linux_dsm_epyc7002/sound/pci/emu10k1/p16v.c
Kees Cook 42bc47b353 treewide: Use array_size() in vmalloc()
The vmalloc() function has no 2-factor argument form, so multiplication
factors need to be wrapped in array_size(). This patch replaces cases of:

        vmalloc(a * b)

with:
        vmalloc(array_size(a, b))

as well as handling cases of:

        vmalloc(a * b * c)

with:

        vmalloc(array3_size(a, b, c))

This does, however, attempt to ignore constant size factors like:

        vmalloc(4 * 1024)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
  vmalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  vmalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
  vmalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
  vmalloc(
-	sizeof(TYPE) * (COUNT_ID)
+	array_size(COUNT_ID, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * COUNT_ID
+	array_size(COUNT_ID, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * (COUNT_CONST)
+	array_size(COUNT_CONST, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * COUNT_CONST
+	array_size(COUNT_CONST, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(THING) * (COUNT_ID)
+	array_size(COUNT_ID, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * COUNT_ID
+	array_size(COUNT_ID, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * (COUNT_CONST)
+	array_size(COUNT_CONST, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * COUNT_CONST
+	array_size(COUNT_CONST, sizeof(THING))
  , ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

  vmalloc(
-	SIZE * COUNT
+	array_size(COUNT, SIZE)
  , ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
  vmalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
  vmalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  vmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  vmalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  vmalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  vmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  vmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
  vmalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)

// Any remaining multi-factor products, first at least 3-factor products
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
  vmalloc(C1 * C2 * C3, ...)
|
  vmalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)

// And then all remaining 2 factors products when they're not all constants.
@@
expression E1, E2;
constant C1, C2;
@@

(
  vmalloc(C1 * C2, ...)
|
  vmalloc(
-	E1 * E2
+	array_size(E1, E2)
  , ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 16:19:22 -07:00

910 lines
28 KiB
C

/*
* Copyright (c) by James Courtier-Dutton <James@superbug.demon.co.uk>
* Driver p16v chips
* Version: 0.25
*
* FEATURES currently supported:
* Output fixed at S32_LE, 2 channel to hw:0,0
* Rates: 44.1, 48, 96, 192.
*
* Changelog:
* 0.8
* Use separate card based buffer for periods table.
* 0.9
* Use 2 channel output streams instead of 8 channel.
* (8 channel output streams might be good for ASIO type output)
* Corrected speaker output, so Front -> Front etc.
* 0.10
* Fixed missed interrupts.
* 0.11
* Add Sound card model number and names.
* Add Analog volume controls.
* 0.12
* Corrected playback interrupts. Now interrupt per period, instead of half period.
* 0.13
* Use single trigger for multichannel.
* 0.14
* Mic capture now works at fixed: S32_LE, 96000Hz, Stereo.
* 0.15
* Force buffer_size / period_size == INTEGER.
* 0.16
* Update p16v.c to work with changed alsa api.
* 0.17
* Update p16v.c to work with changed alsa api. Removed boot_devs.
* 0.18
* Merging with snd-emu10k1 driver.
* 0.19
* One stereo channel at 24bit now works.
* 0.20
* Added better register defines.
* 0.21
* Integrated with snd-emu10k1 driver.
* 0.22
* Removed #if 0 ... #endif
* 0.23
* Implement different capture rates.
* 0.24
* Implement different capture source channels.
* e.g. When HD Capture source is set to SPDIF,
* setting HD Capture channel to 0 captures from CDROM digital input.
* setting HD Capture channel to 1 captures from SPDIF in.
* 0.25
* Include capture buffer sizes.
*
* BUGS:
* Some stability problems when unloading the snd-p16v kernel module.
* --
*
* TODO:
* SPDIF out.
* Find out how to change capture sample rates. E.g. To record SPDIF at 48000Hz.
* Currently capture fixed at 48000Hz.
