mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-13 08:26:41 +07:00
f84891289e
Create a new BH_Verified flag to indicate that we've verified all the data in a buffer_head for correctness. This allows us to bypass expensive verification steps when they are not necessary without missing them when they are. Signed-off-by: Darrick J. Wong <djwong@us.ibm.com> Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
4884 lines
132 KiB
C
4884 lines
132 KiB
C
/*
|
|
* Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
|
|
* Written by Alex Tomas <alex@clusterfs.com>
|
|
*
|
|
* Architecture independence:
|
|
* Copyright (c) 2005, Bull S.A.
|
|
* Written by Pierre Peiffer <pierre.peiffer@bull.net>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public Licens
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
|
|
*/
|
|
|
|
/*
|
|
* Extents support for EXT4
|
|
*
|
|
* TODO:
|
|
* - ext4*_error() should be used in some situations
|
|
* - analyze all BUG()/BUG_ON(), use -EIO where appropriate
|
|
* - smart tree reduction
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/time.h>
|
|
#include <linux/jbd2.h>
|
|
#include <linux/highuid.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/quotaops.h>
|
|
#include <linux/string.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/falloc.h>
|
|
#include <asm/uaccess.h>
|
|
#include <linux/fiemap.h>
|
|
#include "ext4_jbd2.h"
|
|
|
|
#include <trace/events/ext4.h>
|
|
|
|
/*
|
|
* used by extent splitting.
|
|
*/
|
|
#define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
|
|
due to ENOSPC */
|
|
#define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
|
|
#define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
|
|
|
|
static int ext4_split_extent(handle_t *handle,
|
|
struct inode *inode,
|
|
struct ext4_ext_path *path,
|
|
struct ext4_map_blocks *map,
|
|
int split_flag,
|
|
int flags);
|
|
|
|
static int ext4_split_extent_at(handle_t *handle,
|
|
struct inode *inode,
|
|
struct ext4_ext_path *path,
|
|
ext4_lblk_t split,
|
|
int split_flag,
|
|
int flags);
|
|
|
|
static int ext4_ext_truncate_extend_restart(handle_t *handle,
|
|
struct inode *inode,
|
|
int needed)
|
|
{
|
|
int err;
|
|
|
|
if (!ext4_handle_valid(handle))
|
|
return 0;
|
|
if (handle->h_buffer_credits > needed)
|
|
return 0;
|
|
err = ext4_journal_extend(handle, needed);
|
|
if (err <= 0)
|
|
return err;
|
|
err = ext4_truncate_restart_trans(handle, inode, needed);
|
|
if (err == 0)
|
|
err = -EAGAIN;
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* could return:
|
|
* - EROFS
|
|
* - ENOMEM
|
|
*/
|
|
static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
|
|
struct ext4_ext_path *path)
|
|
{
|
|
if (path->p_bh) {
|
|
/* path points to block */
|
|
return ext4_journal_get_write_access(handle, path->p_bh);
|
|
}
|
|
/* path points to leaf/index in inode body */
|
|
/* we use in-core data, no need to protect them */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* could return:
|
|
* - EROFS
|
|
* - ENOMEM
|
|
* - EIO
|
|
*/
|
|
#define ext4_ext_dirty(handle, inode, path) \
|
|
__ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
|
|
static int __ext4_ext_dirty(const char *where, unsigned int line,
|
|
handle_t *handle, struct inode *inode,
|
|
struct ext4_ext_path *path)
|
|
{
|
|
int err;
|
|
if (path->p_bh) {
|
|
/* path points to block */
|
|
err = __ext4_handle_dirty_metadata(where, line, handle,
|
|
inode, path->p_bh);
|
|
} else {
|
|
/* path points to leaf/index in inode body */
|
|
err = ext4_mark_inode_dirty(handle, inode);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
|
|
struct ext4_ext_path *path,
|
|
ext4_lblk_t block)
|
|
{
|
|
if (path) {
|
|
int depth = path->p_depth;
|
|
struct ext4_extent *ex;
|
|
|
|
/*
|
|
* Try to predict block placement assuming that we are
|
|
* filling in a file which will eventually be
|
|
* non-sparse --- i.e., in the case of libbfd writing
|
|
* an ELF object sections out-of-order but in a way
|
|
* the eventually results in a contiguous object or
|
|
* executable file, or some database extending a table
|
|
* space file. However, this is actually somewhat
|
|
* non-ideal if we are writing a sparse file such as
|
|
* qemu or KVM writing a raw image file that is going
|
|
* to stay fairly sparse, since it will end up
|
|
* fragmenting the file system's free space. Maybe we
|
|
* should have some hueristics or some way to allow
|
|
* userspace to pass a hint to file system,
|
|
* especially if the latter case turns out to be
|
|
* common.
|
|
*/
|
|
ex = path[depth].p_ext;
|
|
if (ex) {
|
|
ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
|
|
ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
|
|
|
|
if (block > ext_block)
|
|
return ext_pblk + (block - ext_block);
|
|
else
|
|
return ext_pblk - (ext_block - block);
|
|
}
|
|
|
|
/* it looks like index is empty;
|
|
* try to find starting block from index itself */
|
|
if (path[depth].p_bh)
|
|
return path[depth].p_bh->b_blocknr;
|
|
}
|
|
|
|
/* OK. use inode's group */
|
|
return ext4_inode_to_goal_block(inode);
|
|
}
|
|
|
|
/*
|
|
* Allocation for a meta data block
|
|
*/
|
|
static ext4_fsblk_t
|
|
ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
|
|
struct ext4_ext_path *path,
|
|
struct ext4_extent *ex, int *err, unsigned int flags)
|
|
{
|
|
ext4_fsblk_t goal, newblock;
|
|
|
|
goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
|
|
newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
|
|
NULL, err);
|
|
return newblock;
|
|
}
|
|
|
|
static inline int ext4_ext_space_block(struct inode *inode, int check)
|
|
{
|
|
int size;
|
|
|
|
size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
|
|
/ sizeof(struct ext4_extent);
|
|
#ifdef AGGRESSIVE_TEST
|
|
if (!check && size > 6)
|
|
size = 6;
|
|
#endif
|
|
return size;
|
|
}
|
|
|
|
static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
|
|
{
|
|
int size;
|
|
|
|
size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
|
|
/ sizeof(struct ext4_extent_idx);
|
|
#ifdef AGGRESSIVE_TEST
|
|
if (!check && size > 5)
|
|
size = 5;
|
|
#endif
|
|
return size;
|
|
}
|
|
|
|
static inline int ext4_ext_space_root(struct inode *inode, int check)
|
|
{
|
|
int size;
|
|
|
|
size = sizeof(EXT4_I(inode)->i_data);
|
|
size -= sizeof(struct ext4_extent_header);
|
|
size /= sizeof(struct ext4_extent);
|
|
#ifdef AGGRESSIVE_TEST
|
|
if (!check && size > 3)
|
|
size = 3;
|
|
#endif
|
|
return size;
|
|
}
|
|
|
|
static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
|
|
{
|
|
int size;
|
|
|
|
size = sizeof(EXT4_I(inode)->i_data);
|
|
size -= sizeof(struct ext4_extent_header);
|
|
size /= sizeof(struct ext4_extent_idx);
|
|
#ifdef AGGRESSIVE_TEST
|
|
if (!check && size > 4)
|
|
size = 4;
|
|
#endif
|
|
return size;
|
|
}
|
|
|
|
/*
|
|
* Calculate the number of metadata blocks needed
|
|
* to allocate @blocks
|
|
* Worse case is one block per extent
|
|
*/
|
|
int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
|
|
{
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
int idxs;
|
|
|
|
idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
|
|
/ sizeof(struct ext4_extent_idx));
|
|
|
|
/*
|
|
* If the new delayed allocation block is contiguous with the
|
|
* previous da block, it can share index blocks with the
|
|
* previous block, so we only need to allocate a new index
|
|
* block every idxs leaf blocks. At ldxs**2 blocks, we need
|
|
* an additional index block, and at ldxs**3 blocks, yet
|
|
* another index blocks.
|
|
*/
|
|
if (ei->i_da_metadata_calc_len &&
|
|
ei->i_da_metadata_calc_last_lblock+1 == lblock) {
|
|
int num = 0;
|
|
|
|
if ((ei->i_da_metadata_calc_len % idxs) == 0)
|
|
num++;
|
|
if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
|
|
num++;
|
|
if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
|
|
num++;
|
|
ei->i_da_metadata_calc_len = 0;
|
|
} else
|
|
ei->i_da_metadata_calc_len++;
|
|
ei->i_da_metadata_calc_last_lblock++;
|
|
return num;
|
|
}
|
|
|
|
/*
|
|
* In the worst case we need a new set of index blocks at
|
|
* every level of the inode's extent tree.
