linux_dsm_epyc7002/drivers/net/ethernet/netronome/nfp/nfp_asm.c
Jakub Kicinski 41aed09cf6 nfp: bpf: add support for atomic add of unknown values
Allow atomic add to be used even when the value is not guaranteed
to fit into a 16 bit immediate.  This requires the value to be pulled
as data, and therefore use of a transfer register and a context swap.

Track the information about possible lengths of the value, if it's
guaranteed to be larger than 16bits don't generate the code for the
optimized case at all.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-03-28 19:36:14 -07:00

351 lines
8.6 KiB
C

/*
* Copyright (C) 2016-2017 Netronome Systems, Inc.
*
* This software is dual licensed under the GNU General License Version 2,
* June 1991 as shown in the file COPYING in the top-level directory of this
* source tree or the BSD 2-Clause License provided below. You have the
* option to license this software under the complete terms of either license.
*
* The BSD 2-Clause License:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* 1. Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/bitops.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/types.h>
#include "nfp_asm.h"
const struct cmd_tgt_act cmd_tgt_act[__CMD_TGT_MAP_SIZE] = {
[CMD_TGT_WRITE8_SWAP] = { 0x02, 0x42 },
[CMD_TGT_WRITE32_SWAP] = { 0x02, 0x5f },
[CMD_TGT_READ8] = { 0x01, 0x43 },
[CMD_TGT_READ32] = { 0x00, 0x5c },
[CMD_TGT_READ32_LE] = { 0x01, 0x5c },
[CMD_TGT_READ32_SWAP] = { 0x02, 0x5c },
[CMD_TGT_READ_LE] = { 0x01, 0x40 },
[CMD_TGT_READ_SWAP_LE] = { 0x03, 0x40 },
[CMD_TGT_ADD] = { 0x00, 0x47 },
[CMD_TGT_ADD_IMM] = { 0x02, 0x47 },
};
static bool unreg_is_imm(u16 reg)
{
return (reg & UR_REG_IMM) == UR_REG_IMM;
}
u16 br_get_offset(u64 instr)
{
u16 addr_lo, addr_hi;
addr_lo = FIELD_GET(OP_BR_ADDR_LO, instr);
addr_hi = FIELD_GET(OP_BR_ADDR_HI, instr);
return (addr_hi * ((OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO)) + 1)) |
addr_lo;
}
void br_set_offset(u64 *instr, u16 offset)
{
u16 addr_lo, addr_hi;
addr_lo = offset & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO));
addr_hi = offset != addr_lo;
*instr &= ~(OP_BR_ADDR_HI | OP_BR_ADDR_LO);
*instr |= FIELD_PREP(OP_BR_ADDR_HI, addr_hi);
*instr |= FIELD_PREP(OP_BR_ADDR_LO, addr_lo);
}
void br_add_offset(u64 *instr, u16 offset)
{
u16 addr;
addr = br_get_offset(*instr);
br_set_offset(instr, addr + offset);
}
static bool immed_can_modify(u64 instr)
{
if (FIELD_GET(OP_IMMED_INV, instr) ||
FIELD_GET(OP_IMMED_SHIFT, instr) ||
FIELD_GET(OP_IMMED_WIDTH, instr) != IMMED_WIDTH_ALL) {
pr_err("Can't decode/encode immed!\n");
return false;
}
return true;
}
u16 immed_get_value(u64 instr)
{
u16 reg;