*
* --
* GENERAL INFO:
* Model: SB0240
* P16V Chip: CA0151-DBS
* Audigy 2 Chip: CA0102-IAT
* AC97 Codec: STAC 9721
* ADC: Philips 1361T (Stereo 24bit)
* DAC: CS4382-K (8-channel, 24bit, 192Khz)
*
* This code was initially based on code from ALSA's emu10k1x.c which is:
* Copyright (c) by Francisco Moraes <fmoraes@nc.rr.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/moduleparam.h>
#include <sound/core.h>
#include <sound/initval.h>
#include <sound/pcm.h>
#include <sound/ac97_codec.h>
#include <sound/info.h>
#include <sound/tlv.h>
#include <sound/emu10k1.h>
#include "p16v.h"
#define SET_CHANNEL 0 /* Testing channel outputs 0=Front, 1=Center/LFE, 2=Unknown, 3=Rear */
#define PCM_FRONT_CHANNEL 0
#define PCM_REAR_CHANNEL 1
#define PCM_CENTER_LFE_CHANNEL 2
#define PCM_SIDE_CHANNEL 3
#define CONTROL_FRONT_CHANNEL 0
#define CONTROL_REAR_CHANNEL 3
#define CONTROL_CENTER_LFE_CHANNEL 1
#define CONTROL_SIDE_CHANNEL 2
/* Card IDs:
* Class 0401: 1102:0004 (rev 04) Subsystem: 1102:2002 -> Audigy2 ZS 7.1 Model:SB0350
* Class 0401: 1102:0004 (rev 04) Subsystem: 1102:1007 -> Audigy2 6.1 Model:SB0240
* Class 0401: 1102:0004 (rev 04) Subsystem: 1102:1002 -> Audigy2 Platinum Model:SB msb0240230009266
* Class 0401: 1102:0004 (rev 04) Subsystem: 1102:2007 -> Audigy4 Pro Model:SB0380 M1SB0380472001901E
*
*/
/* hardware definition */
static const struct snd_pcm_hardware snd_p16v_playback_hw = {
.info = SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_RESUME |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_SYNC_START,
.formats = SNDRV_PCM_FMTBIT_S32_LE, /* Only supports 24-bit samples padded to 32 bits. */
.rates = SNDRV_PCM_RATE_192000 | SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_44100,
.rate_min = 44100,
.rate_max = 192000,
.channels_min = 8,
.channels_max = 8,
.buffer_bytes_max = ((65536 - 64) * 8),
.period_bytes_min = 64,
.period_bytes_max = (65536 - 64),
.periods_min = 2,
.periods_max = 8,
.fifo_size = 0,
};
static const struct snd_pcm_hardware snd_p16v_capture_hw = {
.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_RESUME |
SNDRV_PCM_INFO_MMAP_VALID),
.formats = SNDRV_PCM_FMTBIT_S32_LE,
.rates = SNDRV_PCM_RATE_192000 | SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_44100,
.rate_min = 44100,
.rate_max = 192000,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = (65536 - 64),
.period_bytes_min = 64,
.period_bytes_max = (65536 - 128) >> 1, /* size has to be N*64 bytes */
.periods_min = 2,
.periods_max = 2,
.fifo_size = 0,
};
static void snd_p16v_pcm_free_substream(struct snd_pcm_runtime *runtime)
{
struct snd_emu10k1_pcm *epcm = runtime->private_data;
kfree(epcm);
}
/* open_playback callback */
static int snd_p16v_pcm_open_playback_channel(struct snd_pcm_substream *substream, int channel_id)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_emu10k1_voice *channel = &(emu->p16v_voices[channel_id]);
struct snd_emu10k1_pcm *epcm;
struct snd_pcm_runtime *runtime = substream->runtime;
int err;
epcm = kzalloc(sizeof(*epcm), GFP_KERNEL);
/* dev_dbg(emu->card->dev, "epcm kcalloc: %p\n", epcm); */
if (epcm == NULL)
return -ENOMEM;
