mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 08:59:52 +07:00
6b27edd74a
The get_stack_info() functionality is needed in the entry code for the #VC exception handler. Provide a version of it in the .text.noinstr section which can be called safely from there. Signed-off-by: Joerg Roedel <jroedel@suse.de> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20200907131613.12703-45-joro@8bytes.org
228 lines
6.9 KiB
C
228 lines
6.9 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
#include <linux/spinlock.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/kcore.h>
|
|
#include <linux/pgtable.h>
|
|
|
|
#include <asm/cpu_entry_area.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/desc.h>
|
|
|
|
static DEFINE_PER_CPU_PAGE_ALIGNED(struct entry_stack_page, entry_stack_storage);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
static DEFINE_PER_CPU_PAGE_ALIGNED(struct exception_stacks, exception_stacks);
|
|
DEFINE_PER_CPU(struct cea_exception_stacks*, cea_exception_stacks);
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_32
|
|
DECLARE_PER_CPU_PAGE_ALIGNED(struct doublefault_stack, doublefault_stack);
|
|
#endif
|
|
|
|
/* Is called from entry code, so must be noinstr */
|
|
noinstr struct cpu_entry_area *get_cpu_entry_area(int cpu)
|
|
{
|
|
unsigned long va = CPU_ENTRY_AREA_PER_CPU + cpu * CPU_ENTRY_AREA_SIZE;
|
|
BUILD_BUG_ON(sizeof(struct cpu_entry_area) % PAGE_SIZE != 0);
|
|
|
|
return (struct cpu_entry_area *) va;
|
|
}
|
|
EXPORT_SYMBOL(get_cpu_entry_area);
|
|
|
|
void cea_set_pte(void *cea_vaddr, phys_addr_t pa, pgprot_t flags)
|
|
{
|
|
unsigned long va = (unsigned long) cea_vaddr;
|
|
pte_t pte = pfn_pte(pa >> PAGE_SHIFT, flags);
|
|
|
|
/*
|
|
* The cpu_entry_area is shared between the user and kernel
|
|
* page tables. All of its ptes can safely be global.
|
|
* _PAGE_GLOBAL gets reused to help indicate PROT_NONE for
|
|
* non-present PTEs, so be careful not to set it in that
|
|
* case to avoid confusion.
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_PGE) &&
|
|
(pgprot_val(flags) & _PAGE_PRESENT))
|
|
pte = pte_set_flags(pte, _PAGE_GLOBAL);
|
|
|
|
set_pte_vaddr(va, pte);
|
|
}
|
|
|
|
static void __init
|
|
cea_map_percpu_pages(void *cea_vaddr, void *ptr, int pages, pgprot_t prot)
|
|
{
|
|
for ( ; pages; pages--, cea_vaddr+= PAGE_SIZE, ptr += PAGE_SIZE)
|
|
cea_set_pte(cea_vaddr, per_cpu_ptr_to_phys(ptr), prot);
|
|
}
|
|
|
|
static void __init percpu_setup_debug_store(unsigned int cpu)
|
|
{
|
|
#ifdef CONFIG_CPU_SUP_INTEL
|
|
unsigned int npages;
|
|
void *cea;
|
|
|
|
if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
|
|
return;
|
|
|
|
cea = &get_cpu_entry_area(cpu)->cpu_debug_store;
|
|
npages = sizeof(struct debug_store) / PAGE_SIZE;
|
|
BUILD_BUG_ON(sizeof(struct debug_store) % PAGE_SIZE != 0);
|
|
cea_map_percpu_pages(cea, &per_cpu(cpu_debug_store, cpu), npages,
|
|
PAGE_KERNEL);
|
|
|
|
cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers;
|
|
/*
|
|
* Force the population of PMDs for not yet allocated per cpu
|
|
* memory like debug store buffers.
|
|
*/
|
|
npages = sizeof(struct debug_store_buffers) / PAGE_SIZE;
|
|
for (; npages; npages--, cea += PAGE_SIZE)
|
|
cea_set_pte(cea, 0, PAGE_NONE);
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
|
|
#define cea_map_stack(name) do { \
|
|
npages = sizeof(estacks->name## _stack) / PAGE_SIZE; \
|
|
cea_map_percpu_pages(cea->estacks.name## _stack, \
|
|
estacks->name## _stack, npages, PAGE_KERNEL); \
|
|
} while (0)
|
|
|
|
static void __init percpu_setup_exception_stacks(unsigned int cpu)
|
|
{
|
|
struct exception_stacks *estacks = per_cpu_ptr(&exception_stacks, cpu);
|
|
struct cpu_entry_area *cea = get_cpu_entry_area(cpu);
|
|
unsigned int npages;
|
|
|
|
BUILD_BUG_ON(sizeof(exception_stacks) % PAGE_SIZE != 0);
|
|
|
|
per_cpu(cea_exception_stacks, cpu) = &cea->estacks;
|
|
|
|
/*
|
|
* The exceptions stack mappings in the per cpu area are protected
|
|
* by guard pages so each stack must be mapped separately. DB2 is
|
|
* not mapped; it just exists to catch triple nesting of #DB.
