hpa: The HPA for the device.
|
|
*
|
|
* This PDC function returns the number of entries in the specified cell's
|
|
* interrupt table.
|
|
* Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
|
|
*/
|
|
int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
|
|
__pa(pdc_result), hpa);
|
|
convert_to_wide(pdc_result);
|
|
*num_entries = pdc_result[0];
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* pdc_pci_irt - Get the PCI interrupt routing table.
|
|
* @num_entries: The number of entries in the table.
|
|
* @hpa: The Hard Physical Address of the device.
|
|
* @tbl:
|
|
*
|
|
* Get the PCI interrupt routing table for the device at the given HPA.
|
|
* Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
|
|
*/
|
|
int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
BUG_ON((unsigned long)tbl & 0x7);
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
pdc_result[0] = num_entries;
|
|
retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
|
|
__pa(pdc_result), hpa, __pa(tbl));
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
#if 0 /* UNTEST CODE - left here in case someone needs it */
|
|
|
|
/**
|
|
* pdc_pci_config_read - read PCI config space.
|
|
* @hpa token from PDC to indicate which PCI device
|
|
* @pci_addr configuration space address to read from
|
|
*
|
|
* Read PCI Configuration space *before* linux PCI subsystem is running.
|
|
*/
|
|
unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
pdc_result[0] = 0;
|
|
pdc_result[1] = 0;
|
|
retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
|
|
__pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval ? ~0 : (unsigned int) pdc_result[0];
|
|
}
|
|
|
|
|
|
/**
|
|
* pdc_pci_config_write - read PCI config space.
|
|
* @hpa token from PDC to indicate which PCI device
|
|
* @pci_addr configuration space address to write
|
|
* @val value we want in the 32-bit register
|
|
*
|
|
* Write PCI Configuration space *before* linux PCI subsystem is running.
|
|
*/
|
|
void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
pdc_result[0] = 0;
|
|
retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
|
|
__pa(pdc_result), hpa,
|
|
cfg_addr&~3UL, 4UL, (unsigned long) val);
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
#endif /* UNTESTED CODE */
|
|
|
|
/**
|
|
* pdc_tod_read - Read the Time-Of-Day clock.
|
|
* @tod: The return buffer:
|
|
*
|
|
* Read the Time-Of-Day clock
|
|
*/
|
|
int pdc_tod_read(struct pdc_tod *tod)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
|
|
convert_to_wide(pdc_result);
|
|
memcpy(tod, pdc_result, sizeof(*tod));
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
EXPORT_SYMBOL(pdc_tod_read);
|
|
|
|
/**
|
|
* pdc_tod_set - Set the Time-Of-Day clock.
|
|
* @sec: The number of seconds since epoch.
|
|
* @usec: The number of micro seconds.
|
|
*
|
|
* Set the Time-Of-Day clock.
|
|
*/
|
|
int pdc_tod_set(unsigned long sec, unsigned long usec)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
EXPORT_SYMBOL(pdc_tod_set);
|
|
|
|
#ifdef CONFIG_64BIT
|
|
int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
|
|
struct pdc_memory_table *tbl, unsigned long entries)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
|
|
convert_to_wide(pdc_result);
|
|
memcpy(r_addr, pdc_result, sizeof(*r_addr));
|
|
memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
#endif /* CONFIG_64BIT */
|
|
|
|
/* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap
|
|
* so I guessed at unsigned long. Someone who knows what this does, can fix
|
|
* it later. :)
|
|
*/
|
|
int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
|
|
PDC_FIRM_TEST_MAGIC, ftc_bitmap);
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* pdc_do_reset - Reset the system.
|
|
*
|
|
* Reset the system.
|
|
*/
|
|
int pdc_do_reset(void)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* pdc_soft_power_info - Enable soft power switch.