if (!immed_can_modify(instr))
return 0;
reg = FIELD_GET(OP_IMMED_A_SRC, instr);
if (!unreg_is_imm(reg))
reg = FIELD_GET(OP_IMMED_B_SRC, instr);
return (reg & 0xff) | FIELD_GET(OP_IMMED_IMM, instr) << 8;
}
void immed_set_value(u64 *instr, u16 immed)
{
if (!immed_can_modify(*instr))
return;
if (unreg_is_imm(FIELD_GET(OP_IMMED_A_SRC, *instr))) {
*instr &= ~FIELD_PREP(OP_IMMED_A_SRC, 0xff);
*instr |= FIELD_PREP(OP_IMMED_A_SRC, immed & 0xff);
} else {
*instr &= ~FIELD_PREP(OP_IMMED_B_SRC, 0xff);
*instr |= FIELD_PREP(OP_IMMED_B_SRC, immed & 0xff);
}
*instr &= ~OP_IMMED_IMM;
*instr |= FIELD_PREP(OP_IMMED_IMM, immed >> 8);
}
void immed_add_value(u64 *instr, u16 offset)
{
u16 val;
if (!immed_can_modify(*instr))
return;
val = immed_get_value(*instr);
immed_set_value(instr, val + offset);
}
static u16 nfp_swreg_to_unreg(swreg reg, bool is_dst)
{
bool lm_id, lm_dec = false;
u16 val = swreg_value(reg);
switch (swreg_type(reg)) {
case NN_REG_GPR_A:
case NN_REG_GPR_B:
case NN_REG_GPR_BOTH:
return val;
case NN_REG_NNR:
return UR_REG_NN | val;
case NN_REG_XFER:
return UR_REG_XFR | val;
case NN_REG_LMEM:
lm_id = swreg_lm_idx(reg);
switch (swreg_lm_mode(reg)) {
case NN_LM_MOD_NONE:
if (val & ~UR_REG_LM_IDX_MAX) {
pr_err("LM offset too large\n");
return 0;
}
return UR_REG_LM | FIELD_PREP(UR_REG_LM_IDX, lm_id) |
val;
case NN_LM_MOD_DEC:
lm_dec = true;
/* fall through */
case NN_LM_MOD_INC:
if (val) {
pr_err("LM offset in inc/dev mode\n");
return 0;
}
return UR_REG_LM | UR_REG_LM_POST_MOD |
FIELD_PREP(UR_REG_LM_IDX, lm_id) |
FIELD_PREP(UR_REG_LM_POST_MOD_DEC, lm_dec);
default:
pr_err("bad LM mode for unrestricted operands %d\n",
swreg_lm_mode(reg));
return 0;
}
case NN_REG_IMM:
if (val & ~0xff) {
pr_err("immediate too large\n");
return 0;
}
return UR_REG_IMM_encode(val);
case NN_REG_NONE:
return is_dst ? UR_REG_NO_DST : REG_NONE;
}
pr_err("unrecognized reg encoding %08x\n", reg);
return 0;
}
int swreg_to_unrestricted(swreg dst, swreg lreg, swreg rreg,
struct nfp_insn_ur_regs *reg)
{
memset(reg, 0, sizeof(*reg));
/* Decode destination */
if (swreg_type(dst) == NN_REG_IMM)
return -EFAULT;
if (swreg_type(dst) == NN_REG_GPR_B)
reg->dst_ab = ALU_DST_B;
if (swreg_type(dst) == NN_REG_GPR_BOTH)
reg->wr_both = true;
reg->dst = nfp_swreg_to_unreg(dst, true);
/* Decode source operands */
if (swreg_type(lreg) == swreg_type(rreg) &&
swreg_type(lreg) != NN_REG_NONE)
return -EFAULT;
if (swreg_type(lreg) == NN_REG_GPR_B ||
swreg_type(rreg) == NN_REG_GPR_A) {
reg->areg = nfp_swreg_to_unreg(rreg, false);
reg->breg = nfp_swreg_to_unreg(lreg, false);
reg->swap = true;
} else {
reg->areg = nfp_swreg_to_unreg(lreg, false);
reg->breg = nfp_swreg_to_unreg(rreg, false);
}