|
|
*/
|
|
ei->i_da_metadata_calc_len = 1;
|
|
ei->i_da_metadata_calc_last_lblock = lblock;
|
|
return ext_depth(inode) + 1;
|
|
}
|
|
|
|
static int
|
|
ext4_ext_max_entries(struct inode *inode, int depth)
|
|
{
|
|
int max;
|
|
|
|
if (depth == ext_depth(inode)) {
|
|
if (depth == 0)
|
|
max = ext4_ext_space_root(inode, 1);
|
|
else
|
|
max = ext4_ext_space_root_idx(inode, 1);
|
|
} else {
|
|
if (depth == 0)
|
|
max = ext4_ext_space_block(inode, 1);
|
|
else
|
|
max = ext4_ext_space_block_idx(inode, 1);
|
|
}
|
|
|
|
return max;
|
|
}
|
|
|
|
static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
|
|
{
|
|
ext4_fsblk_t block = ext4_ext_pblock(ext);
|
|
int len = ext4_ext_get_actual_len(ext);
|
|
|
|
if (len == 0)
|
|
return 0;
|
|
return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
|
|
}
|
|
|
|
static int ext4_valid_extent_idx(struct inode *inode,
|
|
struct ext4_extent_idx *ext_idx)
|
|
{
|
|
ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
|
|
|
|
return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
|
|
}
|
|
|
|
static int ext4_valid_extent_entries(struct inode *inode,
|
|
struct ext4_extent_header *eh,
|
|
int depth)
|
|
{
|
|
unsigned short entries;
|
|
if (eh->eh_entries == 0)
|
|
return 1;
|
|
|
|
entries = le16_to_cpu(eh->eh_entries);
|
|
|
|
if (depth == 0) {
|
|
/* leaf entries */
|
|
struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
|
|
while (entries) {
|
|
if (!ext4_valid_extent(inode, ext))
|
|
return 0;
|
|
ext++;
|
|
entries--;
|
|
}
|
|
} else {
|
|
struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
|
|
while (entries) {
|
|
if (!ext4_valid_extent_idx(inode, ext_idx))
|
|
return 0;
|
|
ext_idx++;
|
|
entries--;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int __ext4_ext_check(const char *function, unsigned int line,
|
|
struct inode *inode, struct ext4_extent_header *eh,
|
|
int depth)
|
|
{
|
|
const char *error_msg;
|
|
int max = 0;
|
|
|
|
if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
|
|
error_msg = "invalid magic";
|
|
goto corrupted;
|
|
}
|
|
if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
|
|
error_msg = "unexpected eh_depth";
|
|
goto corrupted;
|
|
}
|
|
if (unlikely(eh->eh_max == 0)) {
|
|
error_msg = "invalid eh_max";
|
|
goto corrupted;
|
|
}
|
|
max = ext4_ext_max_entries(inode, depth);
|
|
if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
|
|
error_msg = "too large eh_max";
|
|
goto corrupted;
|
|
}
|
|
if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
|
|
error_msg = "invalid eh_entries";
|
|
goto corrupted;
|
|
}
|
|
if (!ext4_valid_extent_entries(inode, eh, depth)) {
|
|
error_msg = "invalid extent entries";
|
|
goto corrupted;
|
|
}
|
|
return 0;
|
|
|
|
corrupted:
|
|
ext4_error_inode(inode, function, line, 0,
|
|
"bad header/extent: %s - magic %x, "
|
|
"entries %u, max %u(%u), depth %u(%u)",
|
|
error_msg, le16_to_cpu(eh->eh_magic),
|
|
le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
|
|
max, le16_to_cpu(eh->eh_depth), depth);
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
#define ext4_ext_check(inode, eh, depth) \
|
|
__ext4_ext_check(__func__, __LINE__, inode, eh, depth)
|
|
|
|
int ext4_ext_check_inode(struct inode *inode)
|
|
{
|
|
return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
|
|
}
|
|
|
|
static int __ext4_ext_check_block(const char *function, unsigned int line,
|
|
struct inode *inode,
|
|
struct ext4_extent_header *eh,
|
|
int depth,
|
|
struct buffer_head *bh)
|
|
{
|
|
int ret;
|
|
|
|
if (buffer_verified(bh))
|
|
return 0;
|
|
ret = ext4_ext_check(inode, eh, depth);
|
|
if (ret)
|
|
return ret;
|
|
set_buffer_verified(bh);
|
|
return ret;
|
|
}
|
|
|
|
#define ext4_ext_check_block(inode, eh, depth, bh) \
|
|
__ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
|
|
|
|
#ifdef EXT_DEBUG
|
|
static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
|
|
{
|
|
int k, l = path->p_depth;
|
|
|
|
ext_debug("path:");
|
|
for (k = 0; k <= l; k++, path++) {
|
|
if (path->p_idx) {
|
|
ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
|
|
ext4_idx_pblock(path->p_idx));
|
|
} else if (path->p_ext) {
|
|
ext_debug(" %d:[%d]%d:%llu ",
|
|
le32_to_cpu(path->p_ext->ee_block),
|
|
ext4_ext_is_uninitialized(path->p_ext),
|
|
ext4_ext_get_actual_len(path->p_ext),
|
|
ext4_ext_pblock(path->p_ext));
|
|
} else
|
|
ext_debug(" []");
|
|
}
|
|
ext_debug("\n");
|
|
}
|
|
|
|
static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
|
|
{
|
|
int depth = ext_depth(inode);
|
|
struct ext4_extent_header *eh;
|
|
struct ext4_extent *ex;
|
|
int i;
|
|
|
|
if (!path)
|
|
return;
|
|
|
|
eh = path[depth].p_hdr;
|
|
ex = EXT_FIRST_EXTENT(eh);
|
|
|
|
ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
|
|
|
|
for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
|
|
ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
|
|
ext4_ext_is_uninitialized(ex),
|
|
ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
|
|
}
|
|
ext_debug("\n");
|
|
}
|
|
|
|
static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
|
|
ext4_fsblk_t newblock, int level)
|
|
{
|
|
int depth = ext_depth(inode);
|
|
struct ext4_extent *ex;
|
|
|
|
if (depth != level) {
|
|
struct ext4_extent_idx *idx;
|
|
idx = path[level].p_idx;
|
|
while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
|
|
ext_debug("%d: move %d:%llu in new index %llu\n", level,
|
|
le32_to_cpu(idx->ei_block),
|
|
ext4_idx_pblock(idx),
|
|
newblock);
|
|
idx++;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
ex = path[depth].p_ext;
|
|
while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
|
|
ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
|
|
le32_to_cpu(ex->ee_block),
|
|
ext4_ext_pblock(ex),
|
|
ext4_ext_is_uninitialized(ex),
|
|
ext4_ext_get_actual_len(ex),
|
|
newblock);
|
|
ex++;
|
|
}
|
|
}
|
|
|
|
#else
|
|
#define ext4_ext_show_path(inode, path)
|
|
#define ext4_ext_show_leaf(inode, path)
|
|
#define ext4_ext_show_move(inode, path, newblock, level)
|
|
#endif
|
|
|
|
void ext4_ext_drop_refs(struct ext4_ext_path *path)
|
|
{
|
|
int depth = path->p_depth;
|
|
int i;
|
|
|
|
for (i = 0; i <= depth; i++, path++)
|
|
if (path->p_bh) {
|
|
brelse(path->p_bh);
|
|
path->p_bh = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_binsearch_idx:
|
|
* binary search for the closest index of the given block
|
|
* the header must be checked before calling this
|
|
*/
|
|
static void
|
|
ext4_ext_binsearch_idx(struct inode *inode,
|
|
struct ext4_ext_path *path, ext4_lblk_t block)
|
|
{
|
|
struct ext4_extent_header *eh = path->p_hdr;
|
|
struct ext4_extent_idx *r, *l, *m;
|
|
|
|
|
|
ext_debug("binsearch for %u(idx): ", block);
|
|
|
|
l = EXT_FIRST_INDEX(eh) + 1;
|
|
r = EXT_LAST_INDEX(eh);
|
|
while (l <= r) {
|
|
m = l + (r - l) / 2;
|
|
if (block < le32_to_cpu(m->ei_block))
|
|
r = m - 1;
|
|
else
|
|
l = m + 1;
|
|
ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
|
|
m, le32_to_cpu(m->ei_block),
|
|
r, le32_to_cpu(r->ei_block));
|
|
}
|
|
|
|
path->p_idx = l - 1;
|
|
ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
|
|
ext4_idx_pblock(path->p_idx));
|
|
|
|
#ifdef CHECK_BINSEARCH
|
|
{
|
|
struct ext4_extent_idx *chix, *ix;
|
|
int k;
|
|
|
|
chix = ix = EXT_FIRST_INDEX(eh);
|
|
for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
|
|
if (k != 0 &&
|
|
le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
|
|
printk(KERN_DEBUG "k=%d, ix=0x%p, "
|
|
"first=0x%p\n", k,
|
|
ix, EXT_FIRST_INDEX(eh));
|
|
