mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-27 03:45:28 +07:00
380996aab5
Whilst discussing possible ways to trigger an invalidate_range on a userptr with an aliased GGTT mmapping (and so cause a struct_mutex deadlock), the conclusion is that we can, and we must, prevent any possible deadlock by avoiding taking the mutex at all during invalidate_range. This has numerous advantages all of which stem from avoid the sleeping function from inside the unknown context. In particular, it simplifies the invalidate_range because we no longer have to juggle the spinlock/mutex and can just hold the spinlock for the entire walk. To compensate, we have to make get_pages a bit more complicated in order to serialise with a pending cancel_userptr worker. As we hold the struct_mutex, we have no choice but to return EAGAIN and hope that the worker is then flushed before we retry after reacquiring the struct_mutex. The important caveat is that the invalidate_range itself is no longer synchronous. There exists a small but definite period in time in which the old PTE's page remain accessible via the GPU. Note however that the physical pages themselves are not invalidated by the mmu_notifier, just the CPU view of the address space. The impact should be limited to a delay in pages being flushed, rather than a possibility of writing to the wrong pages. The only race condition that this worsens is remapping an userptr active on the GPU where fresh work may still reference the old pages due to struct_mutex contention. Given that userspace is racing with the GPU, it is fair to say that the results are undefined. v2: Only queue (and importantly only take one refcnt) the worker once. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Michał Winiarski <michal.winiarski@intel.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
896 lines
24 KiB
C
896 lines
24 KiB
C
/*
|
|
* Copyright © 2012-2014 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include <drm/drmP.h>
|
|
#include <drm/i915_drm.h>
|
|
#include "i915_drv.h"
|
|
#include "i915_trace.h"
|
|
#include "intel_drv.h"
|
|
#include <linux/mmu_context.h>
|
|
#include <linux/mmu_notifier.h>
|
|
#include <linux/mempolicy.h>
|
|
#include <linux/swap.h>
|
|
|
|
struct i915_mm_struct {
|
|
struct mm_struct *mm;
|
|
struct drm_device *dev;
|
|
struct i915_mmu_notifier *mn;
|
|
struct hlist_node node;
|
|
struct kref kref;
|
|
struct work_struct work;
|
|
};
|
|
|
|
#if defined(CONFIG_MMU_NOTIFIER)
|
|
#include <linux/interval_tree.h>
|
|
|
|
struct i915_mmu_notifier {
|
|
spinlock_t lock;
|
|
struct hlist_node node;
|
|
struct mmu_notifier mn;
|
|
struct rb_root objects;
|
|
struct list_head linear;
|
|
bool has_linear;
|
|
};
|
|
|
|
struct i915_mmu_object {
|
|
struct i915_mmu_notifier *mn;
|
|
struct interval_tree_node it;
|
|
struct list_head link;
|
|
struct drm_i915_gem_object *obj;
|
|
struct work_struct work;
|
|
bool active;
|
|
bool is_linear;
|
|
};
|
|
|
|
static void __cancel_userptr__worker(struct work_struct *work)
|
|
{
|
|
struct i915_mmu_object *mo = container_of(work, typeof(*mo), work);
|
|
struct drm_i915_gem_object *obj = mo->obj;
|
|
struct drm_device *dev = obj->base.dev;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
/* Cancel any active worker and force us to re-evaluate gup */
|
|
obj->userptr.work = NULL;
|
|
|
|
if (obj->pages != NULL) {
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct i915_vma *vma, *tmp;
|
|
bool was_interruptible;
|
|
|
|
was_interruptible = dev_priv->mm.interruptible;
|
|
dev_priv->mm.interruptible = false;
|
|
|
|
list_for_each_entry_safe(vma, tmp, &obj->vma_list, vma_link) {
|
|
int ret = i915_vma_unbind(vma);
|
|
WARN_ON(ret && ret != -EIO);
|
|
}
|
|
WARN_ON(i915_gem_object_put_pages(obj));
|
|
|
|
dev_priv->mm.interruptible = was_interruptible;
|
|
}
|
|
|
|
drm_gem_object_unreference(&obj->base);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|
|
|
|
static unsigned long cancel_userptr(struct i915_mmu_object *mo)
|
|
{
|
|
unsigned long end = mo->obj->userptr.ptr + mo->obj->base.size;
|
|
|
|
/* The mmu_object is released late when destroying the
|
|
* GEM object so it is entirely possible to gain a
|
|
* reference on an object in the process of being freed
|
|
* since our serialisation is via the spinlock and not
|
|
* the struct_mutex - and consequently use it after it
|
|
* is freed and then double free it.