reg->dst_lmextn = swreg_lmextn(dst);
reg->src_lmextn = swreg_lmextn(lreg) | swreg_lmextn(rreg);
return 0;
}
static u16 nfp_swreg_to_rereg(swreg reg, bool is_dst, bool has_imm8, bool *i8)
{
u16 val = swreg_value(reg);
bool lm_id;
switch (swreg_type(reg)) {
case NN_REG_GPR_A:
case NN_REG_GPR_B:
case NN_REG_GPR_BOTH:
return val;
case NN_REG_XFER:
return RE_REG_XFR | val;
case NN_REG_LMEM:
lm_id = swreg_lm_idx(reg);
if (swreg_lm_mode(reg) != NN_LM_MOD_NONE) {
pr_err("bad LM mode for restricted operands %d\n",
swreg_lm_mode(reg));
return 0;
}
if (val & ~RE_REG_LM_IDX_MAX) {
pr_err("LM offset too large\n");
return 0;
}
return RE_REG_LM | FIELD_PREP(RE_REG_LM_IDX, lm_id) | val;
case NN_REG_IMM:
if (val & ~(0x7f | has_imm8 << 7)) {
pr_err("immediate too large\n");
return 0;
}
*i8 = val & 0x80;
return RE_REG_IMM_encode(val & 0x7f);
case NN_REG_NONE:
return is_dst ? RE_REG_NO_DST : REG_NONE;
case NN_REG_NNR:
pr_err("NNRs used with restricted encoding\n");
return 0;
}
pr_err("unrecognized reg encoding\n");
return 0;
}
int swreg_to_restricted(swreg dst, swreg lreg, swreg rreg,
struct nfp_insn_re_regs *reg, bool has_imm8)
{
memset(reg, 0, sizeof(*reg));
/* Decode destination */
if (swreg_type(dst) == NN_REG_IMM)
return -EFAULT;
if (swreg_type(dst) == NN_REG_GPR_B)
reg->dst_ab = ALU_DST_B;
if (swreg_type(dst) == NN_REG_GPR_BOTH)
reg->wr_both = true;
reg->dst = nfp_swreg_to_rereg(dst, true, false, NULL);
/* Decode source operands */
if (swreg_type(lreg) == swreg_type(rreg) &&
swreg_type(lreg) != NN_REG_NONE)
return -EFAULT;
if (swreg_type(lreg) == NN_REG_GPR_B ||
swreg_type(rreg) == NN_REG_GPR_A) {
reg->areg = nfp_swreg_to_rereg(rreg, false, has_imm8, &reg->i8);
reg->breg = nfp_swreg_to_rereg(lreg, false, has_imm8, &reg->i8);
reg->swap = true;
} else {
reg->areg = nfp_swreg_to_rereg(lreg, false, has_imm8, &reg->i8);
reg->breg = nfp_swreg_to_rereg(rreg, false, has_imm8, &reg->i8);
}
reg->dst_lmextn = swreg_lmextn(dst);
reg->src_lmextn = swreg_lmextn(lreg) | swreg_lmextn(rreg);
return 0;
}
#define NFP_USTORE_ECC_POLY_WORDS 7
#define NFP_USTORE_OP_BITS 45
static const u64 nfp_ustore_ecc_polynomials[NFP_USTORE_ECC_POLY_WORDS] = {
0x0ff800007fffULL,
0x11f801ff801fULL,
0x1e387e0781e1ULL,
0x17cb8e388e22ULL,
0x1af5b2c93244ULL,
0x1f56d5525488ULL,
0x0daf69a46910ULL,
};
static bool parity(u64 value)
{
return hweight64(value) & 1;
}
int nfp_ustore_check_valid_no_ecc(u64 insn)
{
if (insn & ~GENMASK_ULL(NFP_USTORE_OP_BITS, 0))
return -EINVAL;
return 0;
}
u64 nfp_ustore_calc_ecc_insn(u64 insn)
{
u8 ecc = 0;
int i;
for (i = 0; i < NFP_USTORE_ECC_POLY_WORDS; i++)
ecc |= parity(nfp_ustore_ecc_polynomials[i] & insn) << i;
return insn | (u64)ecc << NFP_USTORE_OP_BITS;
}