epcm->emu = emu;
epcm->substream = substream;
/*
dev_dbg(emu->card->dev, "epcm device=%d, channel_id=%d\n",
substream->pcm->device, channel_id);
*/
runtime->private_data = epcm;
runtime->private_free = snd_p16v_pcm_free_substream;
runtime->hw = snd_p16v_playback_hw;
channel->emu = emu;
channel->number = channel_id;
channel->use=1;
#if 0 /* debug */
dev_dbg(emu->card->dev,
"p16v: open channel_id=%d, channel=%p, use=0x%x\n",
channel_id, channel, channel->use);
dev_dbg(emu->card->dev, "open:channel_id=%d, chip=%p, channel=%p\n",
channel_id, chip, channel);
#endif /* debug */
/* channel->interrupt = snd_p16v_pcm_channel_interrupt; */
channel->epcm = epcm;
if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
return err;
runtime->sync.id32[0] = substream->pcm->card->number;
runtime->sync.id32[1] = 'P';
runtime->sync.id32[2] = 16;
runtime->sync.id32[3] = 'V';
return 0;
}
/* open_capture callback */
static int snd_p16v_pcm_open_capture_channel(struct snd_pcm_substream *substream, int channel_id)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_emu10k1_voice *channel = &(emu->p16v_capture_voice);
struct snd_emu10k1_pcm *epcm;
struct snd_pcm_runtime *runtime = substream->runtime;
int err;
epcm = kzalloc(sizeof(*epcm), GFP_KERNEL);
/* dev_dbg(emu->card->dev, "epcm kcalloc: %p\n", epcm); */
if (epcm == NULL)
return -ENOMEM;
epcm->emu = emu;
epcm->substream = substream;
/*
dev_dbg(emu->card->dev, "epcm device=%d, channel_id=%d\n",
substream->pcm->device, channel_id);
*/
runtime->private_data = epcm;
runtime->private_free = snd_p16v_pcm_free_substream;
runtime->hw = snd_p16v_capture_hw;
channel->emu = emu;
channel->number = channel_id;
channel->use=1;
#if 0 /* debug */
dev_dbg(emu->card->dev,
"p16v: open channel_id=%d, channel=%p, use=0x%x\n",
channel_id, channel, channel->use);
dev_dbg(emu->card->dev, "open:channel_id=%d, chip=%p, channel=%p\n",
channel_id, chip, channel);
#endif /* debug */
/* channel->interrupt = snd_p16v_pcm_channel_interrupt; */
channel->epcm = epcm;
if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
return err;
return 0;
}
/* close callback */
static int snd_p16v_pcm_close_playback(struct snd_pcm_substream *substream)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
//struct snd_pcm_runtime *runtime = substream->runtime;
//struct snd_emu10k1_pcm *epcm = runtime->private_data;
emu->p16v_voices[substream->pcm->device - emu->p16v_device_offset].use = 0;
/* FIXME: maybe zero others */
return 0;
}
/* close callback */
static int snd_p16v_pcm_close_capture(struct snd_pcm_substream *substream)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
//struct snd_pcm_runtime *runtime = substream->runtime;
//struct snd_emu10k1_pcm *epcm = runtime->private_data;
emu->p16v_capture_voice.use = 0;
/* FIXME: maybe zero others */
return 0;
}
static int snd_p16v_pcm_open_playback_front(struct snd_pcm_substream *substream)
{
return snd_p16v_pcm_open_playback_channel(substream, PCM_FRONT_CHANNEL);
}
static int snd_p16v_pcm_open_capture(struct snd_pcm_substream *substream)
{
// Only using channel 0 for now, but the card has 2 channels.