printk(KERN_DEBUG "%u <= %u\n",
|
|
le32_to_cpu(ix->ei_block),
|
|
le32_to_cpu(ix[-1].ei_block));
|
|
}
|
|
BUG_ON(k && le32_to_cpu(ix->ei_block)
|
|
<= le32_to_cpu(ix[-1].ei_block));
|
|
if (block < le32_to_cpu(ix->ei_block))
|
|
break;
|
|
chix = ix;
|
|
}
|
|
BUG_ON(chix != path->p_idx);
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_binsearch:
|
|
* binary search for closest extent of the given block
|
|
* the header must be checked before calling this
|
|
*/
|
|
static void
|
|
ext4_ext_binsearch(struct inode *inode,
|
|
struct ext4_ext_path *path, ext4_lblk_t block)
|
|
{
|
|
struct ext4_extent_header *eh = path->p_hdr;
|
|
struct ext4_extent *r, *l, *m;
|
|
|
|
if (eh->eh_entries == 0) {
|
|
/*
|
|
* this leaf is empty:
|
|
* we get such a leaf in split/add case
|
|
*/
|
|
return;
|
|
}
|
|
|
|
ext_debug("binsearch for %u: ", block);
|
|
|
|
l = EXT_FIRST_EXTENT(eh) + 1;
|
|
r = EXT_LAST_EXTENT(eh);
|
|
|
|
while (l <= r) {
|
|
m = l + (r - l) / 2;
|
|
if (block < le32_to_cpu(m->ee_block))
|
|
r = m - 1;
|
|
else
|
|
l = m + 1;
|
|
ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
|
|
m, le32_to_cpu(m->ee_block),
|
|
r, le32_to_cpu(r->ee_block));
|
|
}
|
|
|
|
path->p_ext = l - 1;
|
|
ext_debug(" -> %d:%llu:[%d]%d ",
|
|
le32_to_cpu(path->p_ext->ee_block),
|
|
ext4_ext_pblock(path->p_ext),
|
|
ext4_ext_is_uninitialized(path->p_ext),
|
|
ext4_ext_get_actual_len(path->p_ext));
|
|
|
|
#ifdef CHECK_BINSEARCH
|
|
{
|
|
struct ext4_extent *chex, *ex;
|
|
int k;
|
|
|
|
chex = ex = EXT_FIRST_EXTENT(eh);
|
|
for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
|
|
BUG_ON(k && le32_to_cpu(ex->ee_block)
|
|
<= le32_to_cpu(ex[-1].ee_block));
|
|
if (block < le32_to_cpu(ex->ee_block))
|
|
break;
|
|
chex = ex;
|
|
}
|
|
BUG_ON(chex != path->p_ext);
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
|
|
{
|
|
struct ext4_extent_header *eh;
|
|
|
|
eh = ext_inode_hdr(inode);
|
|
eh->eh_depth = 0;
|
|
eh->eh_entries = 0;
|
|
eh->eh_magic = EXT4_EXT_MAGIC;
|
|
eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
|
|
ext4_mark_inode_dirty(handle, inode);
|
|
ext4_ext_invalidate_cache(inode);
|
|
return 0;
|
|
}
|
|
|
|
struct ext4_ext_path *
|
|
ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
|
|
struct ext4_ext_path *path)
|
|
{
|
|
struct ext4_extent_header *eh;
|
|
struct buffer_head *bh;
|
|
short int depth, i, ppos = 0, alloc = 0;
|
|
|
|
eh = ext_inode_hdr(inode);
|
|
depth = ext_depth(inode);
|
|
|
|
/* account possible depth increase */
|
|
if (!path) {
|
|
path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
|
|
GFP_NOFS);
|
|
if (!path)
|
|
return ERR_PTR(-ENOMEM);
|
|
alloc = 1;
|
|
}
|
|
path[0].p_hdr = eh;
|
|
path[0].p_bh = NULL;
|
|
|
|
i = depth;
|
|
/* walk through the tree */
|
|
while (i) {
|
|
ext_debug("depth %d: num %d, max %d\n",
|
|
ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
|
|
|
|
ext4_ext_binsearch_idx(inode, path + ppos, block);
|
|
path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
|
|
path[ppos].p_depth = i;
|
|
path[ppos].p_ext = NULL;
|
|
|
|
bh = sb_getblk(inode->i_sb, path[ppos].p_block);
|
|
if (unlikely(!bh))
|
|
goto err;
|
|
if (!bh_uptodate_or_lock(bh)) {
|
|
trace_ext4_ext_load_extent(inode, block,
|
|
path[ppos].p_block);
|
|
if (bh_submit_read(bh) < 0) {
|
|
put_bh(bh);
|
|
goto err;
|
|
}
|
|
}
|
|
eh = ext_block_hdr(bh);
|
|
ppos++;
|
|
if (unlikely(ppos > depth)) {
|
|
put_bh(bh);
|
|
EXT4_ERROR_INODE(inode,
|
|
"ppos %d > depth %d", ppos, depth);
|
|
goto err;
|
|
}
|
|
path[ppos].p_bh = bh;
|
|
path[ppos].p_hdr = eh;
|
|
i--;
|
|
|
|
if (ext4_ext_check_block(inode, eh, i, bh))
|
|
goto err;
|
|
}
|
|
|
|
path[ppos].p_depth = i;
|
|
path[ppos].p_ext = NULL;
|
|
path[ppos].p_idx = NULL;
|
|
|
|
/* find extent */
|
|
ext4_ext_binsearch(inode, path + ppos, block);
|
|
/* if not an empty leaf */
|
|
if (path[ppos].p_ext)
|
|
path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
|
|
|
|
ext4_ext_show_path(inode, path);
|
|
|
|
return path;
|
|
|
|
err:
|
|
ext4_ext_drop_refs(path);
|
|
if (alloc)
|
|
kfree(path);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_insert_index:
|
|
* insert new index [@logical;@ptr] into the block at @curp;
|
|
* check where to insert: before @curp or after @curp
|
|
*/
|
|
static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
|
|
struct ext4_ext_path *curp,
|
|
int logical, ext4_fsblk_t ptr)
|
|
{
|
|
struct ext4_extent_idx *ix;
|
|
int len, err;
|
|
|
|
err = ext4_ext_get_access(handle, inode, curp);
|
|
if (err)
|
|
return err;
|
|
|
|
if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
|
|
EXT4_ERROR_INODE(inode,
|
|
"logical %d == ei_block %d!",
|
|
logical, le32_to_cpu(curp->p_idx->ei_block));
|
|
return -EIO;
|
|
}
|
|
|
|
if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
|
|
>= le16_to_cpu(curp->p_hdr->eh_max))) {
|
|
EXT4_ERROR_INODE(inode,
|
|
"eh_entries %d >= eh_max %d!",
|
|
le16_to_cpu(curp->p_hdr->eh_entries),
|
|
le16_to_cpu(curp->p_hdr->eh_max));
|
|
return -EIO;
|
|
}
|
|
|
|
if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
|
|
/* insert after */
|
|
ext_debug("insert new index %d after: %llu\n", logical, ptr);
|
|
ix = curp->p_idx + 1;
|
|
} else {
|
|
/* insert before */
|
|
ext_debug("insert new index %d before: %llu\n", logical, ptr);
|
|
ix = curp->p_idx;
|
|
}
|
|
|
|
len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
|
|
BUG_ON(len < 0);
|
|
if (len > 0) {
|
|
ext_debug("insert new index %d: "
|
|
"move %d indices from 0x%p to 0x%p\n",
|
|
logical, len, ix, ix + 1);
|
|
memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
|
|
}
|
|
|
|
if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
|
|
EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
|
|
return -EIO;
|
|
}
|
|
|
|
ix->ei_block = cpu_to_le32(logical);
|
|
ext4_idx_store_pblock(ix, ptr);
|
|
le16_add_cpu(&curp->p_hdr->eh_entries, 1);
|
|
|
|
if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
|
|
EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
|
|
return -EIO;
|
|
}
|
|
|
|
err = ext4_ext_dirty(handle, inode, curp);
|
|
ext4_std_error(inode->i_sb, err);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_split:
|
|
* inserts new subtree into the path, using free index entry
|
|
* at depth @at:
|
|
* - allocates all needed blocks (new leaf and all intermediate index blocks)
|
|
* - makes decision where to split
|
|
* - moves remaining extents and index entries (right to the split point)
|
|
* into the newly allocated blocks
|
|
* - initializes subtree
|
|
*/
|
|
static int ext4_ext_split(handle_t *handle, struct inode *inode,
|
|
unsigned int flags,
|
|
struct ext4_ext_path *path,
|
|
struct ext4_extent *newext, int at)
|
|
{
|
|
struct buffer_head *bh = NULL;
|
|
int depth = ext_depth(inode);
|
|
struct ext4_extent_header *neh;
|
|
struct ext4_extent_idx *fidx;
|
|
int i = at, k, m, a;
|
|
ext4_fsblk_t newblock, oldblock;
|
|
__le32 border;
|
|
ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
|
|
int err = 0;
|
|
|
|
/* make decision: where to split? */
|
|
/* FIXME: now decision is simplest: at current extent */
|
|
|
|
/* if current leaf will be split, then we should use
|
|
* border from split point */
|
|
if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
|
|
EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
|
|
return -EIO;
|
|
}
|
|
if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
|
|
border = path[depth].p_ext[1].ee_block;
|
|
ext_debug("leaf will be split."