|
|
*/
|
|
if (mo->active && kref_get_unless_zero(&mo->obj->base.refcount)) {
|
|
schedule_work(&mo->work);
|
|
/* only schedule one work packet to avoid the refleak */
|
|
mo->active = false;
|
|
}
|
|
|
|
return end;
|
|
}
|
|
|
|
static void i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
|
|
struct mm_struct *mm,
|
|
unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
struct i915_mmu_notifier *mn =
|
|
container_of(_mn, struct i915_mmu_notifier, mn);
|
|
struct i915_mmu_object *mo;
|
|
|
|
/* interval ranges are inclusive, but invalidate range is exclusive */
|
|
end--;
|
|
|
|
spin_lock(&mn->lock);
|
|
if (mn->has_linear) {
|
|
list_for_each_entry(mo, &mn->linear, link) {
|
|
if (mo->it.last < start || mo->it.start > end)
|
|
continue;
|
|
|
|
cancel_userptr(mo);
|
|
}
|
|
} else {
|
|
struct interval_tree_node *it;
|
|
|
|
it = interval_tree_iter_first(&mn->objects, start, end);
|
|
while (it) {
|
|
mo = container_of(it, struct i915_mmu_object, it);
|
|
start = cancel_userptr(mo);
|
|
it = interval_tree_iter_next(it, start, end);
|
|
}
|
|
}
|
|
spin_unlock(&mn->lock);
|
|
}
|
|
|
|
static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
|
|
.invalidate_range_start = i915_gem_userptr_mn_invalidate_range_start,
|
|
};
|
|
|
|
static struct i915_mmu_notifier *
|
|
i915_mmu_notifier_create(struct mm_struct *mm)
|
|
{
|
|
struct i915_mmu_notifier *mn;
|
|
int ret;
|
|
|
|
mn = kmalloc(sizeof(*mn), GFP_KERNEL);
|
|
if (mn == NULL)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
spin_lock_init(&mn->lock);
|
|
mn->mn.ops = &i915_gem_userptr_notifier;
|
|
mn->objects = RB_ROOT;
|
|
INIT_LIST_HEAD(&mn->linear);
|
|
mn->has_linear = false;
|
|
|
|
/* Protected by mmap_sem (write-lock) */
|
|
ret = __mmu_notifier_register(&mn->mn, mm);
|
|
if (ret) {
|
|
kfree(mn);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
return mn;
|
|
}
|
|
|
|
static int
|
|
i915_mmu_notifier_add(struct drm_device *dev,
|
|
struct i915_mmu_notifier *mn,
|
|
struct i915_mmu_object *mo)
|
|
{
|
|
struct interval_tree_node *it;
|
|
int ret = 0;
|
|
|
|
/* By this point we have already done a lot of expensive setup that
|
|
* we do not want to repeat just because the caller (e.g. X) has a
|
|
* signal pending (and partly because of that expensive setup, X
|
|
* using an interrupt timer is likely to get stuck in an EINTR loop).
|
|
*/
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
/* Make sure we drop the final active reference (and thereby
|
|
* remove the objects from the interval tree) before we do
|
|
* the check for overlapping objects.