return snd_p16v_pcm_open_capture_channel(substream, 0);
}
/* hw_params callback */
static int snd_p16v_pcm_hw_params_playback(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
return snd_pcm_lib_malloc_pages(substream,
params_buffer_bytes(hw_params));
}
/* hw_params callback */
static int snd_p16v_pcm_hw_params_capture(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
return snd_pcm_lib_malloc_pages(substream,
params_buffer_bytes(hw_params));
}
/* hw_free callback */
static int snd_p16v_pcm_hw_free_playback(struct snd_pcm_substream *substream)
{
return snd_pcm_lib_free_pages(substream);
}
/* hw_free callback */
static int snd_p16v_pcm_hw_free_capture(struct snd_pcm_substream *substream)
{
return snd_pcm_lib_free_pages(substream);
}
/* prepare playback callback */
static int snd_p16v_pcm_prepare_playback(struct snd_pcm_substream *substream)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
int channel = substream->pcm->device - emu->p16v_device_offset;
u32 *table_base = (u32 *)(emu->p16v_buffer.area+(8*16*channel));
u32 period_size_bytes = frames_to_bytes(runtime, runtime->period_size);
int i;
u32 tmp;
#if 0 /* debug */
dev_dbg(emu->card->dev,
"prepare:channel_number=%d, rate=%d, "
"format=0x%x, channels=%d, buffer_size=%ld, "
"period_size=%ld, periods=%u, frames_to_bytes=%d\n",
channel, runtime->rate, runtime->format, runtime->channels,
runtime->buffer_size, runtime->period_size,
runtime->periods, frames_to_bytes(runtime, 1));
dev_dbg(emu->card->dev,
"dma_addr=%x, dma_area=%p, table_base=%p\n",
runtime->dma_addr, runtime->dma_area, table_base);
dev_dbg(emu->card->dev,
"dma_addr=%x, dma_area=%p, dma_bytes(size)=%x\n",
emu->p16v_buffer.addr, emu->p16v_buffer.area,
emu->p16v_buffer.bytes);
#endif /* debug */
tmp = snd_emu10k1_ptr_read(emu, A_SPDIF_SAMPLERATE, channel);
switch (runtime->rate) {
case 44100:
snd_emu10k1_ptr_write(emu, A_SPDIF_SAMPLERATE, channel, (tmp & ~0xe0e0) | 0x8080);
break;
case 96000:
snd_emu10k1_ptr_write(emu, A_SPDIF_SAMPLERATE, channel, (tmp & ~0xe0e0) | 0x4040);
break;
case 192000:
snd_emu10k1_ptr_write(emu, A_SPDIF_SAMPLERATE, channel, (tmp & ~0xe0e0) | 0x2020);
break;
case 48000:
default:
snd_emu10k1_ptr_write(emu, A_SPDIF_SAMPLERATE, channel, (tmp & ~0xe0e0) | 0x0000);
break;
}
/* FIXME: Check emu->buffer.size before actually writing to it. */
for(i = 0; i < runtime->periods; i++) {
table_base[i*2]=runtime->dma_addr+(i*period_size_bytes);
table_base[(i*2)+1]=period_size_bytes<<16;
}
snd_emu10k1_ptr20_write(emu, PLAYBACK_LIST_ADDR, channel, emu->p16v_buffer.addr+(8*16*channel));
snd_emu10k1_ptr20_write(emu, PLAYBACK_LIST_SIZE, channel, (runtime->periods - 1) << 19);
snd_emu10k1_ptr20_write(emu, PLAYBACK_LIST_PTR, channel, 0);
snd_emu10k1_ptr20_write(emu, PLAYBACK_DMA_ADDR, channel, runtime->dma_addr);
//snd_emu10k1_ptr20_write(emu, PLAYBACK_PERIOD_SIZE, channel, frames_to_bytes(runtime, runtime->period_size)<<16); // buffer size in bytes
snd_emu10k1_ptr20_write(emu, PLAYBACK_PERIOD_SIZE, channel, 0); // buffer size in bytes
snd_emu10k1_ptr20_write(emu, PLAYBACK_POINTER, channel, 0);
snd_emu10k1_ptr20_write(emu, 0x07, channel, 0x0);
snd_emu10k1_ptr20_write(emu, 0x08, channel, 0);
return 0;
}
/* prepare capture callback */
static int snd_p16v_pcm_prepare_capture(struct snd_pcm_substream *substream)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
int channel = substream->pcm->device - emu->p16v_device_offset;
u32 tmp;
/*
dev_dbg(emu->card->dev, "prepare capture:channel_number=%d, rate=%d, "
"format=0x%x, channels=%d, buffer_size=%ld, period_size=%ld, "
"frames_to_bytes=%d\n",