|
|
" next leaf starts at %d\n",
|
|
le32_to_cpu(border));
|
|
} else {
|
|
border = newext->ee_block;
|
|
ext_debug("leaf will be added."
|
|
" next leaf starts at %d\n",
|
|
le32_to_cpu(border));
|
|
}
|
|
|
|
/*
|
|
* If error occurs, then we break processing
|
|
* and mark filesystem read-only. index won't
|
|
* be inserted and tree will be in consistent
|
|
* state. Next mount will repair buffers too.
|
|
*/
|
|
|
|
/*
|
|
* Get array to track all allocated blocks.
|
|
* We need this to handle errors and free blocks
|
|
* upon them.
|
|
*/
|
|
ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
|
|
if (!ablocks)
|
|
return -ENOMEM;
|
|
|
|
/* allocate all needed blocks */
|
|
ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
|
|
for (a = 0; a < depth - at; a++) {
|
|
newblock = ext4_ext_new_meta_block(handle, inode, path,
|
|
newext, &err, flags);
|
|
if (newblock == 0)
|
|
goto cleanup;
|
|
ablocks[a] = newblock;
|
|
}
|
|
|
|
/* initialize new leaf */
|
|
newblock = ablocks[--a];
|
|
if (unlikely(newblock == 0)) {
|
|
EXT4_ERROR_INODE(inode, "newblock == 0!");
|
|
err = -EIO;
|
|
goto cleanup;
|
|
}
|
|
bh = sb_getblk(inode->i_sb, newblock);
|
|
if (!bh) {
|
|
err = -EIO;
|
|
goto cleanup;
|
|
}
|
|
lock_buffer(bh);
|
|
|
|
err = ext4_journal_get_create_access(handle, bh);
|
|
if (err)
|
|
goto cleanup;
|
|
|
|
neh = ext_block_hdr(bh);
|
|
neh->eh_entries = 0;
|
|
neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
|
|
neh->eh_magic = EXT4_EXT_MAGIC;
|
|
neh->eh_depth = 0;
|
|
|
|
/* move remainder of path[depth] to the new leaf */
|
|
if (unlikely(path[depth].p_hdr->eh_entries !=
|
|
path[depth].p_hdr->eh_max)) {
|
|
EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
|
|
path[depth].p_hdr->eh_entries,
|
|
path[depth].p_hdr->eh_max);
|
|
err = -EIO;
|
|
goto cleanup;
|
|
}
|
|
/* start copy from next extent */
|
|
m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
|
|
ext4_ext_show_move(inode, path, newblock, depth);
|
|
if (m) {
|
|
struct ext4_extent *ex;
|
|
ex = EXT_FIRST_EXTENT(neh);
|
|
memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
|
|
le16_add_cpu(&neh->eh_entries, m);
|
|
}
|
|
|
|
set_buffer_uptodate(bh);
|
|
unlock_buffer(bh);
|
|
|
|
err = ext4_handle_dirty_metadata(handle, inode, bh);
|
|
if (err)
|
|
goto cleanup;
|
|
brelse(bh);
|
|
bh = NULL;
|
|
|
|
/* correct old leaf */
|
|
if (m) {
|
|
err = ext4_ext_get_access(handle, inode, path + depth);
|
|
if (err)
|
|
goto cleanup;
|
|
le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
|
|
err = ext4_ext_dirty(handle, inode, path + depth);
|
|
if (err)
|
|
goto cleanup;
|
|
|
|
}
|
|
|
|
/* create intermediate indexes */
|
|
k = depth - at - 1;
|
|
if (unlikely(k < 0)) {
|
|
EXT4_ERROR_INODE(inode, "k %d < 0!", k);
|
|
err = -EIO;
|
|
goto cleanup;
|
|
}
|
|
if (k)
|
|
ext_debug("create %d intermediate indices\n", k);
|
|
/* insert new index into current index block */
|
|
/* current depth stored in i var */
|
|
i = depth - 1;
|
|
while (k--) {
|
|
oldblock = newblock;
|
|
newblock = ablocks[--a];
|
|
bh = sb_getblk(inode->i_sb, newblock);
|
|
if (!bh) {
|
|
err = -EIO;
|
|
goto cleanup;
|
|
}
|
|
lock_buffer(bh);
|
|
|
|
err = ext4_journal_get_create_access(handle, bh);
|
|
if (err)
|
|
goto cleanup;
|
|
|
|
neh = ext_block_hdr(bh);
|
|
neh->eh_entries = cpu_to_le16(1);
|
|
neh->eh_magic = EXT4_EXT_MAGIC;
|
|
neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
|
|
neh->eh_depth = cpu_to_le16(depth - i);
|
|
fidx = EXT_FIRST_INDEX(neh);
|
|
fidx->ei_block = border;
|
|
ext4_idx_store_pblock(fidx, oldblock);
|
|
|
|
ext_debug("int.index at %d (block %llu): %u -> %llu\n",
|
|
i, newblock, le32_to_cpu(border), oldblock);
|
|
|
|
/* move remainder of path[i] to the new index block */
|
|
if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
|
|
EXT_LAST_INDEX(path[i].p_hdr))) {
|
|
EXT4_ERROR_INODE(inode,
|
|
"EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
|
|
le32_to_cpu(path[i].p_ext->ee_block));
|
|
err = -EIO;
|
|
goto cleanup;
|
|
}
|
|
/* start copy indexes */
|
|
m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
|
|
ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
|
|
EXT_MAX_INDEX(path[i].p_hdr));
|
|
ext4_ext_show_move(inode, path, newblock, i);
|
|
if (m) {
|
|
memmove(++fidx, path[i].p_idx,
|
|
sizeof(struct ext4_extent_idx) * m);
|
|
le16_add_cpu(&neh->eh_entries, m);
|
|
}
|
|
set_buffer_uptodate(bh);
|
|
unlock_buffer(bh);
|
|
|
|
err = ext4_handle_dirty_metadata(handle, inode, bh);
|
|
if (err)
|
|
goto cleanup;
|
|
brelse(bh);
|
|
bh = NULL;
|
|
|
|
/* correct old index */
|
|
if (m) {
|
|
err = ext4_ext_get_access(handle, inode, path + i);
|
|
if (err)
|
|
goto cleanup;
|
|
le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
|
|
err = ext4_ext_dirty(handle, inode, path + i);
|
|
if (err)
|
|
goto cleanup;
|
|
}
|
|
|
|
i--;
|
|
}
|
|
|
|
/* insert new index */
|
|
err = ext4_ext_insert_index(handle, inode, path + at,
|
|
le32_to_cpu(border), newblock);
|
|
|
|
cleanup:
|
|
if (bh) {
|
|
if (buffer_locked(bh))
|
|
unlock_buffer(bh);
|
|
brelse(bh);
|
|
}
|
|
|
|
if (err) {
|
|
/* free all allocated blocks in error case */
|
|
for (i = 0; i < depth; i++) {
|
|
if (!ablocks[i])
|
|
continue;
|
|
ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
|
|
EXT4_FREE_BLOCKS_METADATA);
|
|
}
|
|
}
|
|
kfree(ablocks);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_grow_indepth:
|
|
* implements tree growing procedure:
|
|
* - allocates new block
|
|
* - moves top-level data (index block or leaf) into the new block
|
|
* - initializes new top-level, creating index that points to the
|
|
* just created block
|
|
*/
|
|
static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
|
|
unsigned int flags,
|
|
struct ext4_extent *newext)
|
|
{
|
|
struct ext4_extent_header *neh;
|
|
struct buffer_head *bh;
|
|
ext4_fsblk_t newblock;
|
|
int err = 0;
|
|
|
|
newblock = ext4_ext_new_meta_block(handle, inode, NULL,
|
|
newext, &err, flags);
|
|
if (newblock == 0)
|
|
return err;
|
|
|
|
bh = sb_getblk(inode->i_sb, newblock);
|
|
if (!bh) {
|
|
err = -EIO;
|
|
ext4_std_error(inode->i_sb, err);
|
|
return err;
|
|
}
|
|
lock_buffer(bh);
|
|
|
|
err = ext4_journal_get_create_access(handle, bh);
|
|
if (err) {
|
|
unlock_buffer(bh);
|
|
goto out;
|
|
}
|
|
|
|
/* move top-level index/leaf into new block */
|
|
memmove(bh->b_data, EXT4_I(inode)->i_data,
|
|
sizeof(EXT4_I(inode)->i_data));
|
|
|
|
/* set size of new block */
|
|
neh = ext_block_hdr(bh);
|
|
/* old root could have indexes or leaves
|
|
* so calculate e_max right way */
|
|
if (ext_depth(inode))
|
|
neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
|
|
else
|
|
neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
|
|
neh->eh_magic = EXT4_EXT_MAGIC;
|
|
set_buffer_uptodate(bh);
|
|
unlock_buffer(bh);
|
|
|
|
err = ext4_handle_dirty_metadata(handle, inode, bh);
|
|
if (err)
|
|
goto out;
|
|
|
|
/* Update top-level index: num,max,pointer */
|
|
neh = ext_inode_hdr(inode);
|
|
neh->eh_entries = cpu_to_le16(1);
|
|
ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
|
|
if (neh->eh_depth == 0) {
|
|
/* Root extent block becomes index block */
|
|
neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
|
|
EXT_FIRST_INDEX(neh)->ei_block =
|
|
EXT_FIRST_EXTENT(neh)->ee_block;
|
|
}
|
|
ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
|
|
le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
|
|
le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
|
|
ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
|
|
|
|
neh->eh_depth = cpu_to_le16(le16_to_cpu(neh->eh_depth) + 1);
|
|
ext4_mark_inode_dirty(handle, inode);
|
|
out:
|
|
brelse(bh);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_create_new_leaf:
|
|
* finds empty index and adds new leaf.
