mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-26 08:05:04 +07:00
e62bb3d894
Now that there are no FPU context allocations, rename fpstate_alloc_init() to fpstate_init_curr(), to signal that it initializes the fpstate and marks it active, for the current task. Reviewed-by: Borislav Petkov <bp@alien8.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
580 lines
15 KiB
C
580 lines
15 KiB
C
/*
|
|
* Copyright (C) 1994 Linus Torvalds
|
|
*
|
|
* Pentium III FXSR, SSE support
|
|
* General FPU state handling cleanups
|
|
* Gareth Hughes <gareth@valinux.com>, May 2000
|
|
* x86-64 work by Andi Kleen 2002
|
|
*/
|
|
|
|
#ifndef _ASM_X86_FPU_INTERNAL_H
|
|
#define _ASM_X86_FPU_INTERNAL_H
|
|
|
|
#include <linux/regset.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/user.h>
|
|
#include <asm/fpu/api.h>
|
|
#include <asm/fpu/xsave.h>
|
|
|
|
#ifdef CONFIG_X86_64
|
|
# include <asm/sigcontext32.h>
|
|
# include <asm/user32.h>
|
|
struct ksignal;
|
|
int ia32_setup_rt_frame(int sig, struct ksignal *ksig,
|
|
compat_sigset_t *set, struct pt_regs *regs);
|
|
int ia32_setup_frame(int sig, struct ksignal *ksig,
|
|
compat_sigset_t *set, struct pt_regs *regs);
|
|
#else
|
|
# define user_i387_ia32_struct user_i387_struct
|
|
# define user32_fxsr_struct user_fxsr_struct
|
|
# define ia32_setup_frame __setup_frame
|
|
# define ia32_setup_rt_frame __setup_rt_frame
|
|
#endif
|
|
|
|
#define MXCSR_DEFAULT 0x1f80
|
|
|
|
extern unsigned int mxcsr_feature_mask;
|
|
extern void fpu__init_cpu(void);
|
|
extern void eager_fpu_init(void);
|
|
|
|
extern void fpu__init_system_xstate(void);
|
|
extern void fpu__init_cpu_xstate(void);
|
|
extern void fpu__init_system(struct cpuinfo_x86 *c);
|
|
|
|
extern void fpstate_init_curr(struct fpu *fpu);
|
|
extern void fpstate_init(struct fpu *fpu);
|
|
extern void fpu__clear(struct task_struct *tsk);
|
|
|
|
extern int dump_fpu(struct pt_regs *, struct user_i387_struct *);
|
|
extern void fpu__restore(void);
|
|
extern void fpu__init_check_bugs(void);
|
|
extern void fpu__resume_cpu(void);
|
|
|
|
DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
|
|
|
|
extern void convert_from_fxsr(struct user_i387_ia32_struct *env,
|
|
struct task_struct *tsk);
|
|
extern void convert_to_fxsr(struct task_struct *tsk,
|
|
const struct user_i387_ia32_struct *env);
|
|
|
|
extern user_regset_active_fn regset_fpregs_active, regset_xregset_fpregs_active;
|
|
extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
|
|
xstateregs_get;
|
|
extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
|
|
xstateregs_set;
|
|
|
|
/*
|
|
* xstateregs_active == regset_fpregs_active. Please refer to the comment
|
|
* at the definition of regset_fpregs_active.
|
|
*/
|
|
#define xstateregs_active regset_fpregs_active
|
|
|
|
#ifdef CONFIG_MATH_EMULATION
|
|
extern void finit_soft_fpu(struct i387_soft_struct *soft);
|
|
#else
|
|
static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
|
|
#endif
|
|
|
|
/*
|
|
* Must be run with preemption disabled: this clears the fpu_fpregs_owner_ctx,
|
|
* on this CPU.
|
|
*
|
|
* This will disable any lazy FPU state restore of the current FPU state,
|
|
* but if the current thread owns the FPU, it will still be saved by.