|
|
*/
|
|
i915_gem_retire_requests(dev);
|
|
|
|
spin_lock(&mn->lock);
|
|
it = interval_tree_iter_first(&mn->objects,
|
|
mo->it.start, mo->it.last);
|
|
if (it) {
|
|
struct drm_i915_gem_object *obj;
|
|
|
|
/* We only need to check the first object in the range as it
|
|
* either has cancelled gup work queued and we need to
|
|
* return back to the user to give time for the gup-workers
|
|
* to flush their object references upon which the object will
|
|
* be removed from the interval-tree, or the the range is
|
|
* still in use by another client and the overlap is invalid.
|
|
*
|
|
* If we do have an overlap, we cannot use the interval tree
|
|
* for fast range invalidation.
|
|
*/
|
|
|
|
obj = container_of(it, struct i915_mmu_object, it)->obj;
|
|
if (!obj->userptr.workers)
|
|
mn->has_linear = mo->is_linear = true;
|
|
else
|
|
ret = -EAGAIN;
|
|
} else
|
|
interval_tree_insert(&mo->it, &mn->objects);
|
|
|
|
if (ret == 0)
|
|
list_add(&mo->link, &mn->linear);
|
|
|
|
spin_unlock(&mn->lock);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool i915_mmu_notifier_has_linear(struct i915_mmu_notifier *mn)
|
|
{
|
|
struct i915_mmu_object *mo;
|
|
|
|
list_for_each_entry(mo, &mn->linear, link)
|
|
if (mo->is_linear)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
i915_mmu_notifier_del(struct i915_mmu_notifier *mn,
|
|
struct i915_mmu_object *mo)
|
|
{
|
|
spin_lock(&mn->lock);
|
|
list_del(&mo->link);
|
|
if (mo->is_linear)
|
|
mn->has_linear = i915_mmu_notifier_has_linear(mn);
|
|
else
|
|
interval_tree_remove(&mo->it, &mn->objects);
|
|
spin_unlock(&mn->lock);
|
|
}
|
|
|
|
static void
|
|
i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct i915_mmu_object *mo;
|
|
|
|
mo = obj->userptr.mmu_object;
|
|
if (mo == NULL)
|
|
return;
|
|
|
|
i915_mmu_notifier_del(mo->mn, mo);
|
|
kfree(mo);
|
|
|
|
obj->userptr.mmu_object = NULL;
|
|
}
|
|
|
|
static struct i915_mmu_notifier *
|
|
i915_mmu_notifier_find(struct i915_mm_struct *mm)
|
|
{
|
|
struct i915_mmu_notifier *mn = mm->mn;
|
|
|
|
mn = mm->mn;
|
|
if (mn)
|
|
return mn;
|
|
|
|
down_write(&mm->mm->mmap_sem);
|
|
mutex_lock(&to_i915(mm->dev)->mm_lock);
|
|
if ((mn = mm->mn) == NULL) {
|
|
mn = i915_mmu_notifier_create(mm->mm);
|
|
if (!IS_ERR(mn))
|
|
mm->mn = mn;
|
|
}
|
|
mutex_unlock(&to_i915(mm->dev)->mm_lock);
|
|
up_write(&mm->mm->mmap_sem);
|
|
|
|
return mn;
|
|
}
|
|
|
|
static int
|
|
i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
|
|
unsigned flags)
|
|
{
|
|
struct i915_mmu_notifier *mn;
|
|
struct i915_mmu_object *mo;
|
|
int ret;
|
|
|
|
if (flags & I915_USERPTR_UNSYNCHRONIZED)
|
|
return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;
|
|
|
|
if (WARN_ON(obj->userptr.mm == NULL))
|
|
return -EINVAL;
|
|
|
|
mn = i915_mmu_notifier_find(obj->userptr.mm);
|
|
if (IS_ERR(mn))
|
|
return PTR_ERR(mn);
|
|
|
|
mo = kzalloc(sizeof(*mo), GFP_KERNEL);
|
|