|
|
* if no free index is found, then it requests in-depth growing.
|
|
*/
|
|
static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
|
|
unsigned int flags,
|
|
struct ext4_ext_path *path,
|
|
struct ext4_extent *newext)
|
|
{
|
|
struct ext4_ext_path *curp;
|
|
int depth, i, err = 0;
|
|
|
|
repeat:
|
|
i = depth = ext_depth(inode);
|
|
|
|
/* walk up to the tree and look for free index entry */
|
|
curp = path + depth;
|
|
while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
|
|
i--;
|
|
curp--;
|
|
}
|
|
|
|
/* we use already allocated block for index block,
|
|
* so subsequent data blocks should be contiguous */
|
|
if (EXT_HAS_FREE_INDEX(curp)) {
|
|
/* if we found index with free entry, then use that
|
|
* entry: create all needed subtree and add new leaf */
|
|
err = ext4_ext_split(handle, inode, flags, path, newext, i);
|
|
if (err)
|
|
goto out;
|
|
|
|
/* refill path */
|
|
ext4_ext_drop_refs(path);
|
|
path = ext4_ext_find_extent(inode,
|
|
(ext4_lblk_t)le32_to_cpu(newext->ee_block),
|
|
path);
|
|
if (IS_ERR(path))
|
|
err = PTR_ERR(path);
|
|
} else {
|
|
/* tree is full, time to grow in depth */
|
|
err = ext4_ext_grow_indepth(handle, inode, flags, newext);
|
|
if (err)
|
|
goto out;
|
|
|
|
/* refill path */
|
|
ext4_ext_drop_refs(path);
|
|
path = ext4_ext_find_extent(inode,
|
|
(ext4_lblk_t)le32_to_cpu(newext->ee_block),
|
|
path);
|
|
if (IS_ERR(path)) {
|
|
err = PTR_ERR(path);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* only first (depth 0 -> 1) produces free space;
|
|
* in all other cases we have to split the grown tree
|
|
*/
|
|
depth = ext_depth(inode);
|
|
if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
|
|
/* now we need to split */
|
|
goto repeat;
|
|
}
|
|
}
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* search the closest allocated block to the left for *logical
|
|
* and returns it at @logical + it's physical address at @phys
|
|
* if *logical is the smallest allocated block, the function
|
|
* returns 0 at @phys
|
|
* return value contains 0 (success) or error code
|
|
*/
|
|
static int ext4_ext_search_left(struct inode *inode,
|
|
struct ext4_ext_path *path,
|
|
ext4_lblk_t *logical, ext4_fsblk_t *phys)
|
|
{
|
|
struct ext4_extent_idx *ix;
|
|
struct ext4_extent *ex;
|
|
int depth, ee_len;
|
|
|
|
if (unlikely(path == NULL)) {
|
|
EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
|
|
return -EIO;
|
|
}
|
|
depth = path->p_depth;
|
|
*phys = 0;
|
|
|
|
if (depth == 0 && path->p_ext == NULL)
|
|
return 0;
|
|
|
|
/* usually extent in the path covers blocks smaller
|
|
* then *logical, but it can be that extent is the
|
|
* first one in the file */
|
|
|
|
ex = path[depth].p_ext;
|
|
ee_len = ext4_ext_get_actual_len(ex);
|
|
if (*logical < le32_to_cpu(ex->ee_block)) {
|
|
if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
|
|
EXT4_ERROR_INODE(inode,
|
|
"EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
|
|
*logical, le32_to_cpu(ex->ee_block));
|
|
return -EIO;
|
|
}
|
|
while (--depth >= 0) {
|
|
ix = path[depth].p_idx;
|
|
if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
|
|
EXT4_ERROR_INODE(inode,
|
|
"ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
|
|
ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
|
|
EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
|
|
le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
|
|
depth);
|
|
return -EIO;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
|
|
EXT4_ERROR_INODE(inode,
|
|
"logical %d < ee_block %d + ee_len %d!",
|
|
*logical, le32_to_cpu(ex->ee_block), ee_len);
|
|
return -EIO;
|
|
}
|
|
|
|
*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
|
|
*phys = ext4_ext_pblock(ex) + ee_len - 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* search the closest allocated block to the right for *logical
|
|
* and returns it at @logical + it's physical address at @phys
|
|
* if *logical is the largest allocated block, the function
|
|
* returns 0 at @phys
|
|
* return value contains 0 (success) or error code
|
|
*/
|
|
static int ext4_ext_search_right(struct inode *inode,
|
|
struct ext4_ext_path *path,
|
|
ext4_lblk_t *logical, ext4_fsblk_t *phys,
|
|
struct ext4_extent **ret_ex)
|
|
{
|
|
struct buffer_head *bh = NULL;
|
|
struct ext4_extent_header *eh;
|
|
struct ext4_extent_idx *ix;
|
|
struct ext4_extent *ex;
|
|
ext4_fsblk_t block;
|
|
int depth; /* Note, NOT eh_depth; depth from top of tree */
|
|
int ee_len;
|
|
|
|
if (unlikely(path == NULL)) {
|
|
EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
|
|
return -EIO;
|
|
}
|
|
depth = path->p_depth;
|
|
*phys = 0;
|
|
|
|
if (depth == 0 && path->p_ext == NULL)
|
|
return 0;
|
|
|
|
/* usually extent in the path covers blocks smaller
|
|
* then *logical, but it can be that extent is the
|
|
* first one in the file */
|
|
|
|
ex = path[depth].p_ext;
|
|
ee_len = ext4_ext_get_actual_len(ex);
|
|
if (*logical < le32_to_cpu(ex->ee_block)) {
|
|
if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
|
|
EXT4_ERROR_INODE(inode,
|
|
"first_extent(path[%d].p_hdr) != ex",
|
|
depth);
|
|
return -EIO;
|
|
}
|
|
while (--depth >= 0) {
|
|
ix = path[depth].p_idx;
|
|
if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
|
|
EXT4_ERROR_INODE(inode,
|
|
"ix != EXT_FIRST_INDEX *logical %d!",
|
|
*logical);
|
|
return -EIO;
|
|
}
|
|
}
|
|
goto found_extent;
|
|
}
|
|
|
|
if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
|
|
EXT4_ERROR_INODE(inode,
|
|
"logical %d < ee_block %d + ee_len %d!",
|
|
*logical, le32_to_cpu(ex->ee_block), ee_len);
|
|
return -EIO;
|
|
}
|
|
|
|
if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
|
|
/* next allocated block in this leaf */
|
|
ex++;
|
|
goto found_extent;
|
|
}
|
|
|
|
/* go up and search for index to the right */
|
|
while (--depth >= 0) {
|
|
ix = path[depth].p_idx;
|
|
if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
|
|
goto got_index;
|
|
}
|
|
|
|
/* we've gone up to the root and found no index to the right */
|
|
return 0;
|
|
|
|
got_index:
|
|
/* we've found index to the right, let's
|
|
* follow it and find the closest allocated
|
|
* block to the right */
|
|
ix++;
|
|
block = ext4_idx_pblock(ix);
|
|
while (++depth < path->p_depth) {
|
|
bh = sb_bread(inode->i_sb, block);
|
|
if (bh == NULL)
|
|
return -EIO;
|
|
eh = ext_block_hdr(bh);
|
|
/* subtract from p_depth to get proper eh_depth */
|
|
if (ext4_ext_check_block(inode, eh,
|
|
path->p_depth - depth, bh)) {
|
|
put_bh(bh);
|
|
return -EIO;
|
|
}
|
|
ix = EXT_FIRST_INDEX(eh);
|
|
block = ext4_idx_pblock(ix);
|
|
put_bh(bh);
|
|
}
|
|
|
|
bh = sb_bread(inode->i_sb, block);
|
|
if (bh == NULL)
|
|
return -EIO;
|
|
eh = ext_block_hdr(bh);
|
|
if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) {
|
|
put_bh(bh);
|
|
return -EIO;
|
|
}
|
|
ex = EXT_FIRST_EXTENT(eh);
|
|
found_extent:
|
|
*logical = le32_to_cpu(ex->ee_block);
|
|
*phys = ext4_ext_pblock(ex);
|
|
*ret_ex = ex;
|
|
if (bh)
|
|
put_bh(bh);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_next_allocated_block:
|
|
* returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
|
|
* NOTE: it considers block number from index entry as
|
|
* allocated block. Thus, index entries have to be consistent
|
|
* with leaves.