|
|
*/
|
|
static inline void __cpu_disable_lazy_restore(unsigned int cpu)
|
|
{
|
|
per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
|
|
}
|
|
|
|
static inline int fpu_want_lazy_restore(struct fpu *fpu, unsigned int cpu)
|
|
{
|
|
return fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu;
|
|
}
|
|
|
|
static inline int is_ia32_compat_frame(void)
|
|
{
|
|
return config_enabled(CONFIG_IA32_EMULATION) &&
|
|
test_thread_flag(TIF_IA32);
|
|
}
|
|
|
|
static inline int is_ia32_frame(void)
|
|
{
|
|
return config_enabled(CONFIG_X86_32) || is_ia32_compat_frame();
|
|
}
|
|
|
|
static inline int is_x32_frame(void)
|
|
{
|
|
return config_enabled(CONFIG_X86_X32_ABI) && test_thread_flag(TIF_X32);
|
|
}
|
|
|
|
#define X87_FSW_ES (1 << 7) /* Exception Summary */
|
|
|
|
static __always_inline __pure bool use_eager_fpu(void)
|
|
{
|
|
return static_cpu_has_safe(X86_FEATURE_EAGER_FPU);
|
|
}
|
|
|
|
static __always_inline __pure bool use_xsaveopt(void)
|
|
{
|
|
return static_cpu_has_safe(X86_FEATURE_XSAVEOPT);
|
|
}
|
|
|
|
static __always_inline __pure bool use_xsave(void)
|
|
{
|
|
return static_cpu_has_safe(X86_FEATURE_XSAVE);
|
|
}
|
|
|
|
static __always_inline __pure bool use_fxsr(void)
|
|
{
|
|
return static_cpu_has_safe(X86_FEATURE_FXSR);
|
|
}
|
|
|
|
static inline void fx_finit(struct i387_fxsave_struct *fx)
|
|
{
|
|
fx->cwd = 0x37f;
|
|
fx->mxcsr = MXCSR_DEFAULT;
|
|
}
|
|
|
|
extern void __sanitize_i387_state(struct task_struct *);
|
|
|
|
static inline void sanitize_i387_state(struct task_struct *tsk)
|
|
{
|
|
if (!use_xsaveopt())
|
|
return;
|
|
__sanitize_i387_state(tsk);
|
|
}
|
|
|
|
#define user_insn(insn, output, input...) \
|
|
({ \
|
|
int err; \
|
|
asm volatile(ASM_STAC "\n" \
|
|
"1:" #insn "\n\t" \
|
|
"2: " ASM_CLAC "\n" \
|
|
".section .fixup,\"ax\"\n" \
|
|
"3: movl $-1,%[err]\n" \
|
|
" jmp 2b\n" \
|
|
".previous\n" \
|
|
_ASM_EXTABLE(1b, 3b) \
|
|
: [err] "=r" (err), output \
|
|
: "0"(0), input); \
|
|
err; \
|
|
})
|
|
|
|
#define check_insn(insn, output, input...) \
|
|
({ \
|
|
int err; \
|
|
asm volatile("1:" #insn "\n\t" \
|
|
"2:\n" \
|
|
".section .fixup,\"ax\"\n" \
|
|
"3: movl $-1,%[err]\n" \
|
|
" jmp 2b\n" \
|
|
".previous\n" \
|
|
_ASM_EXTABLE(1b, 3b) \
|
|
: [err] "=r" (err), output \
|
|
: "0"(0), input); \
|
|
err; \
|
|
})
|
|
|
|
static inline int fsave_user(struct i387_fsave_struct __user *fx)
|
|
{
|
|
return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx));
|
|
}
|
|
|
|
static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
|
|
{
|
|
if (config_enabled(CONFIG_X86_32))
|
|
return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
|
|
else if (config_enabled(CONFIG_AS_FXSAVEQ))
|
|
return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
|
|
|
|
/* See comment in fpu_fxsave() below. */
|
|
return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
|
|
}
|
|
|
|
static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
|
|
{
|
|
if (config_enabled(CONFIG_X86_32))
|
|
return check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
|
|
else if (config_enabled(CONFIG_AS_FXSAVEQ))
|
|
return check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
|
|
|
|
/* See comment in fpu_fxsave() below. */
|
|
return check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
|
|
"m" (*fx));
|
|
}
|
|
|
|
static inline int fxrstor_user(struct i387_fxsave_struct __user *fx)
|
|
{
|
|
if (config_enabled(CONFIG_X86_32))
|
|
return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
|
|
else if (config_enabled(CONFIG_AS_FXSAVEQ))
|
|
return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
|
|
|
|
/* See comment in fpu_fxsave() below. */
|
|
return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
|
|
"m" (*fx));
|
|
}
|
|
|
|
static inline int frstor_checking(struct i387_fsave_struct *fx)
|
|
{
|
|
return check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
|
|
}
|
|
|
|
static inline int frstor_user(struct i387_fsave_struct __user *fx)
|
|
{
|
|
return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
|
|
}
|
|
|
|
static inline void fpu_fxsave(struct fpu *fpu)
|
|
{
|
|
if (config_enabled(CONFIG_X86_32))
|
|
asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave));
|
|
else if (config_enabled(CONFIG_AS_FXSAVEQ))
|
|
asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave));
|
|
else {
|
|
/* Using "rex64; fxsave %0" is broken because, if the memory
|
|
* operand uses any extended registers for addressing, a second
|
|
* REX prefix will be generated (to the assembler, rex64
|
|
* followed by semicolon is a separate instruction), and hence
|
|
* the 64-bitness is lost.
