linux_dsm_epyc7002/drivers/net/wan/z85230.c
Arnaldo Carvalho de Melo 27d7ff46a3 [SK_BUFF]: Introduce skb_copy_to_linear_data{_offset}
To clearly state the intent of copying to linear sk_buffs, _offset being a
overly long variant but interesting for the sake of saving some bytes.

Signed-off-by: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
2007-04-25 22:28:29 -07:00

1840 lines
40 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* (c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
* (c) Copyright 2000, 2001 Red Hat Inc
*
* Development of this driver was funded by Equiinet Ltd
* http://www.equiinet.com
*
* ChangeLog:
*
* Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
* unification of all the Z85x30 asynchronous drivers for real.
*
* DMA now uses get_free_page as kmalloc buffers may span a 64K
* boundary.
*
* Modified for SMP safety and SMP locking by Alan Cox <alan@redhat.com>
*
* Performance
*
* Z85230:
* Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
* X.25 is not unrealistic on all machines. DMA mode can in theory
* handle T1/E1 quite nicely. In practice the limit seems to be about
* 512Kbit->1Mbit depending on motherboard.
*
* Z85C30:
* 64K will take DMA, 9600 baud X.25 should be ok.
*
* Z8530:
* Synchronous mode without DMA is unlikely to pass about 2400 baud.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/net.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <asm/dma.h>
#include <asm/io.h>
#define RT_LOCK
#define RT_UNLOCK
#include <linux/spinlock.h>
#include <net/syncppp.h>
#include "z85230.h"
/**
* z8530_read_port - Architecture specific interface function
* @p: port to read
*
* Provided port access methods. The Comtrol SV11 requires no delays
* between accesses and uses PC I/O. Some drivers may need a 5uS delay
*
* In the longer term this should become an architecture specific
* section so that this can become a generic driver interface for all
* platforms. For now we only handle PC I/O ports with or without the
* dread 5uS sanity delay.
*
* The caller must hold sufficient locks to avoid violating the horrible
* 5uS delay rule.
*/
static inline int z8530_read_port(unsigned long p)
{
u8 r=inb(Z8530_PORT_OF(p));
if(p&Z8530_PORT_SLEEP) /* gcc should figure this out efficiently ! */
udelay(5);
return r;
}
/**
* z8530_write_port - Architecture specific interface function
* @p: port to write
* @d: value to write
*
* Write a value to a port with delays if need be. Note that the
* caller must hold locks to avoid read/writes from other contexts
* violating the 5uS rule
*
* In the longer term this should become an architecture specific
* section so that this can become a generic driver interface for all
* platforms. For now we only handle PC I/O ports with or without the
* dread 5uS sanity delay.
*/
static inline void z8530_write_port(unsigned long p, u8 d)
{
outb(d,Z8530_PORT_OF(p));
if(p&Z8530_PORT_SLEEP)
udelay(5);
}
static void z8530_rx_done(struct z8530_channel *c);
static void z8530_tx_done(struct z8530_channel *c);
/**
* read_zsreg - Read a register from a Z85230
* @c: Z8530 channel to read from (2 per chip)
* @reg: Register to read
* FIXME: Use a spinlock.
*
* Most of the Z8530 registers are indexed off the control registers.
* A read is done by writing to the control register and reading the
* register back. The caller must hold the lock
*/
static inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
{
if(reg)
z8530_write_port(c->ctrlio, reg);
return z8530_read_port(c->ctrlio);
}
/**
* read_zsdata - Read the data port of a Z8530 channel
* @c: The Z8530 channel to read the data port from
*
* The data port provides fast access to some things. We still
* have all the 5uS delays to worry about.
*/
static inline u8 read_zsdata(struct z8530_channel *c)
{
u8 r;
r=z8530_read_port(c->dataio);
return r;
}
/**
* write_zsreg - Write to a Z8530 channel register
* @c: The Z8530 channel
* @reg: Register number
* @val: Value to write
*
* Write a value to an indexed register. The caller must hold the lock
* to honour the irritating delay rules. We know about register 0
* being fast to access.
*
* Assumes c->lock is held.
*/
static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val)
{
if(reg)
z8530_write_port(c->ctrlio, reg);
z8530_write_port(c->ctrlio, val);
}
/**
* write_zsctrl - Write to a Z8530 control register
* @c: The Z8530 channel
* @val: Value to write
*
* Write directly to the control register on the Z8530
*/
static inline void write_zsctrl(struct z8530_channel *c, u8 val)
{
z8530_write_port(c->ctrlio, val);
}
/**
* write_zsdata - Write to a Z8530 control register
* @c: The Z8530 channel
* @val: Value to write
*
* Write directly to the data register on the Z8530
*/
static inline void write_zsdata(struct z8530_channel *c, u8 val)
{
z8530_write_port(c->dataio, val);
}
/*
* Register loading parameters for a dead port
*/
u8 z8530_dead_port[]=
{
255
};
EXPORT_SYMBOL(z8530_dead_port);
/*
* Register loading parameters for currently supported circuit types
*/
/*
* Data clocked by telco end. This is the correct data for the UK
* "kilostream" service, and most other similar services.
*/
u8 z8530_hdlc_kilostream[]=
{
4, SYNC_ENAB|SDLC|X1CLK,
2, 0, /* No vector */
1, 0,
3, ENT_HM|RxCRC_ENAB|Rx8,
5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
9, 0, /* Disable interrupts */
6, 0xFF,
7, FLAG,
10, ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/
11, TCTRxCP,
14, DISDPLL,
15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
9, NV|MIE|NORESET,
255
};
EXPORT_SYMBOL(z8530_hdlc_kilostream);
/*
* As above but for enhanced chips.