|
|
* @power_reg: address of soft power register
|
|
*
|
|
* Return the absolute address of the soft power switch register
|
|
*/
|
|
int __init pdc_soft_power_info(unsigned long *power_reg)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
*power_reg = (unsigned long) (-1);
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
|
|
if (retval == PDC_OK) {
|
|
convert_to_wide(pdc_result);
|
|
*power_reg = f_extend(pdc_result[0]);
|
|
}
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* pdc_soft_power_button - Control the soft power button behaviour
|
|
* @sw_control: 0 for hardware control, 1 for software control
|
|
*
|
|
*
|
|
* This PDC function places the soft power button under software or
|
|
* hardware control.
|
|
* Under software control the OS may control to when to allow to shut
|
|
* down the system. Under hardware control pressing the power button
|
|
* powers off the system immediately.
|
|
*/
|
|
int pdc_soft_power_button(int sw_control)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
|
|
* Primarily a problem on T600 (which parisc-linux doesn't support) but
|
|
* who knows what other platform firmware might do with this OS "hook".
|
|
*/
|
|
void pdc_io_reset(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* pdc_io_reset_devices - Hack to Stop USB controller
|
|
*
|
|
* If PDC used the usb controller, the usb controller
|
|
* is still running and will crash the machines during iommu
|
|
* setup, because of still running DMA. This PDC call
|
|
* stops the USB controller.
|
|
* Normally called after calling pdc_io_reset().
|
|
*/
|
|
void pdc_io_reset_devices(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
}
|
|
|
|
/* locked by pdc_console_lock */
|
|
static int __attribute__((aligned(8))) iodc_retbuf[32];
|
|
static char __attribute__((aligned(64))) iodc_dbuf[4096];
|
|
|
|
/**
|
|
* pdc_iodc_print - Console print using IODC.
|
|
* @str: the string to output.
|
|
* @count: length of str
|
|
*
|
|
* Note that only these special chars are architected for console IODC io:
|
|
* BEL, BS, CR, and LF. Others are passed through.
|
|
* Since the HP console requires CR+LF to perform a 'newline', we translate
|
|
* "\n" to "\r\n".
|
|
*/
|
|
int pdc_iodc_print(const unsigned char *str, unsigned count)
|
|
{
|
|
unsigned int i;
|
|
unsigned long flags;
|
|
|
|
for (i = 0; i < count;) {
|
|
switch(str[i]) {
|
|
case '\n':
|
|
iodc_dbuf[i+0] = '\r';
|
|
iodc_dbuf[i+1] = '\n';
|
|
i += 2;
|
|
goto print;
|
|
default:
|
|
iodc_dbuf[i] = str[i];
|
|
i++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
print:
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
real32_call(PAGE0->mem_cons.iodc_io,
|
|
(unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
|
|
PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
|
|
__pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
|
|
*
|
|
* Read a character (non-blocking) from the PDC console, returns -1 if
|
|
* key is not present.
|
|
*/
|
|
int pdc_iodc_getc(void)
|
|
{
|
|
int ch;
|
|
int status;
|
|
unsigned long flags;
|
|
|
|
/* Bail if no console input device. */
|
|
if (!PAGE0->mem_kbd.iodc_io)
|
|
return 0;
|
|
|
|
/* wait for a keyboard (rs232)-input */
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
real32_call(PAGE0->mem_kbd.iodc_io,
|
|
(unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
|
|
PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
|
|
__pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
|
|
|
|
ch = *iodc_dbuf;
|
|
status = *iodc_retbuf;
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
if (status == 0)
|
|
return -1;
|
|
|
|
return ch;
|
|
}
|
|
|
|
int pdc_sti_call(unsigned long func, unsigned long flags,
|
|
unsigned long inptr, unsigned long outputr,
|
|
unsigned long glob_cfg)
|
|
{
|
|
int retval;
|
|
unsigned long irqflags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, irqflags);
|
|
retval = real32_call(func, flags, inptr, outputr, glob_cfg);
|
|
spin_unlock_irqrestore(&pdc_lock, irqflags);
|
|
|
|
return retval;
|
|
}
|
|
EXPORT_SYMBOL(pdc_sti_call);
|
|
|
|
#ifdef CONFIG_64BIT
|
|
/**
|
|
* pdc_pat_cell_get_number - Returns the cell number.
|
|
* @cell_info: The return buffer.
|
|
*
|
|
* This PDC call returns the cell number of the cell from which the call
|
|
* is made.