channel, runtime->rate, runtime->format, runtime->channels,
runtime->buffer_size, runtime->period_size,
frames_to_bytes(runtime, 1));
*/
tmp = snd_emu10k1_ptr_read(emu, A_SPDIF_SAMPLERATE, channel);
switch (runtime->rate) {
case 44100:
snd_emu10k1_ptr_write(emu, A_SPDIF_SAMPLERATE, channel, (tmp & ~0x0e00) | 0x0800);
break;
case 96000:
snd_emu10k1_ptr_write(emu, A_SPDIF_SAMPLERATE, channel, (tmp & ~0x0e00) | 0x0400);
break;
case 192000:
snd_emu10k1_ptr_write(emu, A_SPDIF_SAMPLERATE, channel, (tmp & ~0x0e00) | 0x0200);
break;
case 48000:
default:
snd_emu10k1_ptr_write(emu, A_SPDIF_SAMPLERATE, channel, (tmp & ~0x0e00) | 0x0000);
break;
}
/* FIXME: Check emu->buffer.size before actually writing to it. */
snd_emu10k1_ptr20_write(emu, 0x13, channel, 0);
snd_emu10k1_ptr20_write(emu, CAPTURE_DMA_ADDR, channel, runtime->dma_addr);
snd_emu10k1_ptr20_write(emu, CAPTURE_BUFFER_SIZE, channel, frames_to_bytes(runtime, runtime->buffer_size) << 16); // buffer size in bytes
snd_emu10k1_ptr20_write(emu, CAPTURE_POINTER, channel, 0);
//snd_emu10k1_ptr20_write(emu, CAPTURE_SOURCE, 0x0, 0x333300e4); /* Select MIC or Line in */
//snd_emu10k1_ptr20_write(emu, EXTENDED_INT_MASK, 0, snd_emu10k1_ptr20_read(emu, EXTENDED_INT_MASK, 0) | (0x110000<<channel));
return 0;
}
static void snd_p16v_intr_enable(struct snd_emu10k1 *emu, unsigned int intrenb)
{
unsigned long flags;
unsigned int enable;
spin_lock_irqsave(&emu->emu_lock, flags);
enable = inl(emu->port + INTE2) | intrenb;
outl(enable, emu->port + INTE2);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
static void snd_p16v_intr_disable(struct snd_emu10k1 *emu, unsigned int intrenb)
{
unsigned long flags;
unsigned int disable;
spin_lock_irqsave(&emu->emu_lock, flags);
disable = inl(emu->port + INTE2) & (~intrenb);
outl(disable, emu->port + INTE2);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
/* trigger_playback callback */
static int snd_p16v_pcm_trigger_playback(struct snd_pcm_substream *substream,
int cmd)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime;
struct snd_emu10k1_pcm *epcm;
int channel;
int result = 0;
struct snd_pcm_substream *s;
u32 basic = 0;
u32 inte = 0;
int running = 0;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
running=1;
break;
case SNDRV_PCM_TRIGGER_STOP:
default:
running = 0;
break;
}
snd_pcm_group_for_each_entry(s, substream) {
if (snd_pcm_substream_chip(s) != emu ||
s->stream != SNDRV_PCM_STREAM_PLAYBACK)
continue;
runtime = s->runtime;
epcm = runtime->private_data;
channel = substream->pcm->device-emu->p16v_device_offset;
/* dev_dbg(emu->card->dev, "p16v channel=%d\n", channel); */
epcm->running = running;
basic |= (0x1<<channel);
inte |= (INTE2_PLAYBACK_CH_0_LOOP<<channel);
snd_pcm_trigger_done(s, substream);
}
/* dev_dbg(emu->card->dev, "basic=0x%x, inte=0x%x\n", basic, inte); */
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
snd_p16v_intr_enable(emu, inte);
snd_emu10k1_ptr20_write(emu, BASIC_INTERRUPT, 0, snd_emu10k1_ptr20_read(emu, BASIC_INTERRUPT, 0)| (basic));
break;
case SNDRV_PCM_TRIGGER_STOP:
snd_emu10k1_ptr20_write(emu, BASIC_INTERRUPT, 0, snd_emu10k1_ptr20_read(emu, BASIC_INTERRUPT, 0) & ~(basic));
snd_p16v_intr_disable(emu, inte);
break;
default:
result = -EINVAL;
break;
}
return result;
}
/* trigger_capture callback */
static int snd_p16v_pcm_trigger_capture(struct snd_pcm_substream *substream,
int cmd)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_emu10k1_pcm *epcm = runtime->private_data;
int channel = 0;
int result = 0;
u32 inte = INTE2_CAPTURE_CH_0_LOOP | INTE2_CAPTURE_CH_0_HALF_LOOP;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