*/
u8 z8530_hdlc_kilostream_85230[]=
{
4, SYNC_ENAB|SDLC|X1CLK,
2, 0, /* No vector */
1, 0,
3, ENT_HM|RxCRC_ENAB|Rx8,
5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
9, 0, /* Disable interrupts */
6, 0xFF,
7, FLAG,
10, ABUNDER|NRZ|CRCPS, /* MARKIDLE?? */
11, TCTRxCP,
14, DISDPLL,
15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
9, NV|MIE|NORESET,
23, 3, /* Extended mode AUTO TX and EOM*/
255
};
EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);
/**
* z8530_flush_fifo - Flush on chip RX FIFO
* @c: Channel to flush
*
* Flush the receive FIFO. There is no specific option for this, we
* blindly read bytes and discard them. Reading when there is no data
* is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
*
* All locking is handled for the caller. On return data may still be
* present if it arrived during the flush.
*/
static void z8530_flush_fifo(struct z8530_channel *c)
{
read_zsreg(c, R1);
read_zsreg(c, R1);
read_zsreg(c, R1);
read_zsreg(c, R1);
if(c->dev->type==Z85230)
{
read_zsreg(c, R1);
read_zsreg(c, R1);
read_zsreg(c, R1);
read_zsreg(c, R1);
}
}
/**
* z8530_rtsdtr - Control the outgoing DTS/RTS line
* @c: The Z8530 channel to control;
* @set: 1 to set, 0 to clear
*
* Sets or clears DTR/RTS on the requested line. All locking is handled
* by the caller. For now we assume all boards use the actual RTS/DTR
* on the chip. Apparently one or two don't. We'll scream about them
* later.
*/
static void z8530_rtsdtr(struct z8530_channel *c, int set)
{
if (set)
c->regs[5] |= (RTS | DTR);
else
c->regs[5] &= ~(RTS | DTR);
write_zsreg(c, R5, c->regs[5]);
}
/**
* z8530_rx - Handle a PIO receive event
* @c: Z8530 channel to process
*
* Receive handler for receiving in PIO mode. This is much like the
* async one but not quite the same or as complex
*
* Note: Its intended that this handler can easily be separated from
* the main code to run realtime. That'll be needed for some machines
* (eg to ever clock 64kbits on a sparc ;)).
*
* The RT_LOCK macros don't do anything now. Keep the code covered
* by them as short as possible in all circumstances - clocks cost
* baud. The interrupt handler is assumed to be atomic w.r.t. to
* other code - this is true in the RT case too.
*
* We only cover the sync cases for this. If you want 2Mbit async
* do it yourself but consider medical assistance first. This non DMA
* synchronous mode is portable code. The DMA mode assumes PCI like
* ISA DMA
*
* Called with the device lock held
*/
static void z8530_rx(struct z8530_channel *c)
{
u8 ch,stat;
while(1)
{
/* FIFO empty ? */
if(!(read_zsreg(c, R0)&1))
break;
ch=read_zsdata(c);
stat=read_zsreg(c, R1);
/*
* Overrun ?
*/
if(c->count < c->max)
{
*c->dptr++=ch;
c->count++;
}
if(stat&END_FR)
{
/*
* Error ?
*/
if(stat&(Rx_OVR|CRC_ERR))
{
/* Rewind the buffer and return */
if(c->skb)
c->dptr=c->skb->data;
c->count=0;
if(stat&Rx_OVR)
{
printk(KERN_WARNING "%s: overrun\n", c->dev->name);
c->rx_overrun++;
}
if(stat&CRC_ERR)
{
c->rx_crc_err++;
/* printk("crc error\n"); */
}
/* Shove the frame upstream */
}
else
{
/*
* Drop the lock for RX processing, or
* there are deadlocks
*/
z8530_rx_done(c);
write_zsctrl(c, RES_Rx_CRC);
}
}
}
/*
* Clear irq
*/
write_zsctrl(c, ERR_RES);
write_zsctrl(c, RES_H_IUS);
}
/**
* z8530_tx - Handle a PIO transmit event
* @c: Z8530 channel to process
*
* Z8530 transmit interrupt handler for the PIO mode. The basic
* idea is to attempt to keep the FIFO fed. We fill as many bytes
* in as possible, its quite possible that we won't keep up with the
* data rate otherwise.
*/
static void z8530_tx(struct z8530_channel *c)
{
while(c->txcount) {
/* FIFO full ? */
if(!(read_zsreg(c, R0)&4))
return;
c->txcount--;
/*
* Shovel out the byte
*/
write_zsreg(c, R8, *c->tx_ptr++);
write_zsctrl(c, RES_H_IUS);
/* We are about to underflow */
if(c->txcount==0)
{
write_zsctrl(c, RES_EOM_L);
write_zsreg(c, R10, c->regs[10]&~ABUNDER);
}
}
/*
* End of frame TX - fire another one
*/
write_zsctrl(c, RES_Tx_P);
z8530_tx_done(c);
write_zsctrl(c, RES_H_IUS);
}
/**
* z8530_status - Handle a PIO status exception
* @chan: Z8530 channel to process
*
* A status event occurred in PIO synchronous mode. There are several
* reasons the chip will bother us here. A transmit underrun means we
* failed to feed the chip fast enough and just broke a packet. A DCD
* change is a line up or down. We communicate that back to the protocol
* layer for synchronous PPP to renegotiate.