|
|
*/
|
|
int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
|
|
memcpy(cell_info, pdc_result, sizeof(*cell_info));
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* pdc_pat_cell_module - Retrieve the cell's module information.
|
|
* @actcnt: The number of bytes written to mem_addr.
|
|
* @ploc: The physical location.
|
|
* @mod: The module index.
|
|
* @view_type: The view of the address type.
|
|
* @mem_addr: The return buffer.
|
|
*
|
|
* This PDC call returns information about each module attached to the cell
|
|
* at the specified location.
|
|
*/
|
|
int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
|
|
unsigned long view_type, void *mem_addr)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
|
|
ploc, mod, view_type, __pa(&result));
|
|
if(!retval) {
|
|
*actcnt = pdc_result[0];
|
|
memcpy(mem_addr, &result, *actcnt);
|
|
}
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* pdc_pat_cpu_get_number - Retrieve the cpu number.
|
|
* @cpu_info: The return buffer.
|
|
* @hpa: The Hard Physical Address of the CPU.
|
|
*
|
|
* Retrieve the cpu number for the cpu at the specified HPA.
|
|
*/
|
|
int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
|
|
__pa(&pdc_result), hpa);
|
|
memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
|
|
* @num_entries: The return value.
|
|
* @cell_num: The target cell.
|
|
*
|
|
* This PDC function returns the number of entries in the specified cell's
|
|
* interrupt table.
|
|
*/
|
|
int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
|
|
__pa(pdc_result), cell_num);
|
|
*num_entries = pdc_result[0];
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* pdc_pat_get_irt - Retrieve the cell's interrupt table.
|
|
* @r_addr: The return buffer.
|
|
* @cell_num: The target cell.
|
|
*
|
|
* This PDC function returns the actual interrupt table for the specified cell.
|
|
*/
|
|
int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
|
|
__pa(r_addr), cell_num);
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
|
|
* @actlen: The return buffer.
|
|
* @mem_addr: Pointer to the memory buffer.
|
|
* @count: The number of bytes to read from the buffer.
|
|
* @offset: The offset with respect to the beginning of the buffer.
|
|
*
|
|
*/
|
|
int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
|
|
unsigned long count, unsigned long offset)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
|
|
__pa(pdc_result2), count, offset);
|
|
*actual_len = pdc_result[0];
|
|
memcpy(mem_addr, pdc_result2, *actual_len);
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* pdc_pat_io_pci_cfg_read - Read PCI configuration space.
|
|
* @pci_addr: PCI configuration space address for which the read request is being made.
|
|
* @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
|
|
* @mem_addr: Pointer to return memory buffer.
|
|
*
|
|
*/
|
|
int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
|
|
__pa(pdc_result), pci_addr, pci_size);
|
|
switch(pci_size) {
|
|
case 1: *(u8 *) mem_addr = (u8) pdc_result[0];
|
|
case 2: *(u16 *)mem_addr = (u16) pdc_result[0];
|
|
case 4: *(u32 *)mem_addr = (u32) pdc_result[0];
|
|
}
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
|
|
* @pci_addr: PCI configuration space address for which the write request is being made.
|
|
* @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
|
|
* @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
|
|
* written to PCI Config space.
|
|
*
|
|
*/
|
|
int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pdc_lock, flags);
|
|
retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
|
|
pci_addr, pci_size, val);
|
|
spin_unlock_irqrestore(&pdc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
#endif /* CONFIG_64BIT */
|
|
|
|
|
|
/***************** 32-bit real-mode calls ***********/
|
|
/* The struct below is used
|
|
* to overlay real_stack (real2.S), preparing a 32-bit call frame.
