mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
e27c49291a
The x86 platform operations are fairly isolated, so it's easy to change them from using timespec to timespec64. It has been checked that all the users and callers are safe, and there is only one critical function that is broken beyond 2106: pvclock_read_wallclock() uses a 32-bit number of seconds since the epoch to communicate the boot time between host and guest in a virtual environment. This will work until 2106, but fixing this is outside the scope of this change, Add a comment at least. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Acked-by: Radim Krčmář <rkrcmar@redhat.com> Acked-by: Jan Kiszka <jan.kiszka@siemens.com> Cc: Juergen Gross <jgross@suse.com> Cc: jailhouse-dev@googlegroups.com Cc: Borislav Petkov <bp@suse.de> Cc: kvm@vger.kernel.org Cc: y2038@lists.linaro.org Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com> Cc: xen-devel@lists.xenproject.org Cc: John Stultz <john.stultz@linaro.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Joao Martins <joao.m.martins@oracle.com> Link: https://lkml.kernel.org/r/20180427201435.3194219-1-arnd@arndb.de
381 lines
9.2 KiB
C
381 lines
9.2 KiB
C
/* KVM paravirtual clock driver. A clocksource implementation
|
|
Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include <linux/clocksource.h>
|
|
#include <linux/kvm_para.h>
|
|
#include <asm/pvclock.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/apic.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/clock.h>
|
|
|
|
#include <asm/mem_encrypt.h>
|
|
#include <asm/x86_init.h>
|
|
#include <asm/reboot.h>
|
|
#include <asm/kvmclock.h>
|
|
|
|
static int kvmclock __ro_after_init = 1;
|
|
static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
|
|
static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
|
|
static u64 kvm_sched_clock_offset;
|
|
|
|
static int parse_no_kvmclock(char *arg)
|
|
{
|
|
kvmclock = 0;
|
|
return 0;
|
|
}
|
|
early_param("no-kvmclock", parse_no_kvmclock);
|
|
|
|
/* The hypervisor will put information about time periodically here */
|
|
static struct pvclock_vsyscall_time_info *hv_clock;
|
|
static struct pvclock_wall_clock *wall_clock;
|
|
|
|
/*
|
|
* The wallclock is the time of day when we booted. Since then, some time may
|
|
* have elapsed since the hypervisor wrote the data. So we try to account for
|
|
* that with system time
|
|
*/
|
|
static void kvm_get_wallclock(struct timespec64 *now)
|
|
{
|
|
struct pvclock_vcpu_time_info *vcpu_time;
|
|
int low, high;
|
|
int cpu;
|
|
|
|
low = (int)slow_virt_to_phys(wall_clock);
|
|
high = ((u64)slow_virt_to_phys(wall_clock) >> 32);
|
|
|
|
native_write_msr(msr_kvm_wall_clock, low, high);
|
|
|
|
cpu = get_cpu();
|
|
|
|
vcpu_time = &hv_clock[cpu].pvti;
|
|
pvclock_read_wallclock(wall_clock, vcpu_time, now);
|
|
|
|
put_cpu();
|
|
}
|
|
|
|
static int kvm_set_wallclock(const struct timespec64 *now)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
|
|
static u64 kvm_clock_read(void)
|
|
{
|
|
struct pvclock_vcpu_time_info *src;
|
|
u64 ret;
|
|
int cpu;
|
|
|
|
preempt_disable_notrace();
|
|
cpu = smp_processor_id();
|
|
src = &hv_clock[cpu].pvti;
|
|
ret = pvclock_clocksource_read(src);
|
|
preempt_enable_notrace();
|
|
return ret;
|
|
}
|
|
|
|
static u64 kvm_clock_get_cycles(struct clocksource *cs)
|
|
{
|
|
return kvm_clock_read();
|
|
}
|
|
|
|
static u64 kvm_sched_clock_read(void)
|
|
{
|
|
return kvm_clock_read() - kvm_sched_clock_offset;
|
|
}
|
|
|
|
static inline void kvm_sched_clock_init(bool stable)
|
|
{
|
|
if (!stable) {
|
|
pv_time_ops.sched_clock = kvm_clock_read;
|
|
clear_sched_clock_stable();
|
|
return;
|
|
}
|
|
|
|
kvm_sched_clock_offset = kvm_clock_read();
|
|
pv_time_ops.sched_clock = kvm_sched_clock_read;
|
|
|
|
printk(KERN_INFO "kvm-clock: using sched offset of %llu cycles\n",
|
|
kvm_sched_clock_offset);
|
|
|
|
BUILD_BUG_ON(sizeof(kvm_sched_clock_offset) >
|
|
sizeof(((struct pvclock_vcpu_time_info *)NULL)->system_time));
|
|
}
|
|
|
|
/*
|
|
* If we don't do that, there is the possibility that the guest
|
|
* will calibrate under heavy load - thus, getting a lower lpj -
|
|
* and execute the delays themselves without load. This is wrong,
|
|
* because no delay loop can finish beforehand.