*/
static void z8530_status(struct z8530_channel *chan)
{
u8 status, altered;
status=read_zsreg(chan, R0);
altered=chan->status^status;
chan->status=status;
if(status&TxEOM)
{
/* printk("%s: Tx underrun.\n", chan->dev->name); */
chan->stats.tx_fifo_errors++;
write_zsctrl(chan, ERR_RES);
z8530_tx_done(chan);
}
if(altered&chan->dcdcheck)
{
if(status&chan->dcdcheck)
{
printk(KERN_INFO "%s: DCD raised\n", chan->dev->name);
write_zsreg(chan, R3, chan->regs[3]|RxENABLE);
if(chan->netdevice &&
((chan->netdevice->type == ARPHRD_HDLC) ||
(chan->netdevice->type == ARPHRD_PPP)))
sppp_reopen(chan->netdevice);
}
else
{
printk(KERN_INFO "%s: DCD lost\n", chan->dev->name);
write_zsreg(chan, R3, chan->regs[3]&~RxENABLE);
z8530_flush_fifo(chan);
}
}
write_zsctrl(chan, RES_EXT_INT);
write_zsctrl(chan, RES_H_IUS);
}
struct z8530_irqhandler z8530_sync=
{
z8530_rx,
z8530_tx,
z8530_status
};
EXPORT_SYMBOL(z8530_sync);
/**
* z8530_dma_rx - Handle a DMA RX event
* @chan: Channel to handle
*
* Non bus mastering DMA interfaces for the Z8x30 devices. This
* is really pretty PC specific. The DMA mode means that most receive
* events are handled by the DMA hardware. We get a kick here only if
* a frame ended.
*/
static void z8530_dma_rx(struct z8530_channel *chan)
{
if(chan->rxdma_on)
{
/* Special condition check only */
u8 status;
read_zsreg(chan, R7);
read_zsreg(chan, R6);
status=read_zsreg(chan, R1);
if(status&END_FR)
{
z8530_rx_done(chan); /* Fire up the next one */
}
write_zsctrl(chan, ERR_RES);
write_zsctrl(chan, RES_H_IUS);
}
else
{
/* DMA is off right now, drain the slow way */
z8530_rx(chan);
}
}
/**
* z8530_dma_tx - Handle a DMA TX event
* @chan: The Z8530 channel to handle
*
* We have received an interrupt while doing DMA transmissions. It
* shouldn't happen. Scream loudly if it does.
*/
static void z8530_dma_tx(struct z8530_channel *chan)
{
if(!chan->dma_tx)
{
printk(KERN_WARNING "Hey who turned the DMA off?\n");
z8530_tx(chan);
return;
}
/* This shouldnt occur in DMA mode */
printk(KERN_ERR "DMA tx - bogus event!\n");
z8530_tx(chan);
}
/**
* z8530_dma_status - Handle a DMA status exception
* @chan: Z8530 channel to process
*
* A status event occurred on the Z8530. We receive these for two reasons
* when in DMA mode. Firstly if we finished a packet transfer we get one
* and kick the next packet out. Secondly we may see a DCD change and
* have to poke the protocol layer.
*
*/
static void z8530_dma_status(struct z8530_channel *chan)
{
u8 status, altered;
status=read_zsreg(chan, R0);
altered=chan->status^status;
chan->status=status;
if(chan->dma_tx)
{
if(status&TxEOM)
{
unsigned long flags;
flags=claim_dma_lock();
disable_dma(chan->txdma);
clear_dma_ff(chan->txdma);
chan->txdma_on=0;
release_dma_lock(flags);
z8530_tx_done(chan);
}
}
if(altered&chan->dcdcheck)
{
if(status&chan->dcdcheck)
{
printk(KERN_INFO "%s: DCD raised\n", chan->dev->name);
write_zsreg(chan, R3, chan->regs[3]|RxENABLE);
if(chan->netdevice &&
((chan->netdevice->type == ARPHRD_HDLC) ||
(chan->netdevice->type == ARPHRD_PPP)))
sppp_reopen(chan->netdevice);
}
else
{
printk(KERN_INFO "%s:DCD lost\n", chan->dev->name);
write_zsreg(chan, R3, chan->regs[3]&~RxENABLE);
z8530_flush_fifo(chan);
}
}
write_zsctrl(chan, RES_EXT_INT);
write_zsctrl(chan, RES_H_IUS);
}
struct z8530_irqhandler z8530_dma_sync=
{
z8530_dma_rx,
z8530_dma_tx,
z8530_dma_status
};
EXPORT_SYMBOL(z8530_dma_sync);
struct z8530_irqhandler z8530_txdma_sync=
{
z8530_rx,
z8530_dma_tx,
z8530_dma_status
};
EXPORT_SYMBOL(z8530_txdma_sync);
/**
* z8530_rx_clear - Handle RX events from a stopped chip
* @c: Z8530 channel to shut up
*
* Receive interrupt vectors for a Z8530 that is in 'parked' mode.
* For machines with PCI Z85x30 cards, or level triggered interrupts
* (eg the MacII) we must clear the interrupt cause or die.
*/
static void z8530_rx_clear(struct z8530_channel *c)
{
/*
* Data and status bytes
*/
u8 stat;
read_zsdata(c);
stat=read_zsreg(c, R1);
if(stat&END_FR)
write_zsctrl(c, RES_Rx_CRC);
/*
* Clear irq
*/
write_zsctrl(c, ERR_RES);
write_zsctrl(c, RES_H_IUS);
}
/**
* z8530_tx_clear - Handle TX events from a stopped chip
* @c: Z8530 channel to shut up
*
* Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
* For machines with PCI Z85x30 cards, or level triggered interrupts
* (eg the MacII) we must clear the interrupt cause or die.
*/
static void z8530_tx_clear(struct z8530_channel *c)
{
write_zsctrl(c, RES_Tx_P);
write_zsctrl(c, RES_H_IUS);
}
/**
* z8530_status_clear - Handle status events from a stopped chip
* @chan: Z8530 channel to shut up
*
* Status interrupt vectors for a Z8530 that is in 'parked' mode.
* For machines with PCI Z85x30 cards, or level triggered interrupts
* (eg the MacII) we must clear the interrupt cause or die.