snd_p16v_intr_enable(emu, inte);
snd_emu10k1_ptr20_write(emu, BASIC_INTERRUPT, 0, snd_emu10k1_ptr20_read(emu, BASIC_INTERRUPT, 0)|(0x100<<channel));
epcm->running = 1;
break;
case SNDRV_PCM_TRIGGER_STOP:
snd_emu10k1_ptr20_write(emu, BASIC_INTERRUPT, 0, snd_emu10k1_ptr20_read(emu, BASIC_INTERRUPT, 0) & ~(0x100<<channel));
snd_p16v_intr_disable(emu, inte);
//snd_emu10k1_ptr20_write(emu, EXTENDED_INT_MASK, 0, snd_emu10k1_ptr20_read(emu, EXTENDED_INT_MASK, 0) & ~(0x110000<<channel));
epcm->running = 0;
break;
default:
result = -EINVAL;
break;
}
return result;
}
/* pointer_playback callback */
static snd_pcm_uframes_t
snd_p16v_pcm_pointer_playback(struct snd_pcm_substream *substream)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_emu10k1_pcm *epcm = runtime->private_data;
snd_pcm_uframes_t ptr, ptr1, ptr2,ptr3,ptr4 = 0;
int channel = substream->pcm->device - emu->p16v_device_offset;
if (!epcm->running)
return 0;
ptr3 = snd_emu10k1_ptr20_read(emu, PLAYBACK_LIST_PTR, channel);
ptr1 = snd_emu10k1_ptr20_read(emu, PLAYBACK_POINTER, channel);
ptr4 = snd_emu10k1_ptr20_read(emu, PLAYBACK_LIST_PTR, channel);
if (ptr3 != ptr4) ptr1 = snd_emu10k1_ptr20_read(emu, PLAYBACK_POINTER, channel);
ptr2 = bytes_to_frames(runtime, ptr1);
ptr2+= (ptr4 >> 3) * runtime->period_size;
ptr=ptr2;
if (ptr >= runtime->buffer_size)
ptr -= runtime->buffer_size;
return ptr;
}
/* pointer_capture callback */
static snd_pcm_uframes_t
snd_p16v_pcm_pointer_capture(struct snd_pcm_substream *substream)
{
struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_emu10k1_pcm *epcm = runtime->private_data;
snd_pcm_uframes_t ptr, ptr1, ptr2 = 0;
int channel = 0;
if (!epcm->running)
return 0;
ptr1 = snd_emu10k1_ptr20_read(emu, CAPTURE_POINTER, channel);
ptr2 = bytes_to_frames(runtime, ptr1);
ptr=ptr2;
if (ptr >= runtime->buffer_size) {
ptr -= runtime->buffer_size;
dev_warn(emu->card->dev, "buffer capture limited!\n");
}
/*
dev_dbg(emu->card->dev, "ptr1 = 0x%lx, ptr2=0x%lx, ptr=0x%lx, "
"buffer_size = 0x%x, period_size = 0x%x, bits=%d, rate=%d\n",
ptr1, ptr2, ptr, (int)runtime->buffer_size,
(int)runtime->period_size, (int)runtime->frame_bits,
(int)runtime->rate);
*/
return ptr;
}
/* operators */
static const struct snd_pcm_ops snd_p16v_playback_front_ops = {
.open = snd_p16v_pcm_open_playback_front,
.close = snd_p16v_pcm_close_playback,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_p16v_pcm_hw_params_playback,
.hw_free = snd_p16v_pcm_hw_free_playback,
.prepare = snd_p16v_pcm_prepare_playback,
.trigger = snd_p16v_pcm_trigger_playback,
.pointer = snd_p16v_pcm_pointer_playback,
};
static const struct snd_pcm_ops snd_p16v_capture_ops = {
.open = snd_p16v_pcm_open_capture,
.close = snd_p16v_pcm_close_capture,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_p16v_pcm_hw_params_capture,
.hw_free = snd_p16v_pcm_hw_free_capture,
.prepare = snd_p16v_pcm_prepare_capture,
.trigger = snd_p16v_pcm_trigger_capture,
.pointer = snd_p16v_pcm_pointer_capture,
};
int snd_p16v_free(struct snd_emu10k1 *chip)
{
// release the data
if (chip->p16v_buffer.area) {
snd_dma_free_pages(&chip->p16v_buffer);
/*
dev_dbg(chip->card->dev, "period lables free: %p\n",
&chip->p16v_buffer);
*/
}
return 0;
}
int snd_p16v_pcm(struct snd_emu10k1 *emu, int device)
{
struct snd_pcm *pcm;
struct snd_pcm_substream *substream;
int err;
int capture=1;
/* dev_dbg(emu->card->dev, "snd_p16v_pcm called. device=%d\n", device); */
emu->p16v_device_offset = device;
if ((err = snd_pcm_new(emu->card, "p16v", device, 1, capture, &pcm)) < 0)
return err;
pcm->private_data = emu;
// Single playback 8 channel device.