|
|
*/
|
|
cea_map_stack(DF);
|
|
cea_map_stack(NMI);
|
|
cea_map_stack(DB);
|
|
cea_map_stack(MCE);
|
|
}
|
|
#else
|
|
static inline void percpu_setup_exception_stacks(unsigned int cpu)
|
|
{
|
|
struct cpu_entry_area *cea = get_cpu_entry_area(cpu);
|
|
|
|
cea_map_percpu_pages(&cea->doublefault_stack,
|
|
&per_cpu(doublefault_stack, cpu), 1, PAGE_KERNEL);
|
|
}
|
|
#endif
|
|
|
|
/* Setup the fixmap mappings only once per-processor */
|
|
static void __init setup_cpu_entry_area(unsigned int cpu)
|
|
{
|
|
struct cpu_entry_area *cea = get_cpu_entry_area(cpu);
|
|
#ifdef CONFIG_X86_64
|
|
/* On 64-bit systems, we use a read-only fixmap GDT and TSS. */
|
|
pgprot_t gdt_prot = PAGE_KERNEL_RO;
|
|
pgprot_t tss_prot = PAGE_KERNEL_RO;
|
|
#else
|
|
/*
|
|
* On native 32-bit systems, the GDT cannot be read-only because
|
|
* our double fault handler uses a task gate, and entering through
|
|
* a task gate needs to change an available TSS to busy. If the
|
|
* GDT is read-only, that will triple fault. The TSS cannot be
|
|
* read-only because the CPU writes to it on task switches.
|
|
*
|
|
* On Xen PV, the GDT must be read-only because the hypervisor
|
|
* requires it.
|
|
*/
|
|
pgprot_t gdt_prot = boot_cpu_has(X86_FEATURE_XENPV) ?
|
|
PAGE_KERNEL_RO : PAGE_KERNEL;
|
|
pgprot_t tss_prot = PAGE_KERNEL;
|
|
#endif
|
|
|
|
cea_set_pte(&cea->gdt, get_cpu_gdt_paddr(cpu), gdt_prot);
|
|
|
|
cea_map_percpu_pages(&cea->entry_stack_page,
|
|
per_cpu_ptr(&entry_stack_storage, cpu), 1,
|
|
PAGE_KERNEL);
|
|
|
|
/*
|
|
* The Intel SDM says (Volume 3, 7.2.1):
|
|
*
|
|
* Avoid placing a page boundary in the part of the TSS that the
|
|
* processor reads during a task switch (the first 104 bytes). The
|
|
* processor may not correctly perform address translations if a
|
|
* boundary occurs in this area. During a task switch, the processor
|
|
* reads and writes into the first 104 bytes of each TSS (using
|
|
* contiguous physical addresses beginning with the physical address
|
|
* of the first byte of the TSS). So, after TSS access begins, if
|
|
* part of the 104 bytes is not physically contiguous, the processor
|
|
* will access incorrect information without generating a page-fault
|
|
* exception.
|
|
*
|
|
* There are also a lot of errata involving the TSS spanning a page
|
|
* boundary. Assert that we're not doing that.
|
|
*/
|
|
BUILD_BUG_ON((offsetof(struct tss_struct, x86_tss) ^
|
|
offsetofend(struct tss_struct, x86_tss)) & PAGE_MASK);
|
|
BUILD_BUG_ON(sizeof(struct tss_struct) % PAGE_SIZE != 0);
|
|
/*
|
|
* VMX changes the host TR limit to 0x67 after a VM exit. This is
|
|
* okay, since 0x67 covers the size of struct x86_hw_tss. Make sure
|
|
* that this is correct.
|
|
*/
|
|
BUILD_BUG_ON(offsetof(struct tss_struct, x86_tss) != 0);
|
|
BUILD_BUG_ON(sizeof(struct x86_hw_tss) != 0x68);
|
|
|
|
cea_map_percpu_pages(&cea->tss, &per_cpu(cpu_tss_rw, cpu),
|
|
sizeof(struct tss_struct) / PAGE_SIZE, tss_prot);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
per_cpu(cpu_entry_area, cpu) = cea;
|
|
#endif
|
|
|
|
percpu_setup_exception_stacks(cpu);
|
|
|
|
percpu_setup_debug_store(cpu);
|
|
}
|
|
|
|
static __init void setup_cpu_entry_area_ptes(void)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
unsigned long start, end;
|
|
|
|
/* The +1 is for the readonly IDT: */
|
|
BUILD_BUG_ON((CPU_ENTRY_AREA_PAGES+1)*PAGE_SIZE != CPU_ENTRY_AREA_MAP_SIZE);
|
|
BUILD_BUG_ON(CPU_ENTRY_AREA_TOTAL_SIZE != CPU_ENTRY_AREA_MAP_SIZE);
|
|
BUG_ON(CPU_ENTRY_AREA_BASE & ~PMD_MASK);
|
|
|
|
start = CPU_ENTRY_AREA_BASE;
|
|
end = start + CPU_ENTRY_AREA_MAP_SIZE;
|
|
|
|
/* Careful here: start + PMD_SIZE might wrap around */
|
|
for (; start < end && start >= CPU_ENTRY_AREA_BASE; start += PMD_SIZE)
|
|
populate_extra_pte(start);
|
|
#endif
|
|
}
|
|
|
|
void __init setup_cpu_entry_areas(void)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
setup_cpu_entry_area_ptes();
|
|
|
|
for_each_possible_cpu(cpu)
|
|
setup_cpu_entry_area(cpu);
|
|
|
|
/*
|
|
* This is the last essential update to swapper_pgdir which needs
|
|
* to be synchronized to initial_page_table on 32bit.
|
|
*/
|
|
sync_initial_page_table();
|
|
}
|