*/
static void z8530_status_clear(struct z8530_channel *chan)
{
u8 status=read_zsreg(chan, R0);
if(status&TxEOM)
write_zsctrl(chan, ERR_RES);
write_zsctrl(chan, RES_EXT_INT);
write_zsctrl(chan, RES_H_IUS);
}
struct z8530_irqhandler z8530_nop=
{
z8530_rx_clear,
z8530_tx_clear,
z8530_status_clear
};
EXPORT_SYMBOL(z8530_nop);
/**
* z8530_interrupt - Handle an interrupt from a Z8530
* @irq: Interrupt number
* @dev_id: The Z8530 device that is interrupting.
* @regs: unused
*
* A Z85[2]30 device has stuck its hand in the air for attention.
* We scan both the channels on the chip for events and then call
* the channel specific call backs for each channel that has events.
* We have to use callback functions because the two channels can be
* in different modes.
*
* Locking is done for the handlers. Note that locking is done
* at the chip level (the 5uS delay issue is per chip not per
* channel). c->lock for both channels points to dev->lock
*/
irqreturn_t z8530_interrupt(int irq, void *dev_id)
{
struct z8530_dev *dev=dev_id;
u8 intr;
static volatile int locker=0;
int work=0;
struct z8530_irqhandler *irqs;
if(locker)
{
printk(KERN_ERR "IRQ re-enter\n");
return IRQ_NONE;
}
locker=1;
spin_lock(&dev->lock);
while(++work<5000)
{
intr = read_zsreg(&dev->chanA, R3);
if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT)))
break;
/* This holds the IRQ status. On the 8530 you must read it from chan
A even though it applies to the whole chip */
/* Now walk the chip and see what it is wanting - it may be
an IRQ for someone else remember */
irqs=dev->chanA.irqs;
if(intr & (CHARxIP|CHATxIP|CHAEXT))
{
if(intr&CHARxIP)
irqs->rx(&dev->chanA);
if(intr&CHATxIP)
irqs->tx(&dev->chanA);
if(intr&CHAEXT)
irqs->status(&dev->chanA);
}
irqs=dev->chanB.irqs;
if(intr & (CHBRxIP|CHBTxIP|CHBEXT))
{
if(intr&CHBRxIP)
irqs->rx(&dev->chanB);
if(intr&CHBTxIP)
irqs->tx(&dev->chanB);
if(intr&CHBEXT)
irqs->status(&dev->chanB);
}
}
spin_unlock(&dev->lock);
if(work==5000)
printk(KERN_ERR "%s: interrupt jammed - abort(0x%X)!\n", dev->name, intr);
/* Ok all done */
locker=0;
return IRQ_HANDLED;
}
EXPORT_SYMBOL(z8530_interrupt);
static char reg_init[16]=
{
0,0,0,0,
0,0,0,0,
0,0,0,0,
0x55,0,0,0
};
/**
* z8530_sync_open - Open a Z8530 channel for PIO
* @dev: The network interface we are using
* @c: The Z8530 channel to open in synchronous PIO mode
*
* Switch a Z8530 into synchronous mode without DMA assist. We
* raise the RTS/DTR and commence network operation.
*/
int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
{
unsigned long flags;
spin_lock_irqsave(c->lock, flags);
c->sync = 1;
c->mtu = dev->mtu+64;
c->count = 0;
c->skb = NULL;
c->skb2 = NULL;
c->irqs = &z8530_sync;
/* This loads the double buffer up */
z8530_rx_done(c); /* Load the frame ring */
z8530_rx_done(c); /* Load the backup frame */
z8530_rtsdtr(c,1);
c->dma_tx = 0;
c->regs[R1]|=TxINT_ENAB;
write_zsreg(c, R1, c->regs[R1]);
write_zsreg(c, R3, c->regs[R3]|RxENABLE);
spin_unlock_irqrestore(c->lock, flags);
return 0;
}
EXPORT_SYMBOL(z8530_sync_open);
/**
* z8530_sync_close - Close a PIO Z8530 channel
* @dev: Network device to close
* @c: Z8530 channel to disassociate and move to idle
*
* Close down a Z8530 interface and switch its interrupt handlers
* to discard future events.
*/
int z8530_sync_close(struct net_device *dev, struct z8530_channel *c)
{
u8 chk;
unsigned long flags;
spin_lock_irqsave(c->lock, flags);
c->irqs = &z8530_nop;
c->max = 0;
c->sync = 0;
chk=read_zsreg(c,R0);
write_zsreg(c, R3, c->regs[R3]);
z8530_rtsdtr(c,0);
spin_unlock_irqrestore(c->lock, flags);
return 0;
}
EXPORT_SYMBOL(z8530_sync_close);
/**
* z8530_sync_dma_open - Open a Z8530 for DMA I/O
* @dev: The network device to attach
* @c: The Z8530 channel to configure in sync DMA mode.
*
* Set up a Z85x30 device for synchronous DMA in both directions. Two
* ISA DMA channels must be available for this to work. We assume ISA
* DMA driven I/O and PC limits on access.
*/
int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
{
unsigned long cflags, dflags;
c->sync = 1;
c->mtu = dev->mtu+64;
c->count = 0;
c->skb = NULL;
c->skb2 = NULL;
/*
* Load the DMA interfaces up
*/
c->rxdma_on = 0;
c->txdma_on = 0;
/*
* Allocate the DMA flip buffers. Limit by page size.
* Everyone runs 1500 mtu or less on wan links so this
* should be fine.