|
|
* real32_call_asm() then uses this stack in narrow real mode
|
|
*/
|
|
|
|
struct narrow_stack {
|
|
/* use int, not long which is 64 bits */
|
|
unsigned int arg13;
|
|
unsigned int arg12;
|
|
unsigned int arg11;
|
|
unsigned int arg10;
|
|
unsigned int arg9;
|
|
unsigned int arg8;
|
|
unsigned int arg7;
|
|
unsigned int arg6;
|
|
unsigned int arg5;
|
|
unsigned int arg4;
|
|
unsigned int arg3;
|
|
unsigned int arg2;
|
|
unsigned int arg1;
|
|
unsigned int arg0;
|
|
unsigned int frame_marker[8];
|
|
unsigned int sp;
|
|
/* in reality, there's nearly 8k of stack after this */
|
|
};
|
|
|
|
long real32_call(unsigned long fn, ...)
|
|
{
|
|
va_list args;
|
|
extern struct narrow_stack real_stack;
|
|
extern unsigned long real32_call_asm(unsigned int *,
|
|
unsigned int *,
|
|
unsigned int);
|
|
|
|
va_start(args, fn);
|
|
real_stack.arg0 = va_arg(args, unsigned int);
|
|
real_stack.arg1 = va_arg(args, unsigned int);
|
|
real_stack.arg2 = va_arg(args, unsigned int);
|
|
real_stack.arg3 = va_arg(args, unsigned int);
|
|
real_stack.arg4 = va_arg(args, unsigned int);
|
|
real_stack.arg5 = va_arg(args, unsigned int);
|
|
real_stack.arg6 = va_arg(args, unsigned int);
|
|
real_stack.arg7 = va_arg(args, unsigned int);
|
|
real_stack.arg8 = va_arg(args, unsigned int);
|
|
real_stack.arg9 = va_arg(args, unsigned int);
|
|
real_stack.arg10 = va_arg(args, unsigned int);
|
|
real_stack.arg11 = va_arg(args, unsigned int);
|
|
real_stack.arg12 = va_arg(args, unsigned int);
|
|
real_stack.arg13 = va_arg(args, unsigned int);
|
|
va_end(args);
|
|
|
|
return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
|
|
}
|
|
|
|
#ifdef CONFIG_64BIT
|
|
/***************** 64-bit real-mode calls ***********/
|
|
|
|
struct wide_stack {
|
|
unsigned long arg0;
|
|
unsigned long arg1;
|
|
unsigned long arg2;
|
|
unsigned long arg3;
|
|
unsigned long arg4;
|
|
unsigned long arg5;
|
|
unsigned long arg6;
|
|
unsigned long arg7;
|
|
unsigned long arg8;
|
|
unsigned long arg9;
|
|
unsigned long arg10;
|
|
unsigned long arg11;
|
|
unsigned long arg12;
|
|
unsigned long arg13;
|
|
unsigned long frame_marker[2]; /* rp, previous sp */
|
|
unsigned long sp;
|
|
/* in reality, there's nearly 8k of stack after this */
|
|
};
|
|
|
|
long real64_call(unsigned long fn, ...)
|
|
{
|
|
va_list args;
|
|
extern struct wide_stack real64_stack;
|
|
extern unsigned long real64_call_asm(unsigned long *,
|
|
unsigned long *,
|
|
unsigned long);
|
|
|
|
va_start(args, fn);
|
|
real64_stack.arg0 = va_arg(args, unsigned long);
|
|
real64_stack.arg1 = va_arg(args, unsigned long);
|
|
real64_stack.arg2 = va_arg(args, unsigned long);
|
|
real64_stack.arg3 = va_arg(args, unsigned long);
|
|
real64_stack.arg4 = va_arg(args, unsigned long);
|
|
real64_stack.arg5 = va_arg(args, unsigned long);
|
|
real64_stack.arg6 = va_arg(args, unsigned long);
|
|
real64_stack.arg7 = va_arg(args, unsigned long);
|
|
real64_stack.arg8 = va_arg(args, unsigned long);
|
|
real64_stack.arg9 = va_arg(args, unsigned long);
|
|
real64_stack.arg10 = va_arg(args, unsigned long);
|
|
real64_stack.arg11 = va_arg(args, unsigned long);
|
|
real64_stack.arg12 = va_arg(args, unsigned long);
|
|
real64_stack.arg13 = va_arg(args, unsigned long);
|
|
va_end(args);
|
|
|
|
return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
|
|
}
|
|
|
|
#endif /* CONFIG_64BIT */
|
|
|