|
|
*/
|
|
static ext4_lblk_t
|
|
ext4_ext_next_allocated_block(struct ext4_ext_path *path)
|
|
{
|
|
int depth;
|
|
|
|
BUG_ON(path == NULL);
|
|
depth = path->p_depth;
|
|
|
|
if (depth == 0 && path->p_ext == NULL)
|
|
return EXT_MAX_BLOCKS;
|
|
|
|
while (depth >= 0) {
|
|
if (depth == path->p_depth) {
|
|
/* leaf */
|
|
if (path[depth].p_ext &&
|
|
path[depth].p_ext !=
|
|
EXT_LAST_EXTENT(path[depth].p_hdr))
|
|
return le32_to_cpu(path[depth].p_ext[1].ee_block);
|
|
} else {
|
|
/* index */
|
|
if (path[depth].p_idx !=
|
|
EXT_LAST_INDEX(path[depth].p_hdr))
|
|
return le32_to_cpu(path[depth].p_idx[1].ei_block);
|
|
}
|
|
depth--;
|
|
}
|
|
|
|
return EXT_MAX_BLOCKS;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_next_leaf_block:
|
|
* returns first allocated block from next leaf or EXT_MAX_BLOCKS
|
|
*/
|
|
static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
|
|
{
|
|
int depth;
|
|
|
|
BUG_ON(path == NULL);
|
|
depth = path->p_depth;
|
|
|
|
/* zero-tree has no leaf blocks at all */
|
|
if (depth == 0)
|
|
return EXT_MAX_BLOCKS;
|
|
|
|
/* go to index block */
|
|
depth--;
|
|
|
|
while (depth >= 0) {
|
|
if (path[depth].p_idx !=
|
|
EXT_LAST_INDEX(path[depth].p_hdr))
|
|
return (ext4_lblk_t)
|
|
le32_to_cpu(path[depth].p_idx[1].ei_block);
|
|
depth--;
|
|
}
|
|
|
|
return EXT_MAX_BLOCKS;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_correct_indexes:
|
|
* if leaf gets modified and modified extent is first in the leaf,
|
|
* then we have to correct all indexes above.
|
|
* TODO: do we need to correct tree in all cases?
|
|
*/
|
|
static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
|
|
struct ext4_ext_path *path)
|
|
{
|
|
struct ext4_extent_header *eh;
|
|
int depth = ext_depth(inode);
|
|
struct ext4_extent *ex;
|
|
__le32 border;
|
|
int k, err = 0;
|
|
|
|
eh = path[depth].p_hdr;
|
|
ex = path[depth].p_ext;
|
|
|
|
if (unlikely(ex == NULL || eh == NULL)) {
|
|
EXT4_ERROR_INODE(inode,
|
|
"ex %p == NULL or eh %p == NULL", ex, eh);
|
|
return -EIO;
|
|
}
|
|
|
|
if (depth == 0) {
|
|
/* there is no tree at all */
|
|
return 0;
|
|
}
|
|
|
|
if (ex != EXT_FIRST_EXTENT(eh)) {
|
|
/* we correct tree if first leaf got modified only */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* TODO: we need correction if border is smaller than current one
|
|
*/
|
|
k = depth - 1;
|
|
border = path[depth].p_ext->ee_block;
|
|
err = ext4_ext_get_access(handle, inode, path + k);
|
|
if (err)
|
|
return err;
|
|
path[k].p_idx->ei_block = border;
|
|
err = ext4_ext_dirty(handle, inode, path + k);
|
|
if (err)
|
|
return err;
|
|
|
|
while (k--) {
|
|
/* change all left-side indexes */
|
|
if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
|
|
break;
|
|
err = ext4_ext_get_access(handle, inode, path + k);
|
|
if (err)
|
|
break;
|
|
path[k].p_idx->ei_block = border;
|
|
err = ext4_ext_dirty(handle, inode, path + k);
|
|
if (err)
|
|
break;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
int
|
|
ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
|
|
struct ext4_extent *ex2)
|
|
{
|
|
unsigned short ext1_ee_len, ext2_ee_len, max_len;
|
|
|
|
/*
|
|
* Make sure that either both extents are uninitialized, or
|
|
* both are _not_.
|
|
*/
|
|
if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
|
|
return 0;
|
|
|
|
if (ext4_ext_is_uninitialized(ex1))
|
|
max_len = EXT_UNINIT_MAX_LEN;
|
|
else
|
|
max_len = EXT_INIT_MAX_LEN;
|
|
|
|
ext1_ee_len = ext4_ext_get_actual_len(ex1);
|
|
ext2_ee_len = ext4_ext_get_actual_len(ex2);
|
|
|
|
if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
|
|
le32_to_cpu(ex2->ee_block))
|
|
return 0;
|
|
|
|
/*
|
|
* To allow future support for preallocated extents to be added
|
|
* as an RO_COMPAT feature, refuse to merge to extents if
|
|
* this can result in the top bit of ee_len being set.
|
|
*/
|
|
if (ext1_ee_len + ext2_ee_len > max_len)
|
|
return 0;
|
|
#ifdef AGGRESSIVE_TEST
|
|
if (ext1_ee_len >= 4)
|
|
return 0;
|
|
#endif
|
|
|
|
if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function tries to merge the "ex" extent to the next extent in the tree.
|
|
* It always tries to merge towards right. If you want to merge towards
|
|
* left, pass "ex - 1" as argument instead of "ex".
|
|
* Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
|
|
* 1 if they got merged.
|
|
*/
|
|
static int ext4_ext_try_to_merge_right(struct inode *inode,
|
|
struct ext4_ext_path *path,
|
|
struct ext4_extent *ex)
|
|
{
|
|
struct ext4_extent_header *eh;
|
|
unsigned int depth, len;
|
|
int merge_done = 0;
|
|
int uninitialized = 0;
|
|
|
|
depth = ext_depth(inode);
|
|
BUG_ON(path[depth].p_hdr == NULL);
|
|
eh = path[depth].p_hdr;
|
|
|
|
while (ex < EXT_LAST_EXTENT(eh)) {
|
|
if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
|
|
break;
|
|
/* merge with next extent! */
|
|
if (ext4_ext_is_uninitialized(ex))
|
|
uninitialized = 1;
|
|
ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
|
|
+ ext4_ext_get_actual_len(ex + 1));
|
|
if (uninitialized)
|
|
ext4_ext_mark_uninitialized(ex);
|
|
|
|
if (ex + 1 < EXT_LAST_EXTENT(eh)) {
|
|
len = (EXT_LAST_EXTENT(eh) - ex - 1)
|
|
* sizeof(struct ext4_extent);
|
|
memmove(ex + 1, ex + 2, len);
|
|
}
|
|
le16_add_cpu(&eh->eh_entries, -1);
|
|
merge_done = 1;
|
|
WARN_ON(eh->eh_entries == 0);
|
|
if (!eh->eh_entries)
|
|
EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
|
|
}
|
|
|
|
return merge_done;
|
|
}
|
|
|
|
/*
|
|
* This function tries to merge the @ex extent to neighbours in the tree.
|
|
* return 1 if merge left else 0.