if (mo == NULL)
|
|
return -ENOMEM;
|
|
|
|
mo->mn = mn;
|
|
mo->it.start = obj->userptr.ptr;
|
|
mo->it.last = mo->it.start + obj->base.size - 1;
|
|
mo->obj = obj;
|
|
INIT_WORK(&mo->work, __cancel_userptr__worker);
|
|
|
|
ret = i915_mmu_notifier_add(obj->base.dev, mn, mo);
|
|
if (ret) {
|
|
kfree(mo);
|
|
return ret;
|
|
}
|
|
|
|
obj->userptr.mmu_object = mo;
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
|
|
struct mm_struct *mm)
|
|
{
|
|
if (mn == NULL)
|
|
return;
|
|
|
|
mmu_notifier_unregister(&mn->mn, mm);
|
|
kfree(mn);
|
|
}
|
|
|
|
#else
|
|
|
|
static void
|
|
i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
|
|
{
|
|
}
|
|
|
|
static int
|
|
i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
|
|
unsigned flags)
|
|
{
|
|
if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
|
|
return -ENODEV;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
|
|
struct mm_struct *mm)
|
|
{
|
|
}
|
|
|
|
#endif
|
|
|
|
static struct i915_mm_struct *
|
|
__i915_mm_struct_find(struct drm_i915_private *dev_priv, struct mm_struct *real)
|
|
{
|
|
struct i915_mm_struct *mm;
|
|
|
|
/* Protected by dev_priv->mm_lock */
|
|
hash_for_each_possible(dev_priv->mm_structs, mm, node, (unsigned long)real)
|
|
if (mm->mm == real)
|
|
return mm;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
|
|
struct i915_mm_struct *mm;
|
|
int ret = 0;
|
|
|
|
/* During release of the GEM object we hold the struct_mutex. This
|
|
* precludes us from calling mmput() at that time as that may be
|
|
* the last reference and so call exit_mmap(). exit_mmap() will
|
|
* attempt to reap the vma, and if we were holding a GTT mmap
|
|
* would then call drm_gem_vm_close() and attempt to reacquire
|
|
* the struct mutex. So in order to avoid that recursion, we have
|
|
* to defer releasing the mm reference until after we drop the
|
|
* struct_mutex, i.e. we need to schedule a worker to do the clean
|
|
* up.
|
|
*/
|
|
mutex_lock(&dev_priv->mm_lock);
|
|
mm = __i915_mm_struct_find(dev_priv, current->mm);
|
|
if (mm == NULL) {
|
|
mm = kmalloc(sizeof(*mm), GFP_KERNEL);
|
|
if (mm == NULL) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
kref_init(&mm->kref);
|
|
mm->dev = obj->base.dev;
|
|
|
|
mm->mm = current->mm;
|
|
atomic_inc(¤t->mm->mm_count);
|
|
|
|
mm->mn = NULL;
|
|
|
|
/* Protected by dev_priv->mm_lock */
|
|
hash_add(dev_priv->mm_structs,
|
|
&mm->node, (unsigned long)mm->mm);
|
|
} else
|
|
kref_get(&mm->kref);
|
|
|
|
obj->userptr.mm = mm;
|
|
out:
|
|
mutex_unlock(&dev_priv->mm_lock);
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
__i915_mm_struct_free__worker(struct work_struct *work)
|
|
{
|
|
struct i915_mm_struct *mm = container_of(work, typeof(*mm), work);
|
|
i915_mmu_notifier_free(mm->mn, mm->mm);
|
|
mmdrop(mm->mm);
|
|
kfree(mm);
|
|
}
|
|
|
|
static void
|
|
__i915_mm_struct_free(struct kref *kref)
|
|
{
|
|
struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref);
|
|
|
|
/* Protected by dev_priv->mm_lock */
|
|
hash_del(&mm->node);
|
|
mutex_unlock(&to_i915(mm->dev)->mm_lock);
|
|
|
|
INIT_WORK(&mm->work, __i915_mm_struct_free__worker);
|
|
schedule_work(&mm->work);
|
|
}
|
|
|
|
static void
|
|
i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj)
|
|
{
|
|
if (obj->userptr.mm == NULL)
|
|
return;
|
|
|
|
kref_put_mutex(&obj->userptr.mm->kref,
|
|
__i915_mm_struct_free,
|
|
&to_i915(obj->base.dev)->mm_lock);
|
|
obj->userptr.mm = NULL;
|
|
}
|
|
|
|
struct get_pages_work {
|
|
struct work_struct work;
|
|
struct drm_i915_gem_object *obj;
|
|
struct task_struct *task;
|
|
};
|
|
|
|
#if IS_ENABLED(CONFIG_SWIOTLB)
|
|
#define swiotlb_active() swiotlb_nr_tbl()
|
|
#else
|
|
#define swiotlb_active() 0
|
|
#endif
|
|
|
|
static int
|
|
st_set_pages(struct sg_table **st, struct page **pvec, int num_pages)
|
|
{
|
|
struct scatterlist *sg;
|
|
int ret, n;
|
|
|
|
*st = kmalloc(sizeof(**st), GFP_KERNEL);
|
|
if (*st == NULL)
|
|
return -ENOMEM;
|
|
|
|
if (swiotlb_active()) {
|
|
ret = sg_alloc_table(*st, num_pages, GFP_KERNEL);
|
|
if (ret)
|
|
goto err;
|
|
|
|
for_each_sg((*st)->sgl, sg, num_pages, n)
|
|
sg_set_page(sg, pvec[n], PAGE_SIZE, 0);
|
|
} else {
|
|
ret = sg_alloc_table_from_pages(*st, pvec, num_pages,
|
|
0, num_pages << PAGE_SHIFT,
|
|
GFP_KERNEL);
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
kfree(*st);
|
|
*st = NULL;
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
__i915_gem_userptr_set_pages(struct drm_i915_gem_object *obj,
|
|
struct page **pvec, int num_pages)
|
|
{
|
|
int ret;
|
|
|
|
ret = st_set_pages(&obj->pages, pvec, num_pages);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = i915_gem_gtt_prepare_object(obj);
|
|
if (ret) {
|
|
sg_free_table(obj->pages);
|
|
kfree(obj->pages);
|
|
obj->pages = NULL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
__i915_gem_userptr_set_active(struct drm_i915_gem_object *obj,
|
|
bool value)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* During mm_invalidate_range we need to cancel any userptr that
|
|
* overlaps the range being invalidated. Doing so requires the
|
|
* struct_mutex, and that risks recursion. In order to cause
|
|
* recursion, the user must alias the userptr address space with
|
|
* a GTT mmapping (possible with a MAP_FIXED) - then when we have
|
|
* to invalidate that mmaping, mm_invalidate_range is called with
|
|
* the userptr address *and* the struct_mutex held. To prevent that
|
|
* we set a flag under the i915_mmu_notifier spinlock to indicate
|
|
* whether this object is valid.
|
|
*/
|
|
#if defined(CONFIG_MMU_NOTIFIER)
|
|
if (obj->userptr.mmu_object == NULL)
|
|
return 0;
|
|
|
|
spin_lock(&obj->userptr.mmu_object->mn->lock);
|
|
/* In order to serialise get_pages with an outstanding
|
|
* cancel_userptr, we must drop the struct_mutex and try again.