|
|
* Any heuristics is subject to fail, because ultimately, a large
|
|
* poll of guests can be running and trouble each other. So we preset
|
|
* lpj here
|
|
*/
|
|
static unsigned long kvm_get_tsc_khz(void)
|
|
{
|
|
struct pvclock_vcpu_time_info *src;
|
|
int cpu;
|
|
unsigned long tsc_khz;
|
|
|
|
cpu = get_cpu();
|
|
src = &hv_clock[cpu].pvti;
|
|
tsc_khz = pvclock_tsc_khz(src);
|
|
put_cpu();
|
|
return tsc_khz;
|
|
}
|
|
|
|
static void kvm_get_preset_lpj(void)
|
|
{
|
|
unsigned long khz;
|
|
u64 lpj;
|
|
|
|
khz = kvm_get_tsc_khz();
|
|
|
|
lpj = ((u64)khz * 1000);
|
|
do_div(lpj, HZ);
|
|
preset_lpj = lpj;
|
|
}
|
|
|
|
bool kvm_check_and_clear_guest_paused(void)
|
|
{
|
|
bool ret = false;
|
|
struct pvclock_vcpu_time_info *src;
|
|
int cpu = smp_processor_id();
|
|
|
|
if (!hv_clock)
|
|
return ret;
|
|
|
|
src = &hv_clock[cpu].pvti;
|
|
if ((src->flags & PVCLOCK_GUEST_STOPPED) != 0) {
|
|
src->flags &= ~PVCLOCK_GUEST_STOPPED;
|
|
pvclock_touch_watchdogs();
|
|
ret = true;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct clocksource kvm_clock = {
|
|
.name = "kvm-clock",
|
|
.read = kvm_clock_get_cycles,
|
|
.rating = 400,
|
|
.mask = CLOCKSOURCE_MASK(64),
|
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
|
};
|
|
EXPORT_SYMBOL_GPL(kvm_clock);
|
|
|
|
int kvm_register_clock(char *txt)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
int low, high, ret;
|
|
struct pvclock_vcpu_time_info *src;
|
|
|
|
if (!hv_clock)
|
|
return 0;
|
|
|
|
src = &hv_clock[cpu].pvti;
|
|
low = (int)slow_virt_to_phys(src) | 1;
|
|
high = ((u64)slow_virt_to_phys(src) >> 32);
|
|
ret = native_write_msr_safe(msr_kvm_system_time, low, high);
|
|
printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
|
|
cpu, high, low, txt);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void kvm_save_sched_clock_state(void)
|
|
{
|
|
}
|
|
|
|
static void kvm_restore_sched_clock_state(void)
|
|
{
|
|
kvm_register_clock("primary cpu clock, resume");
|
|
}
|
|
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
static void kvm_setup_secondary_clock(void)
|
|
{
|
|
/*
|
|
* Now that the first cpu already had this clocksource initialized,
|
|
* we shouldn't fail.