*/
if(c->mtu > PAGE_SIZE/2)
return -EMSGSIZE;
c->rx_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
if(c->rx_buf[0]==NULL)
return -ENOBUFS;
c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2;
c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
if(c->tx_dma_buf[0]==NULL)
{
free_page((unsigned long)c->rx_buf[0]);
c->rx_buf[0]=NULL;
return -ENOBUFS;
}
c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2;
c->tx_dma_used=0;
c->dma_tx = 1;
c->dma_num=0;
c->dma_ready=1;
/*
* Enable DMA control mode
*/
spin_lock_irqsave(c->lock, cflags);
/*
* TX DMA via DIR/REQ
*/
c->regs[R14]|= DTRREQ;
write_zsreg(c, R14, c->regs[R14]);
c->regs[R1]&= ~TxINT_ENAB;
write_zsreg(c, R1, c->regs[R1]);
/*
* RX DMA via W/Req
*/
c->regs[R1]|= WT_FN_RDYFN;
c->regs[R1]|= WT_RDY_RT;
c->regs[R1]|= INT_ERR_Rx;
c->regs[R1]&= ~TxINT_ENAB;
write_zsreg(c, R1, c->regs[R1]);
c->regs[R1]|= WT_RDY_ENAB;
write_zsreg(c, R1, c->regs[R1]);
/*
* DMA interrupts
*/
/*
* Set up the DMA configuration
*/
dflags=claim_dma_lock();
disable_dma(c->rxdma);
clear_dma_ff(c->rxdma);
set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0]));
set_dma_count(c->rxdma, c->mtu);
enable_dma(c->rxdma);
disable_dma(c->txdma);
clear_dma_ff(c->txdma);
set_dma_mode(c->txdma, DMA_MODE_WRITE);
disable_dma(c->txdma);
release_dma_lock(dflags);
/*
* Select the DMA interrupt handlers
*/
c->rxdma_on = 1;
c->txdma_on = 1;
c->tx_dma_used = 1;
c->irqs = &z8530_dma_sync;
z8530_rtsdtr(c,1);
write_zsreg(c, R3, c->regs[R3]|RxENABLE);
spin_unlock_irqrestore(c->lock, cflags);
return 0;
}
EXPORT_SYMBOL(z8530_sync_dma_open);
/**
* z8530_sync_dma_close - Close down DMA I/O
* @dev: Network device to detach
* @c: Z8530 channel to move into discard mode
*
* Shut down a DMA mode synchronous interface. Halt the DMA, and
* free the buffers.
*/
int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
{
u8 chk;
unsigned long flags;
c->irqs = &z8530_nop;
c->max = 0;
c->sync = 0;
/*
* Disable the PC DMA channels
*/
flags=claim_dma_lock();
disable_dma(c->rxdma);
clear_dma_ff(c->rxdma);
c->rxdma_on = 0;
disable_dma(c->txdma);
clear_dma_ff(c->txdma);
release_dma_lock(flags);
c->txdma_on = 0;
c->tx_dma_used = 0;
spin_lock_irqsave(c->lock, flags);
/*
* Disable DMA control mode
*/
c->regs[R1]&= ~WT_RDY_ENAB;
write_zsreg(c, R1, c->regs[R1]);
c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
c->regs[R1]|= INT_ALL_Rx;
write_zsreg(c, R1, c->regs[R1]);
c->regs[R14]&= ~DTRREQ;
write_zsreg(c, R14, c->regs[R14]);
if(c->rx_buf[0])
{
free_page((unsigned long)c->rx_buf[0]);
c->rx_buf[0]=NULL;
}
if(c->tx_dma_buf[0])
{
free_page((unsigned long)c->tx_dma_buf[0]);
c->tx_dma_buf[0]=NULL;
}
chk=read_zsreg(c,R0);
write_zsreg(c, R3, c->regs[R3]);
z8530_rtsdtr(c,0);
spin_unlock_irqrestore(c->lock, flags);
return 0;
}
EXPORT_SYMBOL(z8530_sync_dma_close);
/**
* z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
* @dev: The network device to attach
* @c: The Z8530 channel to configure in sync DMA mode.
*
* Set up a Z85x30 device for synchronous DMA tranmission. One
* ISA DMA channel must be available for this to work. The receive
* side is run in PIO mode, but then it has the bigger FIFO.
*/
int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
{
unsigned long cflags, dflags;
printk("Opening sync interface for TX-DMA\n");
c->sync = 1;
c->mtu = dev->mtu+64;
c->count = 0;
c->skb = NULL;
c->skb2 = NULL;
/*
* Allocate the DMA flip buffers. Limit by page size.
* Everyone runs 1500 mtu or less on wan links so this
* should be fine.
*/
if(c->mtu > PAGE_SIZE/2)
return -EMSGSIZE;
c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
if(c->tx_dma_buf[0]==NULL)
return -ENOBUFS;
c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2;
spin_lock_irqsave(c->lock, cflags);
/*
* Load the PIO receive ring
*/
z8530_rx_done(c);
z8530_rx_done(c);
/*
* Load the DMA interfaces up
*/
c->rxdma_on = 0;
c->txdma_on = 0;
c->tx_dma_used=0;
c->dma_num=0;
c->dma_ready=1;
c->dma_tx = 1;
/*
* Enable DMA control mode
*/
/*
* TX DMA via DIR/REQ
*/
c->regs[R14]|= DTRREQ;
write_zsreg(c, R14, c->regs[R14]);
c->regs[R1]&= ~TxINT_ENAB;
write_zsreg(c, R1, c->regs[R1]);
/*
* Set up the DMA configuration
*/
dflags = claim_dma_lock();
disable_dma(c->txdma);
clear_dma_ff(c->txdma);
set_dma_mode(c->txdma, DMA_MODE_WRITE);
disable_dma(c->txdma);
release_dma_lock(dflags);
/*
* Select the DMA interrupt handlers
*/
c->rxdma_on = 0;
c->txdma_on = 1;
c->tx_dma_used = 1;
c->irqs = &z8530_txdma_sync;
z8530_rtsdtr(c,1);
write_zsreg(c, R3, c->regs[R3]|RxENABLE);
spin_unlock_irqrestore(c->lock, cflags);
return 0;
}
EXPORT_SYMBOL(z8530_sync_txdma_open);
/**
* z8530_sync_txdma_close - Close down a TX driven DMA channel
* @dev: Network device to detach
* @c: Z8530 channel to move into discard mode
*
* Shut down a DMA/PIO split mode synchronous interface. Halt the DMA,
* and free the buffers.