|
|
*
|
|
* Using "fxsaveq %0" would be the ideal choice, but is only
|
|
* supported starting with gas 2.16.
|
|
*
|
|
* Using, as a workaround, the properly prefixed form below
|
|
* isn't accepted by any binutils version so far released,
|
|
* complaining that the same type of prefix is used twice if
|
|
* an extended register is needed for addressing (fix submitted
|
|
* to mainline 2005-11-21).
|
|
*
|
|
* asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave));
|
|
*
|
|
* This, however, we can work around by forcing the compiler to
|
|
* select an addressing mode that doesn't require extended
|
|
* registers.
|
|
*/
|
|
asm volatile( "rex64/fxsave (%[fx])"
|
|
: "=m" (fpu->state.fxsave)
|
|
: [fx] "R" (&fpu->state.fxsave));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* These must be called with preempt disabled. Returns
|
|
* 'true' if the FPU state is still intact and we can
|
|
* keep registers active.
|
|
*
|
|
* The legacy FNSAVE instruction cleared all FPU state
|
|
* unconditionally, so registers are essentially destroyed.
|
|
* Modern FPU state can be kept in registers, if there are
|
|
* no pending FP exceptions.
|
|
*/
|
|
static inline int copy_fpregs_to_fpstate(struct fpu *fpu)
|
|
{
|
|
if (likely(use_xsave())) {
|
|
xsave_state(&fpu->state.xsave);
|
|
return 1;
|
|
}
|
|
|
|
if (likely(use_fxsr())) {
|
|
fpu_fxsave(fpu);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Legacy FPU register saving, FNSAVE always clears FPU registers,
|
|
* so we have to mark them inactive:
|
|
*/
|
|
asm volatile("fnsave %[fx]; fwait" : [fx] "=m" (fpu->state.fsave));
|
|
|
|
return 0;
|
|
}
|
|
|
|
extern void fpu__save(struct fpu *fpu);
|
|
|
|
static inline int fpu_restore_checking(struct fpu *fpu)
|
|
{
|
|
if (use_xsave())
|
|
return fpu_xrstor_checking(&fpu->state.xsave);
|
|
else if (use_fxsr())
|
|
return fxrstor_checking(&fpu->state.fxsave);
|
|
else
|
|
return frstor_checking(&fpu->state.fsave);
|
|
}
|
|
|
|
static inline int restore_fpu_checking(struct fpu *fpu)
|
|
{
|
|
/*
|
|
* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
|
|
* pending. Clear the x87 state here by setting it to fixed values.
|
|
* "m" is a random variable that should be in L1.
|
|
*/
|
|
if (unlikely(static_cpu_has_bug_safe(X86_BUG_FXSAVE_LEAK))) {
|
|
asm volatile(
|
|
"fnclex\n\t"
|
|
"emms\n\t"
|
|
"fildl %P[addr]" /* set F?P to defined value */
|
|
: : [addr] "m" (fpu->fpregs_active));
|
|
}
|
|
|
|
return fpu_restore_checking(fpu);
|
|
}
|
|
|
|
/* Must be paired with an 'stts' after! */
|
|
static inline void __fpregs_deactivate(struct fpu *fpu)
|
|
{
|
|
fpu->fpregs_active = 0;
|
|
this_cpu_write(fpu_fpregs_owner_ctx, NULL);
|
|
}
|
|
|
|
/* Must be paired with a 'clts' before! */
|
|
static inline void __fpregs_activate(struct fpu *fpu)
|
|
{
|
|
fpu->fpregs_active = 1;
|
|
this_cpu_write(fpu_fpregs_owner_ctx, fpu);
|
|
}
|
|
|
|
/*
|
|
* The question "does this thread have fpu access?"