// Single capture 2 channel device.
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_p16v_playback_front_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_p16v_capture_ops);
pcm->info_flags = 0;
pcm->dev_subclass = SNDRV_PCM_SUBCLASS_GENERIC_MIX;
strcpy(pcm->name, "p16v");
emu->pcm_p16v = pcm;
for(substream = pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
substream;
substream = substream->next) {
if ((err = snd_pcm_lib_preallocate_pages(substream,
SNDRV_DMA_TYPE_DEV,
snd_dma_pci_data(emu->pci),
((65536 - 64) * 8), ((65536 - 64) * 8))) < 0)
return err;
/*
dev_dbg(emu->card->dev,
"preallocate playback substream: err=%d\n", err);
*/
}
for (substream = pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream;
substream;
substream = substream->next) {
if ((err = snd_pcm_lib_preallocate_pages(substream,
SNDRV_DMA_TYPE_DEV,
snd_dma_pci_data(emu->pci),
65536 - 64, 65536 - 64)) < 0)
return err;
/*
dev_dbg(emu->card->dev,
"preallocate capture substream: err=%d\n", err);
*/
}
return 0;
}
static int snd_p16v_volume_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 255;
return 0;
}
static int snd_p16v_volume_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
int high_low = (kcontrol->private_value >> 8) & 0xff;
int reg = kcontrol->private_value & 0xff;
u32 value;
value = snd_emu10k1_ptr20_read(emu, reg, high_low);
if (high_low) {
ucontrol->value.integer.value[0] = 0xff - ((value >> 24) & 0xff); /* Left */
ucontrol->value.integer.value[1] = 0xff - ((value >> 16) & 0xff); /* Right */
} else {
ucontrol->value.integer.value[0] = 0xff - ((value >> 8) & 0xff); /* Left */
ucontrol->value.integer.value[1] = 0xff - ((value >> 0) & 0xff); /* Right */
}
return 0;
}
static int snd_p16v_volume_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
int high_low = (kcontrol->private_value >> 8) & 0xff;
int reg = kcontrol->private_value & 0xff;
u32 value, oval;
oval = value = snd_emu10k1_ptr20_read(emu, reg, 0);
if (high_low == 1) {
value &= 0xffff;
value |= ((0xff - ucontrol->value.integer.value[0]) << 24) |
((0xff - ucontrol->value.integer.value[1]) << 16);
} else {
value &= 0xffff0000;
value |= ((0xff - ucontrol->value.integer.value[0]) << 8) |
((0xff - ucontrol->value.integer.value[1]) );
}
if (value != oval) {
snd_emu10k1_ptr20_write(emu, reg, 0, value);
return 1;
}
return 0;
}
static int snd_p16v_capture_source_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
static const char * const texts[8] = {
"SPDIF", "I2S", "SRC48", "SRCMulti_SPDIF", "SRCMulti_I2S",
"CDIF", "FX", "AC97"
};
return snd_ctl_enum_info(uinfo, 1, 8, texts);
}
static int snd_p16v_capture_source_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
ucontrol->value.enumerated.item[0] = emu->p16v_capture_source;
return 0;
}
static int snd_p16v_capture_source_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
unsigned int val;
int change = 0;
u32 mask;
u32 source;
val = ucontrol->value.enumerated.item[0] ;
if (val > 7)
return -EINVAL;
change = (emu->p16v_capture_source != val);
if (change) {
emu->p16v_capture_source = val;
source = (val << 28) | (val << 24) | (val << 20) | (val << 16);
mask = snd_emu10k1_ptr20_read(emu, BASIC_INTERRUPT, 0) & 0xffff;
snd_emu10k1_ptr20_write(emu, BASIC_INTERRUPT, 0, source | mask);
