mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-22 13:14:36 +07:00
484a418d07
Dave noticed that when specifying multiple efi_fake_mem= entries only the last entry was successfully being reflected in the efi memory map. This is due to the fact that the efi_memmap_insert() is being called multiple times, but on successive invocations the insertion should be applied to the last new memmap rather than the original map at efi_fake_memmap() entry. Rework efi_fake_memmap() to install the new memory map after each efi_fake_mem= entry is parsed. This also fixes an issue in efi_fake_memmap() that caused it to litter emtpy entries into the end of the efi memory map. An empty entry causes efi_memmap_insert() to attempt more memmap splits / copies than efi_memmap_split_count() accounted for when sizing the new map. When that happens efi_memmap_insert() may overrun its allocation, and if you are lucky will spill over to an unmapped page leading to crash signature like the following rather than silent corruption: BUG: unable to handle page fault for address: ffffffffff281000 [..] RIP: 0010:efi_memmap_insert+0x11d/0x191 [..] Call Trace: ? bgrt_init+0xbe/0xbe ? efi_arch_mem_reserve+0x1cb/0x228 ? acpi_parse_bgrt+0xa/0xd ? acpi_table_parse+0x86/0xb8 ? acpi_boot_init+0x494/0x4e3 ? acpi_parse_x2apic+0x87/0x87 ? setup_acpi_sci+0xa2/0xa2 ? setup_arch+0x8db/0x9e1 ? start_kernel+0x6a/0x547 ? secondary_startup_64+0xb6/0xc0 Commitaf16489848
"x86/efi: Update e820 with reserved EFI boot services data to fix kexec breakage" introduced more occurrences where efi_memmap_insert() is invoked after an efi_fake_mem= configuration has been parsed. Previously the side effects of vestigial empty entries were benign, but with commitaf16489848
that follow-on efi_memmap_insert() invocation triggers efi_memmap_insert() overruns. Reported-by: Dave Young <dyoung@redhat.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20191231014630.GA24942@dhcp-128-65.nay.redhat.com Link: https://lore.kernel.org/r/20200113172245.27925-14-ardb@kernel.org
379 lines
9.9 KiB
C
379 lines
9.9 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Common EFI memory map functions.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "efi: " fmt
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/io.h>
|
|
#include <asm/early_ioremap.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/slab.h>
|
|
|
|
static phys_addr_t __init __efi_memmap_alloc_early(unsigned long size)
|
|
{
|
|
return memblock_phys_alloc(size, SMP_CACHE_BYTES);
|
|
}
|
|
|
|
static phys_addr_t __init __efi_memmap_alloc_late(unsigned long size)
|
|
{
|
|
unsigned int order = get_order(size);
|
|
struct page *p = alloc_pages(GFP_KERNEL, order);
|
|
|
|
if (!p)
|
|
return 0;
|
|
|
|
return PFN_PHYS(page_to_pfn(p));
|
|
}
|
|
|
|
void __init __efi_memmap_free(u64 phys, unsigned long size, unsigned long flags)
|
|
{
|
|
if (flags & EFI_MEMMAP_MEMBLOCK) {
|
|
if (slab_is_available())
|
|
memblock_free_late(phys, size);
|
|
else
|
|
memblock_free(phys, size);
|
|
} else if (flags & EFI_MEMMAP_SLAB) {
|
|
struct page *p = pfn_to_page(PHYS_PFN(phys));
|
|
unsigned int order = get_order(size);
|
|
|
|
free_pages((unsigned long) page_address(p), order);
|
|
}
|
|
}
|
|
|
|
static void __init efi_memmap_free(void)
|
|
{
|
|
__efi_memmap_free(efi.memmap.phys_map,
|
|
efi.memmap.desc_size * efi.memmap.nr_map,
|
|
efi.memmap.flags);
|
|
}
|
|
|
|
/**
|
|
* efi_memmap_alloc - Allocate memory for the EFI memory map
|
|
* @num_entries: Number of entries in the allocated map.
|
|
* @data: efi memmap installation parameters
|
|
*
|
|
* Depending on whether mm_init() has already been invoked or not,
|
|
* either memblock or "normal" page allocation is used.