|
|
* is slightly racy, since preemption could come in
|
|
* and revoke it immediately after the test.
|
|
*
|
|
* However, even in that very unlikely scenario,
|
|
* we can just assume we have FPU access - typically
|
|
* to save the FP state - we'll just take a #NM
|
|
* fault and get the FPU access back.
|
|
*/
|
|
static inline int user_has_fpu(void)
|
|
{
|
|
return current->thread.fpu.fpregs_active;
|
|
}
|
|
|
|
/*
|
|
* Encapsulate the CR0.TS handling together with the
|
|
* software flag.
|
|
*
|
|
* These generally need preemption protection to work,
|
|
* do try to avoid using these on their own.
|
|
*/
|
|
static inline void fpregs_activate(struct fpu *fpu)
|
|
{
|
|
if (!use_eager_fpu())
|
|
clts();
|
|
__fpregs_activate(fpu);
|
|
}
|
|
|
|
static inline void fpregs_deactivate(struct fpu *fpu)
|
|
{
|
|
__fpregs_deactivate(fpu);
|
|
if (!use_eager_fpu())
|
|
stts();
|
|
}
|
|
|
|
static inline void drop_fpu(struct fpu *fpu)
|
|
{
|
|
/*
|
|
* Forget coprocessor state..
|
|
*/
|
|
preempt_disable();
|
|
fpu->counter = 0;
|
|
|
|
if (fpu->fpregs_active) {
|
|
/* Ignore delayed exceptions from user space */
|
|
asm volatile("1: fwait\n"
|
|
"2:\n"
|
|
_ASM_EXTABLE(1b, 2b));
|
|
fpregs_deactivate(fpu);
|
|
}
|
|
|
|
fpu->fpstate_active = 0;
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
static inline void restore_init_xstate(void)
|
|
{
|
|
if (use_xsave())
|
|
xrstor_state(&init_xstate_ctx, -1);
|
|
else
|
|
fxrstor_checking(&init_xstate_ctx.i387);
|
|
}
|
|
|
|
/*
|
|
* Reset the FPU state in the eager case and drop it in the lazy case (later use
|
|
* will reinit it).
|
|
*/
|
|
static inline void fpu_reset_state(struct fpu *fpu)
|
|
{
|
|
if (!use_eager_fpu())
|
|
drop_fpu(fpu);
|
|
else
|
|
restore_init_xstate();
|
|
}
|
|
|
|
/*
|
|
* FPU state switching for scheduling.
|
|
*
|
|
* This is a two-stage process:
|
|
*
|
|
* - switch_fpu_prepare() saves the old state and
|
|
* sets the new state of the CR0.TS bit. This is
|
|
* done within the context of the old process.
|
|
*
|
|
* - switch_fpu_finish() restores the new state as
|
|
* necessary.
|
|
*/
|
|
typedef struct { int preload; } fpu_switch_t;
|
|
|
|
static inline fpu_switch_t
|
|
switch_fpu_prepare(struct fpu *old_fpu, struct fpu *new_fpu, int cpu)
|
|
{
|
|
fpu_switch_t fpu;
|
|
|
|
/*
|
|
* If the task has used the math, pre-load the FPU on xsave processors
|
|
* or if the past 5 consecutive context-switches used math.
|
|
*/
|
|
fpu.preload = new_fpu->fpstate_active &&
|
|
(use_eager_fpu() || new_fpu->counter > 5);
|
|
|
|
if (old_fpu->fpregs_active) {
|
|
if (!copy_fpregs_to_fpstate(old_fpu))
|
|
old_fpu->last_cpu = -1;
|
|
else
|
|
old_fpu->last_cpu = cpu;
|
|
|
|
/* But leave fpu_fpregs_owner_ctx! */
|
|
old_fpu->fpregs_active = 0;
|
|
|
|
/* Don't change CR0.TS if we just switch! */
|
|
if (fpu.preload) {
|
|
new_fpu->counter++;
|
|
__fpregs_activate(new_fpu);
|
|
prefetch(&new_fpu->state);
|
|
} else if (!use_eager_fpu())
|
|
stts();
|
|
} else {
|
|
old_fpu->counter = 0;
|
|
old_fpu->last_cpu = -1;
|
|
if (fpu.preload) {
|
|
new_fpu->counter++;
|
|
if (fpu_want_lazy_restore(new_fpu, cpu))
|
|
fpu.preload = 0;
|
|
else
|
|
prefetch(&new_fpu->state);
|
|
fpregs_activate(new_fpu);
|
|
}
|
|
}
|
|
return fpu;
|
|
}
|
|
|
|
/*
|
|
* By the time this gets called, we've already cleared CR0.TS and
|
|
* given the process the FPU if we are going to preload the FPU
|
|
* state - all we need to do is to conditionally restore the register
|
|
* state itself.