}
return change;
}
static int snd_p16v_capture_channel_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
static const char * const texts[4] = { "0", "1", "2", "3", };
return snd_ctl_enum_info(uinfo, 1, 4, texts);
}
static int snd_p16v_capture_channel_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
ucontrol->value.enumerated.item[0] = emu->p16v_capture_channel;
return 0;
}
static int snd_p16v_capture_channel_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol);
unsigned int val;
int change = 0;
u32 tmp;
val = ucontrol->value.enumerated.item[0] ;
if (val > 3)
return -EINVAL;
change = (emu->p16v_capture_channel != val);
if (change) {
emu->p16v_capture_channel = val;
tmp = snd_emu10k1_ptr20_read(emu, CAPTURE_P16V_SOURCE, 0) & 0xfffc;
snd_emu10k1_ptr20_write(emu, CAPTURE_P16V_SOURCE, 0, tmp | val);
}
return change;
}
static const DECLARE_TLV_DB_SCALE(snd_p16v_db_scale1, -5175, 25, 1);
#define P16V_VOL(xname,xreg,xhl) { \
.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
.info = snd_p16v_volume_info, \
.get = snd_p16v_volume_get, \
.put = snd_p16v_volume_put, \
.tlv = { .p = snd_p16v_db_scale1 }, \
.private_value = ((xreg) | ((xhl) << 8)) \
}
static struct snd_kcontrol_new p16v_mixer_controls[] = {
P16V_VOL("HD Analog Front Playback Volume", PLAYBACK_VOLUME_MIXER9, 0),
P16V_VOL("HD Analog Rear Playback Volume", PLAYBACK_VOLUME_MIXER10, 1),
P16V_VOL("HD Analog Center/LFE Playback Volume", PLAYBACK_VOLUME_MIXER9, 1),
P16V_VOL("HD Analog Side Playback Volume", PLAYBACK_VOLUME_MIXER10, 0),
P16V_VOL("HD SPDIF Front Playback Volume", PLAYBACK_VOLUME_MIXER7, 0),
P16V_VOL("HD SPDIF Rear Playback Volume", PLAYBACK_VOLUME_MIXER8, 1),
P16V_VOL("HD SPDIF Center/LFE Playback Volume", PLAYBACK_VOLUME_MIXER7, 1),
P16V_VOL("HD SPDIF Side Playback Volume", PLAYBACK_VOLUME_MIXER8, 0),
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "HD source Capture",
.info = snd_p16v_capture_source_info,
.get = snd_p16v_capture_source_get,
.put = snd_p16v_capture_source_put
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "HD channel Capture",
.info = snd_p16v_capture_channel_info,
.get = snd_p16v_capture_channel_get,
.put = snd_p16v_capture_channel_put
},
};
int snd_p16v_mixer(struct snd_emu10k1 *emu)
{
int i, err;
struct snd_card *card = emu->card;
for (i = 0; i < ARRAY_SIZE(p16v_mixer_controls); i++) {
if ((err = snd_ctl_add(card, snd_ctl_new1(&p16v_mixer_controls[i],
emu))) < 0)
return err;
}
return 0;
}
#ifdef CONFIG_PM_SLEEP
#define NUM_CHS 1 /* up to 4, but only first channel is used */
int snd_p16v_alloc_pm_buffer(struct snd_emu10k1 *emu)
{
emu->p16v_saved = vmalloc(array_size(NUM_CHS * 4, 0x80));
if (! emu->p16v_saved)
return -ENOMEM;
return 0;
}
void snd_p16v_free_pm_buffer(struct snd_emu10k1 *emu)
{
vfree(emu->p16v_saved);
}
void snd_p16v_suspend(struct snd_emu10k1 *emu)
{
int i, ch;
unsigned int *val;
val = emu->p16v_saved;
for (ch = 0; ch < NUM_CHS; ch++)
for (i = 0; i < 0x80; i++, val++)
*val = snd_emu10k1_ptr20_read(emu, i, ch);
}
void snd_p16v_resume(struct snd_emu10k1 *emu)
{
int i, ch;
unsigned int *val;
val = emu->p16v_saved;
for (ch = 0; ch < NUM_CHS; ch++)
for (i = 0; i < 0x80; i++, val++)
snd_emu10k1_ptr20_write(emu, i, ch, *val);
}
#endif