|
|
*/
|
|
static int ext4_ext_try_to_merge(struct inode *inode,
|
|
struct ext4_ext_path *path,
|
|
struct ext4_extent *ex) {
|
|
struct ext4_extent_header *eh;
|
|
unsigned int depth;
|
|
int merge_done = 0;
|
|
int ret = 0;
|
|
|
|
depth = ext_depth(inode);
|
|
BUG_ON(path[depth].p_hdr == NULL);
|
|
eh = path[depth].p_hdr;
|
|
|
|
if (ex > EXT_FIRST_EXTENT(eh))
|
|
merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
|
|
|
|
if (!merge_done)
|
|
ret = ext4_ext_try_to_merge_right(inode, path, ex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* check if a portion of the "newext" extent overlaps with an
|
|
* existing extent.
|
|
*
|
|
* If there is an overlap discovered, it updates the length of the newext
|
|
* such that there will be no overlap, and then returns 1.
|
|
* If there is no overlap found, it returns 0.
|
|
*/
|
|
static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
|
|
struct inode *inode,
|
|
struct ext4_extent *newext,
|
|
struct ext4_ext_path *path)
|
|
{
|
|
ext4_lblk_t b1, b2;
|
|
unsigned int depth, len1;
|
|
unsigned int ret = 0;
|
|
|
|
b1 = le32_to_cpu(newext->ee_block);
|
|
len1 = ext4_ext_get_actual_len(newext);
|
|
depth = ext_depth(inode);
|
|
if (!path[depth].p_ext)
|
|
goto out;
|
|
b2 = le32_to_cpu(path[depth].p_ext->ee_block);
|
|
b2 &= ~(sbi->s_cluster_ratio - 1);
|
|
|
|
/*
|
|
* get the next allocated block if the extent in the path
|
|
* is before the requested block(s)
|
|
*/
|
|
if (b2 < b1) {
|
|
b2 = ext4_ext_next_allocated_block(path);
|
|
if (b2 == EXT_MAX_BLOCKS)
|
|
goto out;
|
|
b2 &= ~(sbi->s_cluster_ratio - 1);
|
|
}
|
|
|
|
/* check for wrap through zero on extent logical start block*/
|
|
if (b1 + len1 < b1) {
|
|
len1 = EXT_MAX_BLOCKS - b1;
|
|
newext->ee_len = cpu_to_le16(len1);
|
|
ret = 1;
|
|
}
|
|
|
|
/* check for overlap */
|
|
if (b1 + len1 > b2) {
|
|
newext->ee_len = cpu_to_le16(b2 - b1);
|
|
ret = 1;
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_insert_extent:
|
|
* tries to merge requsted extent into the existing extent or
|
|
* inserts requested extent as new one into the tree,
|
|
* creating new leaf in the no-space case.
|
|
*/
|
|
int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
|
|
struct ext4_ext_path *path,
|
|
struct ext4_extent *newext, int flag)
|
|
{
|
|
struct ext4_extent_header *eh;
|
|
struct ext4_extent *ex, *fex;
|
|
struct ext4_extent *nearex; /* nearest extent */
|
|
struct ext4_ext_path *npath = NULL;
|
|
int depth, len, err;
|
|
ext4_lblk_t next;
|
|
unsigned uninitialized = 0;
|
|
int flags = 0;
|
|
|
|
if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
|
|
EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
|
|
return -EIO;
|
|
}
|
|
depth = ext_depth(inode);
|
|
ex = path[depth].p_ext;
|
|
if (unlikely(path[depth].p_hdr == NULL)) {
|
|
EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
|
|
return -EIO;
|
|
}
|
|
|
|
/* try to insert block into found extent and return */
|
|
if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
|
|
&& ext4_can_extents_be_merged(inode, ex, newext)) {
|
|
ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
|
|
ext4_ext_is_uninitialized(newext),
|
|
ext4_ext_get_actual_len(newext),
|
|
le32_to_cpu(ex->ee_block),
|
|
ext4_ext_is_uninitialized(ex),
|
|
ext4_ext_get_actual_len(ex),
|
|
ext4_ext_pblock(ex));
|
|
err = ext4_ext_get_access(handle, inode, path + depth);
|
|
if (err)
|
|
return err;
|
|
|
|
/*
|
|
* ext4_can_extents_be_merged should have checked that either
|
|
* both extents are uninitialized, or both aren't. Thus we
|
|
* need to check only one of them here.
|
|
*/
|
|
if (ext4_ext_is_uninitialized(ex))
|
|
uninitialized = 1;
|
|
ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
|
|
+ ext4_ext_get_actual_len(newext));
|
|
if (uninitialized)
|
|
ext4_ext_mark_uninitialized(ex);
|
|
eh = path[depth].p_hdr;
|
|
nearex = ex;
|
|
goto merge;
|
|
}
|
|
|
|
depth = ext_depth(inode);
|
|
eh = path[depth].p_hdr;
|
|
if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
|
|
goto has_space;
|
|
|
|
/* probably next leaf has space for us? */
|
|
fex = EXT_LAST_EXTENT(eh);
|
|
next = EXT_MAX_BLOCKS;
|
|
if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
|
|
next = ext4_ext_next_leaf_block(path);
|
|
if (next != EXT_MAX_BLOCKS) {
|
|
ext_debug("next leaf block - %u\n", next);
|
|
BUG_ON(npath != NULL);
|
|
npath = ext4_ext_find_extent(inode, next, NULL);
|
|
if (IS_ERR(npath))
|
|
return PTR_ERR(npath);
|
|
BUG_ON(npath->p_depth != path->p_depth);
|
|
eh = npath[depth].p_hdr;
|
|
if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
|
|
ext_debug("next leaf isn't full(%d)\n",
|
|
le16_to_cpu(eh->eh_entries));
|
|
path = npath;
|
|
goto has_space;
|
|
}
|
|
ext_debug("next leaf has no free space(%d,%d)\n",
|
|
le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
|
|
}
|
|
|
|
/*
|
|
* There is no free space in the found leaf.
|
|
* We're gonna add a new leaf in the tree.
|
|
*/
|
|
if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
|
|
flags = EXT4_MB_USE_ROOT_BLOCKS;
|
|
err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
|
|
if (err)
|
|
goto cleanup;
|
|
depth = ext_depth(inode);
|
|
eh = path[depth].p_hdr;
|
|
|
|
has_space:
|
|
nearex = path[depth].p_ext;
|
|
|
|
err = ext4_ext_get_access(handle, inode, path + depth);
|
|
if (err)
|
|
goto cleanup;
|
|
|
|
if (!nearex) {
|
|
/* there is no extent in this leaf, create first one */
|
|
ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
|
|
le32_to_cpu(newext->ee_block),
|
|
ext4_ext_pblock(newext),
|
|
ext4_ext_is_uninitialized(newext),
|
|
ext4_ext_get_actual_len(newext));
|
|
nearex = EXT_FIRST_EXTENT(eh);
|
|
} else {
|
|
if (le32_to_cpu(newext->ee_block)
|
|
> le32_to_cpu(nearex->ee_block)) {
|
|
/* Insert after */
|
|
ext_debug("insert %u:%llu:[%d]%d before: "
|
|
"nearest %p\n",
|
|
le32_to_cpu(newext->ee_block),
|
|
ext4_ext_pblock(newext),
|
|
ext4_ext_is_uninitialized(newext),
|
|
ext4_ext_get_actual_len(newext),
|
|
nearex);
|
|
nearex++;
|
|
} else {
|
|
/* Insert before */
|
|
BUG_ON(newext->ee_block == nearex->ee_block);
|
|
ext_debug("insert %u:%llu:[%d]%d after: "
|
|
"nearest %p\n",
|
|
le32_to_cpu(newext->ee_block),
|
|
ext4_ext_pblock(newext),
|
|
ext4_ext_is_uninitialized(newext),
|
|
ext4_ext_get_actual_len(newext),
|
|
nearex);
|
|
}
|
|
len = EXT_LAST_EXTENT(eh) - nearex + 1;
|
|
if (len > 0) {
|
|
ext_debug("insert %u:%llu:[%d]%d: "
|
|
"move %d extents from 0x%p to 0x%p\n",
|
|
le32_to_cpu(newext->ee_block),
|
|
ext4_ext_pblock(newext),
|
|
ext4_ext_is_uninitialized(newext),
|
|
ext4_ext_get_actual_len(newext),
|
|
len, nearex, nearex + 1);
|
|
memmove(nearex + 1, nearex,
|
|
len * sizeof(struct ext4_extent));
|
|
}
|
|
}
|
|
|
|
le16_add_cpu(&eh->eh_entries, 1);
|
|
path[depth].p_ext = nearex;
|
|
nearex->ee_block = newext->ee_block;
|
|
ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
|
|
nearex->ee_len = newext->ee_len;
|
|
|
|
merge:
|
|
/* try to merge extents to the right */
|
|