|
|
*/
|
|
static inline void switch_fpu_finish(struct fpu *new_fpu, fpu_switch_t fpu_switch)
|
|
{
|
|
if (fpu_switch.preload) {
|
|
if (unlikely(restore_fpu_checking(new_fpu)))
|
|
fpu_reset_state(new_fpu);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Signal frame handlers...
|
|
*/
|
|
extern int save_xstate_sig(void __user *buf, void __user *fx, int size);
|
|
extern int __restore_xstate_sig(void __user *buf, void __user *fx, int size);
|
|
|
|
static inline int xstate_sigframe_size(void)
|
|
{
|
|
return use_xsave() ? xstate_size + FP_XSTATE_MAGIC2_SIZE : xstate_size;
|
|
}
|
|
|
|
static inline int restore_xstate_sig(void __user *buf, int ia32_frame)
|
|
{
|
|
void __user *buf_fx = buf;
|
|
int size = xstate_sigframe_size();
|
|
|
|
if (ia32_frame && use_fxsr()) {
|
|
buf_fx = buf + sizeof(struct i387_fsave_struct);
|
|
size += sizeof(struct i387_fsave_struct);
|
|
}
|
|
|
|
return __restore_xstate_sig(buf, buf_fx, size);
|
|
}
|
|
|
|
/*
|
|
* Needs to be preemption-safe.
|
|
*
|
|
* NOTE! user_fpu_begin() must be used only immediately before restoring
|
|
* the save state. It does not do any saving/restoring on its own. In
|
|
* lazy FPU mode, it is just an optimization to avoid a #NM exception,
|
|
* the task can lose the FPU right after preempt_enable().
|
|
*/
|
|
static inline void user_fpu_begin(void)
|
|
{
|
|
struct fpu *fpu = ¤t->thread.fpu;
|
|
|
|
preempt_disable();
|
|
if (!user_has_fpu())
|
|
fpregs_activate(fpu);
|
|
preempt_enable();
|
|
}
|
|
|
|
/*
|
|
* i387 state interaction
|
|
*/
|
|
static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
|
|
{
|
|
if (cpu_has_fxsr) {
|
|
return tsk->thread.fpu.state.fxsave.cwd;
|
|
} else {
|
|
return (unsigned short)tsk->thread.fpu.state.fsave.cwd;
|
|
}
|
|
}
|
|
|
|
static inline unsigned short get_fpu_swd(struct task_struct *tsk)
|
|
{
|
|
if (cpu_has_fxsr) {
|
|
return tsk->thread.fpu.state.fxsave.swd;
|
|
} else {
|
|
return (unsigned short)tsk->thread.fpu.state.fsave.swd;
|
|
}
|
|
}
|
|
|
|
static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
|
|
{
|
|
if (cpu_has_xmm) {
|
|
return tsk->thread.fpu.state.fxsave.mxcsr;
|
|
} else {
|
|
return MXCSR_DEFAULT;
|
|
}
|
|
}
|
|
|
|
extern int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu);
|
|
|
|
static inline unsigned long
|
|
alloc_mathframe(unsigned long sp, int ia32_frame, unsigned long *buf_fx,
|
|
unsigned long *size)
|
|
{
|
|
unsigned long frame_size = xstate_sigframe_size();
|
|
|
|
*buf_fx = sp = round_down(sp - frame_size, 64);
|
|
if (ia32_frame && use_fxsr()) {
|
|
frame_size += sizeof(struct i387_fsave_struct);
|
|
sp -= sizeof(struct i387_fsave_struct);
|
|
}
|
|
|
|
*size = frame_size;
|
|
return sp;
|
|
}
|
|
|
|
#endif /* _ASM_X86_FPU_INTERNAL_H */
|