|
|
*/
|
|
if (!value || !work_pending(&obj->userptr.mmu_object->work))
|
|
obj->userptr.mmu_object->active = value;
|
|
else
|
|
ret = -EAGAIN;
|
|
spin_unlock(&obj->userptr.mmu_object->mn->lock);
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
__i915_gem_userptr_get_pages_worker(struct work_struct *_work)
|
|
{
|
|
struct get_pages_work *work = container_of(_work, typeof(*work), work);
|
|
struct drm_i915_gem_object *obj = work->obj;
|
|
struct drm_device *dev = obj->base.dev;
|
|
const int npages = obj->base.size >> PAGE_SHIFT;
|
|
struct page **pvec;
|
|
int pinned, ret;
|
|
|
|
ret = -ENOMEM;
|
|
pinned = 0;
|
|
|
|
pvec = kmalloc(npages*sizeof(struct page *),
|
|
GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
|
|
if (pvec == NULL)
|
|
pvec = drm_malloc_ab(npages, sizeof(struct page *));
|
|
if (pvec != NULL) {
|
|
struct mm_struct *mm = obj->userptr.mm->mm;
|
|
|
|
down_read(&mm->mmap_sem);
|
|
while (pinned < npages) {
|
|
ret = get_user_pages(work->task, mm,
|
|
obj->userptr.ptr + pinned * PAGE_SIZE,
|
|
npages - pinned,
|
|
!obj->userptr.read_only, 0,
|
|
pvec + pinned, NULL);
|
|
if (ret < 0)
|
|
break;
|
|
|
|
pinned += ret;
|
|
}
|
|
up_read(&mm->mmap_sem);
|
|
}
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
if (obj->userptr.work == &work->work) {
|
|
if (pinned == npages) {
|
|
ret = __i915_gem_userptr_set_pages(obj, pvec, npages);
|
|
if (ret == 0) {
|
|
list_add_tail(&obj->global_list,
|
|
&to_i915(dev)->mm.unbound_list);
|
|
obj->get_page.sg = obj->pages->sgl;
|
|
obj->get_page.last = 0;
|
|
pinned = 0;
|
|
}
|
|
}
|
|
obj->userptr.work = ERR_PTR(ret);
|
|
if (ret)
|
|
__i915_gem_userptr_set_active(obj, false);
|
|
}
|
|
|
|
obj->userptr.workers--;
|
|
drm_gem_object_unreference(&obj->base);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
release_pages(pvec, pinned, 0);
|
|
drm_free_large(pvec);
|
|
|
|
put_task_struct(work->task);
|
|
kfree(work);
|
|
}
|
|
|
|
static int
|
|
__i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object *obj,
|
|
bool *active)
|
|
{
|
|
struct get_pages_work *work;
|
|
|
|
/* Spawn a worker so that we can acquire the
|
|
* user pages without holding our mutex. Access
|
|
* to the user pages requires mmap_sem, and we have
|
|
* a strict lock ordering of mmap_sem, struct_mutex -
|
|
* we already hold struct_mutex here and so cannot
|
|
* call gup without encountering a lock inversion.
|
|
*
|
|
* Userspace will keep on repeating the operation
|
|
* (thanks to EAGAIN) until either we hit the fast
|
|
* path or the worker completes. If the worker is
|
|
* cancelled or superseded, the task is still run
|
|
* but the results ignored. (This leads to
|
|
* complications that we may have a stray object
|
|
* refcount that we need to be wary of when
|
|
* checking for existing objects during creation.)
|
|
* If the worker encounters an error, it reports
|
|
* that error back to this function through
|
|
* obj->userptr.work = ERR_PTR.
|
|
*/
|
|
if (obj->userptr.workers >= I915_GEM_USERPTR_MAX_WORKERS)
|
|
return -EAGAIN;
|
|
|
|
work = kmalloc(sizeof(*work), GFP_KERNEL);
|
|
if (work == NULL)
|
|
return -ENOMEM;
|
|
|
|
obj->userptr.work = &work->work;
|
|
obj->userptr.workers++;
|
|
|
|
work->obj = obj;
|
|
drm_gem_object_reference(&obj->base);
|
|
|
|
work->task = current;
|
|
get_task_struct(work->task);
|
|
|
|
INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
|
|
schedule_work(&work->work);
|
|
|
|
*active = true;
|
|
return -EAGAIN;
|
|
}
|
|
|
|
static int
|
|
i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
|
|
{
|
|
const int num_pages = obj->base.size >> PAGE_SHIFT;
|
|
struct page **pvec;
|
|
int pinned, ret;
|
|
bool active;
|
|
|
|
/* If userspace should engineer that these pages are replaced in
|
|
* the vma between us binding this page into the GTT and completion
|
|
* of rendering... Their loss. If they change the mapping of their
|
|
* pages they need to create a new bo to point to the new vma.