|
|
*/
|
|
WARN_ON(kvm_register_clock("secondary cpu clock"));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* After the clock is registered, the host will keep writing to the
|
|
* registered memory location. If the guest happens to shutdown, this memory
|
|
* won't be valid. In cases like kexec, in which you install a new kernel, this
|
|
* means a random memory location will be kept being written. So before any
|
|
* kind of shutdown from our side, we unregister the clock by writing anything
|
|
* that does not have the 'enable' bit set in the msr
|
|
*/
|
|
#ifdef CONFIG_KEXEC_CORE
|
|
static void kvm_crash_shutdown(struct pt_regs *regs)
|
|
{
|
|
native_write_msr(msr_kvm_system_time, 0, 0);
|
|
kvm_disable_steal_time();
|
|
native_machine_crash_shutdown(regs);
|
|
}
|
|
#endif
|
|
|
|
static void kvm_shutdown(void)
|
|
{
|
|
native_write_msr(msr_kvm_system_time, 0, 0);
|
|
kvm_disable_steal_time();
|
|
native_machine_shutdown();
|
|
}
|
|
|
|
static phys_addr_t __init kvm_memblock_alloc(phys_addr_t size,
|
|
phys_addr_t align)
|
|
{
|
|
phys_addr_t mem;
|
|
|
|
mem = memblock_alloc(size, align);
|
|
if (!mem)
|
|
return 0;
|
|
|
|
if (sev_active()) {
|
|
if (early_set_memory_decrypted((unsigned long)__va(mem), size))
|
|
goto e_free;
|
|
}
|
|
|
|
return mem;
|
|
e_free:
|
|
memblock_free(mem, size);
|
|
return 0;
|
|
}
|
|
|
|
static void __init kvm_memblock_free(phys_addr_t addr, phys_addr_t size)
|
|
{
|
|
if (sev_active())
|
|
early_set_memory_encrypted((unsigned long)__va(addr), size);
|
|
|
|
memblock_free(addr, size);
|
|
}
|
|
|
|
void __init kvmclock_init(void)
|
|
{
|
|
struct pvclock_vcpu_time_info *vcpu_time;
|
|
unsigned long mem, mem_wall_clock;
|
|
int size, cpu, wall_clock_size;
|
|
u8 flags;
|
|
|
|
size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
|
|
|
|
if (!kvm_para_available())
|
|
return;
|
|
|
|
if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
|
|
msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
|
|
msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
|
|
} else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)))
|
|
return;
|
|
|
|
wall_clock_size = PAGE_ALIGN(sizeof(struct pvclock_wall_clock));
|
|
mem_wall_clock = kvm_memblock_alloc(wall_clock_size, PAGE_SIZE);
|
|
if (!mem_wall_clock)
|
|
return;
|
|
|
|
wall_clock = __va(mem_wall_clock);
|
|
memset(wall_clock, 0, wall_clock_size);
|
|
|
|
mem = kvm_memblock_alloc(size, PAGE_SIZE);
|
|
if (!mem) {
|
|
kvm_memblock_free(mem_wall_clock, wall_clock_size);
|
|
wall_clock = NULL;
|
|
return;
|
|
}
|
|
|
|
hv_clock = __va(mem);
|
|
memset(hv_clock, 0, size);
|
|
|
|
if (kvm_register_clock("primary cpu clock")) {
|
|
hv_clock = NULL;
|
|
kvm_memblock_free(mem, size);
|
|
kvm_memblock_free(mem_wall_clock, wall_clock_size);
|
|
wall_clock = NULL;
|
|
return;
|
|
}
|
|
|
|
printk(KERN_INFO "kvm-clock: Using msrs %x and %x",
|
|
msr_kvm_system_time, msr_kvm_wall_clock);
|
|
|
|
if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
|
|
pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
|
|
|
|
cpu = get_cpu();
|
|
vcpu_time = &hv_clock[cpu].pvti;
|
|
flags = pvclock_read_flags(vcpu_time);
|
|
|
|
kvm_sched_clock_init(flags & PVCLOCK_TSC_STABLE_BIT);
|
|
put_cpu();
|
|
|
|
x86_platform.calibrate_tsc = kvm_get_tsc_khz;
|
|
x86_platform.calibrate_cpu = kvm_get_tsc_khz;
|
|
x86_platform.get_wallclock = kvm_get_wallclock;
|
|
x86_platform.set_wallclock = kvm_set_wallclock;
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
x86_cpuinit.early_percpu_clock_init =
|
|
kvm_setup_secondary_clock;
|
|
#endif
|
|
x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
|
|
x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
|
|
machine_ops.shutdown = kvm_shutdown;
|
|
#ifdef CONFIG_KEXEC_CORE
|
|
machine_ops.crash_shutdown = kvm_crash_shutdown;
|
|
#endif
|
|
kvm_get_preset_lpj();
|
|
clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
|
|
pv_info.name = "KVM";
|
|
}
|
|
|
|
int __init kvm_setup_vsyscall_timeinfo(void)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
int cpu;
|
|
u8 flags;
|
|
struct pvclock_vcpu_time_info *vcpu_time;
|
|
unsigned int size;
|
|
|
|
if (!hv_clock)
|
|
return 0;
|
|
|
|
size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
|
|
|
|
cpu = get_cpu();
|
|
|
|
vcpu_time = &hv_clock[cpu].pvti;
|
|
flags = pvclock_read_flags(vcpu_time);
|
|
|
|
if (!(flags & PVCLOCK_TSC_STABLE_BIT)) {
|
|
put_cpu();
|
|
return 1;
|
|
}
|
|
|
|
pvclock_set_pvti_cpu0_va(hv_clock);
|
|
put_cpu();
|
|
|
|
kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK;
|
|
#endif
|
|
return 0;
|
|
}
|