*/
int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
{
unsigned long dflags, cflags;
u8 chk;
spin_lock_irqsave(c->lock, cflags);
c->irqs = &z8530_nop;
c->max = 0;
c->sync = 0;
/*
* Disable the PC DMA channels
*/
dflags = claim_dma_lock();
disable_dma(c->txdma);
clear_dma_ff(c->txdma);
c->txdma_on = 0;
c->tx_dma_used = 0;
release_dma_lock(dflags);
/*
* Disable DMA control mode
*/
c->regs[R1]&= ~WT_RDY_ENAB;
write_zsreg(c, R1, c->regs[R1]);
c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
c->regs[R1]|= INT_ALL_Rx;
write_zsreg(c, R1, c->regs[R1]);
c->regs[R14]&= ~DTRREQ;
write_zsreg(c, R14, c->regs[R14]);
if(c->tx_dma_buf[0])
{
free_page((unsigned long)c->tx_dma_buf[0]);
c->tx_dma_buf[0]=NULL;
}
chk=read_zsreg(c,R0);
write_zsreg(c, R3, c->regs[R3]);
z8530_rtsdtr(c,0);
spin_unlock_irqrestore(c->lock, cflags);
return 0;
}
EXPORT_SYMBOL(z8530_sync_txdma_close);
/*
* Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
* it exists...
*/
static char *z8530_type_name[]={
"Z8530",
"Z85C30",
"Z85230"
};
/**
* z8530_describe - Uniformly describe a Z8530 port
* @dev: Z8530 device to describe
* @mapping: string holding mapping type (eg "I/O" or "Mem")
* @io: the port value in question
*
* Describe a Z8530 in a standard format. We must pass the I/O as
* the port offset isnt predictable. The main reason for this function
* is to try and get a common format of report.
*/
void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io)
{
printk(KERN_INFO "%s: %s found at %s 0x%lX, IRQ %d.\n",
dev->name,
z8530_type_name[dev->type],
mapping,
Z8530_PORT_OF(io),
dev->irq);
}
EXPORT_SYMBOL(z8530_describe);
/*
* Locked operation part of the z8530 init code
*/
static inline int do_z8530_init(struct z8530_dev *dev)
{
/* NOP the interrupt handlers first - we might get a
floating IRQ transition when we reset the chip */
dev->chanA.irqs=&z8530_nop;
dev->chanB.irqs=&z8530_nop;
dev->chanA.dcdcheck=DCD;
dev->chanB.dcdcheck=DCD;
/* Reset the chip */
write_zsreg(&dev->chanA, R9, 0xC0);
udelay(200);
/* Now check its valid */
write_zsreg(&dev->chanA, R12, 0xAA);
if(read_zsreg(&dev->chanA, R12)!=0xAA)
return -ENODEV;
write_zsreg(&dev->chanA, R12, 0x55);
if(read_zsreg(&dev->chanA, R12)!=0x55)
return -ENODEV;
dev->type=Z8530;
/*
* See the application note.
*/
write_zsreg(&dev->chanA, R15, 0x01);
/*
* If we can set the low bit of R15 then
* the chip is enhanced.
*/
if(read_zsreg(&dev->chanA, R15)==0x01)
{
/* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
/* Put a char in the fifo */
write_zsreg(&dev->chanA, R8, 0);
if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP)
dev->type = Z85230; /* Has a FIFO */
else
dev->type = Z85C30; /* Z85C30, 1 byte FIFO */
}
/*
* The code assumes R7' and friends are
* off. Use write_zsext() for these and keep
* this bit clear.
*/
write_zsreg(&dev->chanA, R15, 0);
/*
* At this point it looks like the chip is behaving
*/
memcpy(dev->chanA.regs, reg_init, 16);
memcpy(dev->chanB.regs, reg_init ,16);
return 0;
}
/**
* z8530_init - Initialise a Z8530 device
* @dev: Z8530 device to initialise.
*
* Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
* is present, identify the type and then program it to hopefully
* keep quite and behave. This matters a lot, a Z8530 in the wrong
* state will sometimes get into stupid modes generating 10Khz
* interrupt streams and the like.
*
* We set the interrupt handler up to discard any events, in case
* we get them during reset or setp.
*
* Return 0 for success, or a negative value indicating the problem
* in errno form.
*/
int z8530_init(struct z8530_dev *dev)
{
unsigned long flags;
int ret;
/* Set up the chip level lock */
spin_lock_init(&dev->lock);
dev->chanA.lock = &dev->lock;
dev->chanB.lock = &dev->lock;
spin_lock_irqsave(&dev->lock, flags);
ret = do_z8530_init(dev);
spin_unlock_irqrestore(&dev->lock, flags);
return ret;
}
EXPORT_SYMBOL(z8530_init);
/**
* z8530_shutdown - Shutdown a Z8530 device
* @dev: The Z8530 chip to shutdown
*
* We set the interrupt handlers to silence any interrupts. We then
* reset the chip and wait 100uS to be sure the reset completed. Just
* in case the caller then tries to do stuff.