|
|
*
|
|
* Returns the physical address of the allocated memory map on
|
|
* success, zero on failure.
|
|
*/
|
|
int __init efi_memmap_alloc(unsigned int num_entries,
|
|
struct efi_memory_map_data *data)
|
|
{
|
|
/* Expect allocation parameters are zero initialized */
|
|
WARN_ON(data->phys_map || data->size);
|
|
|
|
data->size = num_entries * efi.memmap.desc_size;
|
|
data->desc_version = efi.memmap.desc_version;
|
|
data->desc_size = efi.memmap.desc_size;
|
|
data->flags &= ~(EFI_MEMMAP_SLAB | EFI_MEMMAP_MEMBLOCK);
|
|
data->flags |= efi.memmap.flags & EFI_MEMMAP_LATE;
|
|
|
|
if (slab_is_available()) {
|
|
data->flags |= EFI_MEMMAP_SLAB;
|
|
data->phys_map = __efi_memmap_alloc_late(data->size);
|
|
} else {
|
|
data->flags |= EFI_MEMMAP_MEMBLOCK;
|
|
data->phys_map = __efi_memmap_alloc_early(data->size);
|
|
}
|
|
|
|
if (!data->phys_map)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* __efi_memmap_init - Common code for mapping the EFI memory map
|
|
* @data: EFI memory map data
|
|
*
|
|
* This function takes care of figuring out which function to use to
|
|
* map the EFI memory map in efi.memmap based on how far into the boot
|
|
* we are.
|
|
*
|
|
* During bootup EFI_MEMMAP_LATE in data->flags should be clear since we
|
|
* only have access to the early_memremap*() functions as the vmalloc
|
|
* space isn't setup. Once the kernel is fully booted we can fallback
|
|
* to the more robust memremap*() API.
|
|
*
|
|
* Returns zero on success, a negative error code on failure.
|
|
*/
|
|
static int __init __efi_memmap_init(struct efi_memory_map_data *data)
|
|
{
|
|
struct efi_memory_map map;
|
|
phys_addr_t phys_map;
|
|
|
|
if (efi_enabled(EFI_PARAVIRT))
|
|
return 0;
|
|
|
|
phys_map = data->phys_map;
|
|
|
|
if (data->flags & EFI_MEMMAP_LATE)
|
|
map.map = memremap(phys_map, data->size, MEMREMAP_WB);
|
|
else
|
|
map.map = early_memremap(phys_map, data->size);
|
|
|
|
if (!map.map) {
|
|
pr_err("Could not map the memory map!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* NOP if data->flags & (EFI_MEMMAP_MEMBLOCK | EFI_MEMMAP_SLAB) == 0 */
|
|
efi_memmap_free();
|
|
|
|
map.phys_map = data->phys_map;
|
|
map.nr_map = data->size / data->desc_size;
|
|
map.map_end = map.map + data->size;
|
|
|
|
map.desc_version = data->desc_version;
|
|
map.desc_size = data->desc_size;
|
|
map.flags = data->flags;
|
|
|
|
set_bit(EFI_MEMMAP, &efi.flags);
|
|
|
|
efi.memmap = map;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* efi_memmap_init_early - Map the EFI memory map data structure
|
|
* @data: EFI memory map data
|
|
*
|
|
* Use early_memremap() to map the passed in EFI memory map and assign
|
|
* it to efi.memmap.