|
|
*
|
|
* However, that still leaves open the possibility of the vma
|
|
* being copied upon fork. Which falls under the same userspace
|
|
* synchronisation issue as a regular bo, except that this time
|
|
* the process may not be expecting that a particular piece of
|
|
* memory is tied to the GPU.
|
|
*
|
|
* Fortunately, we can hook into the mmu_notifier in order to
|
|
* discard the page references prior to anything nasty happening
|
|
* to the vma (discard or cloning) which should prevent the more
|
|
* egregious cases from causing harm.
|
|
*/
|
|
if (IS_ERR(obj->userptr.work)) {
|
|
/* active flag will have been dropped already by the worker */
|
|
ret = PTR_ERR(obj->userptr.work);
|
|
obj->userptr.work = NULL;
|
|
return ret;
|
|
}
|
|
if (obj->userptr.work)
|
|
/* active flag should still be held for the pending work */
|
|
return -EAGAIN;
|
|
|
|
/* Let the mmu-notifier know that we have begun and need cancellation */
|
|
ret = __i915_gem_userptr_set_active(obj, true);
|
|
if (ret)
|
|
return ret;
|
|
|
|
pvec = NULL;
|
|
pinned = 0;
|
|
if (obj->userptr.mm->mm == current->mm) {
|
|
pvec = kmalloc(num_pages*sizeof(struct page *),
|
|
GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
|
|
if (pvec == NULL) {
|
|
pvec = drm_malloc_ab(num_pages, sizeof(struct page *));
|
|
if (pvec == NULL) {
|
|
__i915_gem_userptr_set_active(obj, false);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
pinned = __get_user_pages_fast(obj->userptr.ptr, num_pages,
|
|
!obj->userptr.read_only, pvec);
|
|
}
|
|
|
|
active = false;
|
|
if (pinned < 0)
|
|
ret = pinned, pinned = 0;
|
|
else if (pinned < num_pages)
|
|
ret = __i915_gem_userptr_get_pages_schedule(obj, &active);
|
|
else
|
|
ret = __i915_gem_userptr_set_pages(obj, pvec, num_pages);
|
|
if (ret) {
|
|
__i915_gem_userptr_set_active(obj, active);
|
|
release_pages(pvec, pinned, 0);
|
|
}
|
|
drm_free_large(pvec);
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct sg_page_iter sg_iter;
|
|
|
|
BUG_ON(obj->userptr.work != NULL);
|
|
__i915_gem_userptr_set_active(obj, false);
|
|
|
|
if (obj->madv != I915_MADV_WILLNEED)
|
|
obj->dirty = 0;
|
|
|
|
i915_gem_gtt_finish_object(obj);
|
|
|
|
for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
|
|
struct page *page = sg_page_iter_page(&sg_iter);
|
|
|
|
if (obj->dirty)
|
|
set_page_dirty(page);
|
|
|
|
mark_page_accessed(page);
|
|
page_cache_release(page);
|
|
}
|
|
obj->dirty = 0;
|
|
|
|
sg_free_table(obj->pages);
|
|
kfree(obj->pages);
|
|
}
|
|
|
|
static void
|
|
i915_gem_userptr_release(struct drm_i915_gem_object *obj)
|
|
{
|
|
i915_gem_userptr_release__mmu_notifier(obj);
|
|
i915_gem_userptr_release__mm_struct(obj);
|
|
}
|
|
|
|
static int
|
|
i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
|
|
{
|
|
if (obj->userptr.mmu_object)
|
|
return 0;
|
|
|
|
return i915_gem_userptr_init__mmu_notifier(obj, 0);
|
|
}
|
|
|
|
static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
|
|
.dmabuf_export = i915_gem_userptr_dmabuf_export,
|
|
.get_pages = i915_gem_userptr_get_pages,
|
|
.put_pages = i915_gem_userptr_put_pages,
|
|
.release = i915_gem_userptr_release,
|
|
};
|
|
|
|
/**
|
|
* Creates a new mm object that wraps some normal memory from the process
|
|
* context - user memory.