*
* This is called without the lock held
*/
int z8530_shutdown(struct z8530_dev *dev)
{
unsigned long flags;
/* Reset the chip */
spin_lock_irqsave(&dev->lock, flags);
dev->chanA.irqs=&z8530_nop;
dev->chanB.irqs=&z8530_nop;
write_zsreg(&dev->chanA, R9, 0xC0);
/* We must lock the udelay, the chip is offlimits here */
udelay(100);
spin_unlock_irqrestore(&dev->lock, flags);
return 0;
}
EXPORT_SYMBOL(z8530_shutdown);
/**
* z8530_channel_load - Load channel data
* @c: Z8530 channel to configure
* @rtable: table of register, value pairs
* FIXME: ioctl to allow user uploaded tables
*
* Load a Z8530 channel up from the system data. We use +16 to
* indicate the "prime" registers. The value 255 terminates the
* table.
*/
int z8530_channel_load(struct z8530_channel *c, u8 *rtable)
{
unsigned long flags;
spin_lock_irqsave(c->lock, flags);
while(*rtable!=255)
{
int reg=*rtable++;
if(reg>0x0F)
write_zsreg(c, R15, c->regs[15]|1);
write_zsreg(c, reg&0x0F, *rtable);
if(reg>0x0F)
write_zsreg(c, R15, c->regs[15]&~1);
c->regs[reg]=*rtable++;
}
c->rx_function=z8530_null_rx;
c->skb=NULL;
c->tx_skb=NULL;
c->tx_next_skb=NULL;
c->mtu=1500;
c->max=0;
c->count=0;
c->status=read_zsreg(c, R0);
c->sync=1;
write_zsreg(c, R3, c->regs[R3]|RxENABLE);
spin_unlock_irqrestore(c->lock, flags);
return 0;
}
EXPORT_SYMBOL(z8530_channel_load);
/**
* z8530_tx_begin - Begin packet transmission
* @c: The Z8530 channel to kick
*
* This is the speed sensitive side of transmission. If we are called
* and no buffer is being transmitted we commence the next buffer. If
* nothing is queued we idle the sync.
*
* Note: We are handling this code path in the interrupt path, keep it
* fast or bad things will happen.
*
* Called with the lock held.
*/
static void z8530_tx_begin(struct z8530_channel *c)
{
unsigned long flags;
if(c->tx_skb)
return;
c->tx_skb=c->tx_next_skb;
c->tx_next_skb=NULL;
c->tx_ptr=c->tx_next_ptr;
if(c->tx_skb==NULL)
{
/* Idle on */
if(c->dma_tx)
{
flags=claim_dma_lock();
disable_dma(c->txdma);
/*
* Check if we crapped out.
*/
if(get_dma_residue(c->txdma))
{
c->stats.tx_dropped++;
c->stats.tx_fifo_errors++;
}
release_dma_lock(flags);
}
c->txcount=0;
}
else
{
c->txcount=c->tx_skb->len;
if(c->dma_tx)
{
/*
* FIXME. DMA is broken for the original 8530,
* on the older parts we need to set a flag and
* wait for a further TX interrupt to fire this
* stage off
*/
flags=claim_dma_lock();
disable_dma(c->txdma);
/*
* These two are needed by the 8530/85C30
* and must be issued when idling.
*/
if(c->dev->type!=Z85230)
{
write_zsctrl(c, RES_Tx_CRC);
write_zsctrl(c, RES_EOM_L);
}
write_zsreg(c, R10, c->regs[10]&~ABUNDER);
clear_dma_ff(c->txdma);
set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr));
set_dma_count(c->txdma, c->txcount);
enable_dma(c->txdma);
release_dma_lock(flags);
write_zsctrl(c, RES_EOM_L);
write_zsreg(c, R5, c->regs[R5]|TxENAB);
}
else
{
/* ABUNDER off */
write_zsreg(c, R10, c->regs[10]);
write_zsctrl(c, RES_Tx_CRC);
while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP))
{
write_zsreg(c, R8, *c->tx_ptr++);
c->txcount--;
}
}
}
/*
* Since we emptied tx_skb we can ask for more
*/
netif_wake_queue(c->netdevice);
}
/**
* z8530_tx_done - TX complete callback
* @c: The channel that completed a transmit.
*
* This is called when we complete a packet send. We wake the queue,
* start the next packet going and then free the buffer of the existing
* packet. This code is fairly timing sensitive.
*
* Called with the register lock held.
*/
static void z8530_tx_done(struct z8530_channel *c)
{
struct sk_buff *skb;
/* Actually this can happen.*/
if(c->tx_skb==NULL)
return;
skb=c->tx_skb;
c->tx_skb=NULL;
z8530_tx_begin(c);
c->stats.tx_packets++;
c->stats.tx_bytes+=skb->len;
dev_kfree_skb_irq(skb);
}
/**
* z8530_null_rx - Discard a packet
* @c: The channel the packet arrived on
* @skb: The buffer
*
* We point the receive handler at this function when idle. Instead
* of syncppp processing the frames we get to throw them away.
*/
void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb)
{
dev_kfree_skb_any(skb);
}
EXPORT_SYMBOL(z8530_null_rx);
/**
* z8530_rx_done - Receive completion callback
* @c: The channel that completed a receive
*
* A new packet is complete. Our goal here is to get back into receive
* mode as fast as possible. On the Z85230 we could change to using
* ESCC mode, but on the older chips we have no choice. We flip to the
* new buffer immediately in DMA mode so that the DMA of the next
* frame can occur while we are copying the previous buffer to an sk_buff
*
* Called with the lock held
*/
static void z8530_rx_done(struct z8530_channel *c)
{
struct sk_buff *skb;
int ct;
/*
* Is our receive engine in DMA mode
*/
if(c->rxdma_on)
{
/*
* Save the ready state and the buffer currently
* being used as the DMA target
*/
int ready=c->dma_ready;
unsigned char *rxb=c->rx_buf[c->dma_num];
unsigned long flags;
/*
* Complete this DMA. Neccessary to find the length
*/
flags=claim_dma_lock();
disable_dma(c->rxdma);
clear_dma_ff(c->rxdma);
c->rxdma_on=0;
ct=c->mtu-get_dma_residue(c->rxdma);
if(ct<0)
ct=2; /* Shit happens.. */
c->dma_ready=0;
/*
* Normal case: the other slot is free, start the next DMA
* into it immediately.