|
|
*/
|
|
int __init efi_memmap_init_early(struct efi_memory_map_data *data)
|
|
{
|
|
/* Cannot go backwards */
|
|
WARN_ON(efi.memmap.flags & EFI_MEMMAP_LATE);
|
|
|
|
data->flags = 0;
|
|
return __efi_memmap_init(data);
|
|
}
|
|
|
|
void __init efi_memmap_unmap(void)
|
|
{
|
|
if (!efi_enabled(EFI_MEMMAP))
|
|
return;
|
|
|
|
if (!(efi.memmap.flags & EFI_MEMMAP_LATE)) {
|
|
unsigned long size;
|
|
|
|
size = efi.memmap.desc_size * efi.memmap.nr_map;
|
|
early_memunmap(efi.memmap.map, size);
|
|
} else {
|
|
memunmap(efi.memmap.map);
|
|
}
|
|
|
|
efi.memmap.map = NULL;
|
|
clear_bit(EFI_MEMMAP, &efi.flags);
|
|
}
|
|
|
|
/**
|
|
* efi_memmap_init_late - Map efi.memmap with memremap()
|
|
* @phys_addr: Physical address of the new EFI memory map
|
|
* @size: Size in bytes of the new EFI memory map
|
|
*
|
|
* Setup a mapping of the EFI memory map using ioremap_cache(). This
|
|
* function should only be called once the vmalloc space has been
|
|
* setup and is therefore not suitable for calling during early EFI
|
|
* initialise, e.g. in efi_init(). Additionally, it expects
|
|
* efi_memmap_init_early() to have already been called.
|
|
*
|
|
* The reason there are two EFI memmap initialisation
|
|
* (efi_memmap_init_early() and this late version) is because the
|
|
* early EFI memmap should be explicitly unmapped once EFI
|
|
* initialisation is complete as the fixmap space used to map the EFI
|
|
* memmap (via early_memremap()) is a scarce resource.
|
|
*
|
|
* This late mapping is intended to persist for the duration of
|
|
* runtime so that things like efi_mem_desc_lookup() and
|
|
* efi_mem_attributes() always work.
|
|
*
|
|
* Returns zero on success, a negative error code on failure.
|
|
*/
|
|
int __init efi_memmap_init_late(phys_addr_t addr, unsigned long size)
|
|
{
|
|
struct efi_memory_map_data data = {
|
|
.phys_map = addr,
|
|
.size = size,
|
|
.flags = EFI_MEMMAP_LATE,
|
|
};
|
|
|
|
/* Did we forget to unmap the early EFI memmap? */
|
|
WARN_ON(efi.memmap.map);
|
|
|
|
/* Were we already called? */
|
|
WARN_ON(efi.memmap.flags & EFI_MEMMAP_LATE);
|
|
|
|
/*
|
|
* It makes no sense to allow callers to register different
|
|
* values for the following fields. Copy them out of the
|
|
* existing early EFI memmap.
|
|
*/
|
|
data.desc_version = efi.memmap.desc_version;
|
|
data.desc_size = efi.memmap.desc_size;
|
|
|
|
return __efi_memmap_init(&data);
|
|
}
|
|
|
|
/**
|
|
* efi_memmap_install - Install a new EFI memory map in efi.memmap
|
|
* @ctx: map allocation parameters (address, size, flags)
|
|
*
|
|
* Unlike efi_memmap_init_*(), this function does not allow the caller
|
|
* to switch from early to late mappings. It simply uses the existing
|
|
* mapping function and installs the new memmap.
|
|
*
|
|
* Returns zero on success, a negative error code on failure.
|
|
*/
|
|
int __init efi_memmap_install(struct efi_memory_map_data *data)
|
|
{
|
|
efi_memmap_unmap();
|
|
|
|
return __efi_memmap_init(data);
|
|
}
|
|
|
|
/**
|
|
* efi_memmap_split_count - Count number of additional EFI memmap entries
|
|
* @md: EFI memory descriptor to split
|
|
* @range: Address range (start, end) to split around
|
|
*
|
|
* Returns the number of additional EFI memmap entries required to
|
|
* accomodate @range.
|
|
*/
|
|
int __init efi_memmap_split_count(efi_memory_desc_t *md, struct range *range)
|
|
{
|
|
u64 m_start, m_end;
|
|
u64 start, end;
|
|
int count = 0;
|
|
|
|
start = md->phys_addr;
|
|
end = start + (md->num_pages << EFI_PAGE_SHIFT) - 1;
|
|
|
|
/* modifying range */
|
|
m_start = range->start;
|
|
m_end = range->end;
|
|
|
|
if (m_start <= start) {
|
|
/* split into 2 parts */
|
|
if (start < m_end && m_end < end)
|
|
count++;
|
|
}
|
|
|
|
if (start < m_start && m_start < end) {
|
|
/* split into 3 parts */
|
|
if (m_end < end)
|
|
count += 2;
|
|
/* split into 2 parts */
|
|
if (end <= m_end)
|
|
count++;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* efi_memmap_insert - Insert a memory region in an EFI memmap
|
|
* @old_memmap: The existing EFI memory map structure
|
|
* @buf: Address of buffer to store new map
|
|
* @mem: Memory map entry to insert
|
|
*
|
|
* It is suggested that you call efi_memmap_split_count() first
|
|
* to see how large @buf needs to be.