|
|
*
|
|
* We impose several restrictions upon the memory being mapped
|
|
* into the GPU.
|
|
* 1. It must be page aligned (both start/end addresses, i.e ptr and size).
|
|
* 2. It must be normal system memory, not a pointer into another map of IO
|
|
* space (e.g. it must not be a GTT mmapping of another object).
|
|
* 3. We only allow a bo as large as we could in theory map into the GTT,
|
|
* that is we limit the size to the total size of the GTT.
|
|
* 4. The bo is marked as being snoopable. The backing pages are left
|
|
* accessible directly by the CPU, but reads and writes by the GPU may
|
|
* incur the cost of a snoop (unless you have an LLC architecture).
|
|
*
|
|
* Synchronisation between multiple users and the GPU is left to userspace
|
|
* through the normal set-domain-ioctl. The kernel will enforce that the
|
|
* GPU relinquishes the VMA before it is returned back to the system
|
|
* i.e. upon free(), munmap() or process termination. However, the userspace
|
|
* malloc() library may not immediately relinquish the VMA after free() and
|
|
* instead reuse it whilst the GPU is still reading and writing to the VMA.
|
|
* Caveat emptor.
|
|
*
|
|
* Also note, that the object created here is not currently a "first class"
|
|
* object, in that several ioctls are banned. These are the CPU access
|
|
* ioctls: mmap(), pwrite and pread. In practice, you are expected to use
|
|
* direct access via your pointer rather than use those ioctls.
|
|
*
|
|
* If you think this is a good interface to use to pass GPU memory between
|
|
* drivers, please use dma-buf instead. In fact, wherever possible use
|
|
* dma-buf instead.
|
|
*/
|
|
int
|
|
i915_gem_userptr_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_userptr *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
u32 handle;
|
|
|
|
if (args->flags & ~(I915_USERPTR_READ_ONLY |
|
|
I915_USERPTR_UNSYNCHRONIZED))
|
|
return -EINVAL;
|
|
|
|
if (offset_in_page(args->user_ptr | args->user_size))
|
|
return -EINVAL;
|
|
|
|
if (!access_ok(args->flags & I915_USERPTR_READ_ONLY ? VERIFY_READ : VERIFY_WRITE,
|
|
(char __user *)(unsigned long)args->user_ptr, args->user_size))
|
|
return -EFAULT;
|
|
|
|
if (args->flags & I915_USERPTR_READ_ONLY) {
|
|
/* On almost all of the current hw, we cannot tell the GPU that a
|
|
* page is readonly, so this is just a placeholder in the uAPI.
|
|
*/
|
|
return -ENODEV;
|
|
}
|
|
|
|
obj = i915_gem_object_alloc(dev);
|
|
if (obj == NULL)
|
|
return -ENOMEM;
|
|
|
|
drm_gem_private_object_init(dev, &obj->base, args->user_size);
|
|
i915_gem_object_init(obj, &i915_gem_userptr_ops);
|
|
obj->cache_level = I915_CACHE_LLC;
|
|
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
|
|
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
|
|
|
|
obj->userptr.ptr = args->user_ptr;
|
|
obj->userptr.read_only = !!(args->flags & I915_USERPTR_READ_ONLY);
|
|
|
|
/* And keep a pointer to the current->mm for resolving the user pages
|
|
* at binding. This means that we need to hook into the mmu_notifier
|
|
* in order to detect if the mmu is destroyed.
|
|
*/
|
|
ret = i915_gem_userptr_init__mm_struct(obj);
|
|
if (ret == 0)
|
|
ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
|
|
if (ret == 0)
|
|
ret = drm_gem_handle_create(file, &obj->base, &handle);
|
|
|
|
/* drop reference from allocate - handle holds it now */
|
|
drm_gem_object_unreference_unlocked(&obj->base);
|
|
if (ret)
|
|
return ret;
|
|
|
|
args->handle = handle;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_init_userptr(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
mutex_init(&dev_priv->mm_lock);
|
|
hash_init(dev_priv->mm_structs);
|
|
return 0;
|
|
}
|