*/
if(ready)
{
c->dma_num^=1;
set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num]));
set_dma_count(c->rxdma, c->mtu);
c->rxdma_on = 1;
enable_dma(c->rxdma);
/* Stop any frames that we missed the head of
from passing */
write_zsreg(c, R0, RES_Rx_CRC);
}
else
/* Can't occur as we dont reenable the DMA irq until
after the flip is done */
printk(KERN_WARNING "%s: DMA flip overrun!\n", c->netdevice->name);
release_dma_lock(flags);
/*
* Shove the old buffer into an sk_buff. We can't DMA
* directly into one on a PC - it might be above the 16Mb
* boundary. Optimisation - we could check to see if we
* can avoid the copy. Optimisation 2 - make the memcpy
* a copychecksum.
*/
skb=dev_alloc_skb(ct);
if(skb==NULL)
{
c->stats.rx_dropped++;
printk(KERN_WARNING "%s: Memory squeeze.\n", c->netdevice->name);
}
else
{
skb_put(skb, ct);
skb_copy_to_linear_data(skb, rxb, ct);
c->stats.rx_packets++;
c->stats.rx_bytes+=ct;
}
c->dma_ready=1;
}
else
{
RT_LOCK;
skb=c->skb;
/*
* The game we play for non DMA is similar. We want to
* get the controller set up for the next packet as fast
* as possible. We potentially only have one byte + the
* fifo length for this. Thus we want to flip to the new
* buffer and then mess around copying and allocating
* things. For the current case it doesn't matter but
* if you build a system where the sync irq isnt blocked
* by the kernel IRQ disable then you need only block the
* sync IRQ for the RT_LOCK area.
*
*/
ct=c->count;
c->skb = c->skb2;
c->count = 0;
c->max = c->mtu;
if(c->skb)
{
c->dptr = c->skb->data;
c->max = c->mtu;
}
else
{
c->count= 0;
c->max = 0;
}
RT_UNLOCK;
c->skb2 = dev_alloc_skb(c->mtu);
if(c->skb2==NULL)
printk(KERN_WARNING "%s: memory squeeze.\n",
c->netdevice->name);
else
{
skb_put(c->skb2,c->mtu);
}
c->stats.rx_packets++;
c->stats.rx_bytes+=ct;
}
/*
* If we received a frame we must now process it.
*/
if(skb)
{
skb_trim(skb, ct);
c->rx_function(c,skb);
}
else
{
c->stats.rx_dropped++;
printk(KERN_ERR "%s: Lost a frame\n", c->netdevice->name);
}
}
/**
* spans_boundary - Check a packet can be ISA DMA'd
* @skb: The buffer to check
*
* Returns true if the buffer cross a DMA boundary on a PC. The poor
* thing can only DMA within a 64K block not across the edges of it.
*/
static inline int spans_boundary(struct sk_buff *skb)
{
unsigned long a=(unsigned long)skb->data;
a^=(a+skb->len);
if(a&0x00010000) /* If the 64K bit is different.. */
return 1;
return 0;
}
/**
* z8530_queue_xmit - Queue a packet
* @c: The channel to use
* @skb: The packet to kick down the channel
*
* Queue a packet for transmission. Because we have rather
* hard to hit interrupt latencies for the Z85230 per packet
* even in DMA mode we do the flip to DMA buffer if needed here
* not in the IRQ.
*
* Called from the network code. The lock is not held at this
* point.
*/
int z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
{
unsigned long flags;
netif_stop_queue(c->netdevice);
if(c->tx_next_skb)
{
return 1;
}
/* PC SPECIFIC - DMA limits */
/*
* If we will DMA the transmit and its gone over the ISA bus
* limit, then copy to the flip buffer
*/
if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb)))
{
/*
* Send the flip buffer, and flip the flippy bit.
* We don't care which is used when just so long as
* we never use the same buffer twice in a row. Since
* only one buffer can be going out at a time the other
* has to be safe.
*/
c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used];
c->tx_dma_used^=1; /* Flip temp buffer */
skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len);
}
else
c->tx_next_ptr=skb->data;
RT_LOCK;
c->tx_next_skb=skb;
RT_UNLOCK;
spin_lock_irqsave(c->lock, flags);
z8530_tx_begin(c);
spin_unlock_irqrestore(c->lock, flags);
return 0;
}
EXPORT_SYMBOL(z8530_queue_xmit);
/**
* z8530_get_stats - Get network statistics
* @c: The channel to use
*
* Get the statistics block. We keep the statistics in software as
* the chip doesn't do it for us.
*
* Locking is ignored here - we could lock for a copy but its
* not likely to be that big an issue
*/
struct net_device_stats *z8530_get_stats(struct z8530_channel *c)
{
return &c->stats;
}
EXPORT_SYMBOL(z8530_get_stats);
/*
* Module support
*/
static char banner[] __initdata = KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n";
static int __init z85230_init_driver(void)
{
printk(banner);
return 0;
}
module_init(z85230_init_driver);
static void __exit z85230_cleanup_driver(void)
{
}
module_exit(z85230_cleanup_driver);
MODULE_AUTHOR("Red Hat Inc.");
MODULE_DESCRIPTION("Z85x30 synchronous driver core");
MODULE_LICENSE("GPL");