|
|
*/
|
|
void __init efi_memmap_insert(struct efi_memory_map *old_memmap, void *buf,
|
|
struct efi_mem_range *mem)
|
|
{
|
|
u64 m_start, m_end, m_attr;
|
|
efi_memory_desc_t *md;
|
|
u64 start, end;
|
|
void *old, *new;
|
|
|
|
/* modifying range */
|
|
m_start = mem->range.start;
|
|
m_end = mem->range.end;
|
|
m_attr = mem->attribute;
|
|
|
|
/*
|
|
* The EFI memory map deals with regions in EFI_PAGE_SIZE
|
|
* units. Ensure that the region described by 'mem' is aligned
|
|
* correctly.
|
|
*/
|
|
if (!IS_ALIGNED(m_start, EFI_PAGE_SIZE) ||
|
|
!IS_ALIGNED(m_end + 1, EFI_PAGE_SIZE)) {
|
|
WARN_ON(1);
|
|
return;
|
|
}
|
|
|
|
for (old = old_memmap->map, new = buf;
|
|
old < old_memmap->map_end;
|
|
old += old_memmap->desc_size, new += old_memmap->desc_size) {
|
|
|
|
/* copy original EFI memory descriptor */
|
|
memcpy(new, old, old_memmap->desc_size);
|
|
md = new;
|
|
start = md->phys_addr;
|
|
end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
|
|
|
|
if (m_start <= start && end <= m_end)
|
|
md->attribute |= m_attr;
|
|
|
|
if (m_start <= start &&
|
|
(start < m_end && m_end < end)) {
|
|
/* first part */
|
|
md->attribute |= m_attr;
|
|
md->num_pages = (m_end - md->phys_addr + 1) >>
|
|
EFI_PAGE_SHIFT;
|
|
/* latter part */
|
|
new += old_memmap->desc_size;
|
|
memcpy(new, old, old_memmap->desc_size);
|
|
md = new;
|
|
md->phys_addr = m_end + 1;
|
|
md->num_pages = (end - md->phys_addr + 1) >>
|
|
EFI_PAGE_SHIFT;
|
|
}
|
|
|
|
if ((start < m_start && m_start < end) && m_end < end) {
|
|
/* first part */
|
|
md->num_pages = (m_start - md->phys_addr) >>
|
|
EFI_PAGE_SHIFT;
|
|
/* middle part */
|
|
new += old_memmap->desc_size;
|
|
memcpy(new, old, old_memmap->desc_size);
|
|
md = new;
|
|
md->attribute |= m_attr;
|
|
md->phys_addr = m_start;
|
|
md->num_pages = (m_end - m_start + 1) >>
|
|
EFI_PAGE_SHIFT;
|
|
/* last part */
|
|
new += old_memmap->desc_size;
|
|
memcpy(new, old, old_memmap->desc_size);
|
|
md = new;
|
|
md->phys_addr = m_end + 1;
|
|
md->num_pages = (end - m_end) >>
|
|
EFI_PAGE_SHIFT;
|
|
}
|
|
|
|
if ((start < m_start && m_start < end) &&
|
|
(end <= m_end)) {
|
|
/* first part */
|
|
md->num_pages = (m_start - md->phys_addr) >>
|
|
EFI_PAGE_SHIFT;
|
|
/* latter part */
|
|
new += old_memmap->desc_size;
|
|
memcpy(new, old, old_memmap->desc_size);
|
|
md = new;
|
|
md->phys_addr = m_start;
|
|
md->num_pages = (end - md->phys_addr + 1) >>
|
|
EFI_PAGE_SHIFT;
|
|
md->attribute |= m_attr;
|
|
}
|
|
}
|
|
}
|