if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
|
|
ext4_ext_try_to_merge(inode, path, nearex);
|
|
|
|
/* try to merge extents to the left */
|
|
|
|
/* time to correct all indexes above */
|
|
err = ext4_ext_correct_indexes(handle, inode, path);
|
|
if (err)
|
|
goto cleanup;
|
|
|
|
err = ext4_ext_dirty(handle, inode, path + depth);
|
|
|
|
cleanup:
|
|
if (npath) {
|
|
ext4_ext_drop_refs(npath);
|
|
kfree(npath);
|
|
}
|
|
ext4_ext_invalidate_cache(inode);
|
|
return err;
|
|
}
|
|
|
|
static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
|
|
ext4_lblk_t num, ext_prepare_callback func,
|
|
void *cbdata)
|
|
{
|
|
struct ext4_ext_path *path = NULL;
|
|
struct ext4_ext_cache cbex;
|
|
struct ext4_extent *ex;
|
|
ext4_lblk_t next, start = 0, end = 0;
|
|
ext4_lblk_t last = block + num;
|
|
int depth, exists, err = 0;
|
|
|
|
BUG_ON(func == NULL);
|
|
BUG_ON(inode == NULL);
|
|
|
|
while (block < last && block != EXT_MAX_BLOCKS) {
|
|
num = last - block;
|
|
/* find extent for this block */
|
|
down_read(&EXT4_I(inode)->i_data_sem);
|
|
path = ext4_ext_find_extent(inode, block, path);
|
|
up_read(&EXT4_I(inode)->i_data_sem);
|
|
if (IS_ERR(path)) {
|
|
err = PTR_ERR(path);
|
|
path = NULL;
|
|
break;
|
|
}
|
|
|
|
depth = ext_depth(inode);
|
|
if (unlikely(path[depth].p_hdr == NULL)) {
|
|
EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
|
|
err = -EIO;
|
|
break;
|
|
}
|
|
ex = path[depth].p_ext;
|
|
next = ext4_ext_next_allocated_block(path);
|
|
|
|
exists = 0;
|
|
if (!ex) {
|
|
/* there is no extent yet, so try to allocate
|
|
* all requested space */
|
|
start = block;
|
|
end = block + num;
|
|
} else if (le32_to_cpu(ex->ee_block) > block) {
|
|
/* need to allocate space before found extent */
|
|
start = block;
|
|
end = le32_to_cpu(ex->ee_block);
|
|
if (block + num < end)
|
|
end = block + num;
|
|
} else if (block >= le32_to_cpu(ex->ee_block)
|
|
+ ext4_ext_get_actual_len(ex)) {
|
|
/* need to allocate space after found extent */
|
|
start = block;
|
|
end = block + num;
|
|
if (end >= next)
|
|
end = next;
|
|
} else if (block >= le32_to_cpu(ex->ee_block)) {
|
|
/*
|
|
* some part of requested space is covered
|
|
* by found extent
|
|
*/
|
|
start = block;
|
|
end = le32_to_cpu(ex->ee_block)
|
|
+ ext4_ext_get_actual_len(ex);
|
|
if (block + num < end)
|
|
end = block + num;
|
|
exists = 1;
|
|
} else {
|
|
BUG();
|
|
}
|
|
BUG_ON(end <= start);
|
|
|
|
if (!exists) {
|
|
cbex.ec_block = start;
|
|
cbex.ec_len = end - start;
|
|
cbex.ec_start = 0;
|
|
} else {
|
|
cbex.ec_block = le32_to_cpu(ex->ee_block);
|
|
cbex.ec_len = ext4_ext_get_actual_len(ex);
|
|
cbex.ec_start = ext4_ext_pblock(ex);
|
|
}
|
|
|
|
if (unlikely(cbex.ec_len == 0)) {
|
|
EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
|
|
err = -EIO;
|
|
break;
|
|
}
|
|
err = func(inode, next, &cbex, ex, cbdata);
|
|
ext4_ext_drop_refs(path);
|
|
|
|
if (err < 0)
|
|
break;
|
|
|
|
if (err == EXT_REPEAT)
|
|
continue;
|
|
else if (err == EXT_BREAK) {
|
|
err = 0;
|
|
break;
|
|
}
|
|
|
|
if (ext_depth(inode) != depth) {
|
|
/* depth was changed. we have to realloc path */
|
|
kfree(path);
|
|
path = NULL;
|
|
}
|
|
|
|
block = cbex.ec_block + cbex.ec_len;
|
|
}
|
|
|
|
if (path) {
|
|
ext4_ext_drop_refs(path);
|
|
kfree(path);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
|
|
__u32 len, ext4_fsblk_t start)
|
|
{
|
|
struct ext4_ext_cache *cex;
|
|
BUG_ON(len == 0);
|
|
spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
|
|
trace_ext4_ext_put_in_cache(inode, block, len, start);
|
|
cex = &EXT4_I(inode)->i_cached_extent;
|
|
cex->ec_block = block;
|
|
cex->ec_len = len;
|
|
cex->ec_start = start;
|
|
spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_put_gap_in_cache:
|
|
* calculate boundaries of the gap that the requested block fits into
|
|
* and cache this gap
|
|
*/
|
|
static void
|
|
ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
|
|
ext4_lblk_t block)
|
|
{
|
|
int depth = ext_depth(inode);
|
|
unsigned long len;
|
|
ext4_lblk_t lblock;
|
|
struct ext4_extent *ex;
|
|
|
|
ex = path[depth].p_ext;
|
|
if (ex == NULL) {
|
|
/* there is no extent yet, so gap is [0;-] */
|
|
lblock = 0;
|
|
len = EXT_MAX_BLOCKS;
|
|
ext_debug("cache gap(whole file):");
|
|
} else if (block < le32_to_cpu(ex->ee_block)) {
|
|
lblock = block;
|
|
len = le32_to_cpu(ex->ee_block) - block;
|
|
ext_debug("cache gap(before): %u [%u:%u]",
|
|
block,
|
|
le32_to_cpu(ex->ee_block),
|
|
ext4_ext_get_actual_len(ex));
|
|
} else if (block >= le32_to_cpu(ex->ee_block)
|
|
+ ext4_ext_get_actual_len(ex)) {
|
|
ext4_lblk_t next;
|
|
lblock = le32_to_cpu(ex->ee_block)
|
|
+ ext4_ext_get_actual_len(ex);
|
|
|
|
next = ext4_ext_next_allocated_block(path);
|
|
ext_debug("cache gap(after): [%u:%u] %u",
|
|
le32_to_cpu(ex->ee_block),
|
|
ext4_ext_get_actual_len(ex),
|
|
block);
|
|
BUG_ON(next == lblock);
|
|
len = next - lblock;
|
|
} else {
|
|
lblock = len = 0;
|
|
BUG();
|
|
}
|
|
|
|
ext_debug(" -> %u:%lu\n", lblock, len);
|
|
ext4_ext_put_in_cache(inode, lblock, len, 0);
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_check_cache()
|
|
* Checks to see if the given block is in the cache.
|
|
* If it is, the cached extent is stored in the given
|
|
* cache extent pointer. If the cached extent is a hole,
|
|
* this routine should be used instead of
|
|
* ext4_ext_in_cache if the calling function needs to
|
|
* know the size of the hole.
|
|
*
|
|
* @inode: The files inode
|
|
* @block: The block to look for in the cache
|
|
* @ex: Pointer where the cached extent will be stored
|
|
* if it contains block
|
|
*
|
|
* Return 0 if cache is invalid; 1 if the cache is valid
|
|
*/
|
|
static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
|
|
struct ext4_ext_cache *ex){
|
|
struct ext4_ext_cache *cex;
|
|
struct ext4_sb_info *sbi;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* We borrow i_block_reservation_lock to protect i_cached_extent
|
|
*/
|
|
spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
|
|
cex = &EXT4_I(inode)->i_cached_extent;
|
|
sbi = EXT4_SB(inode->i_sb);
|
|
|
|
/* has cache valid data? */
|
|
if (cex->ec_len == 0)
|
|
goto errout;
|
|
|
|
if (in_range(block, cex->ec_block, cex->ec_len)) {
|
|
memcpy(ex, cex, sizeof(struct ext4_ext_cache));
|
|
ext_debug("%u cached by %u:%u:%llu\n",
|
|
block,
|
|
cex->ec_block, cex->ec_len, cex->ec_start);
|
|
ret = 1;
|
|
}
|
|
errout:
|
|
trace_ext4_ext_in_cache(inode, block, ret);
|
|
spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_in_cache()
|
|
* Checks to see if the given block is in the cache.
|
|
* If it is, the cached extent is stored in the given
|
|
* extent pointer.
|
|
*
|
|
* @inode: The files inode
|
|
* @block: The block to look for in the cache
|
|
* @ex: Pointer where the cached extent will be stored
|
|
* if it contains block
|
|
*
|
|
* Return 0 if cache is invalid; 1 if the cache is valid
|
|
*/
|
|
static int
|
|
ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
|
|
struct ext4_extent *ex)
|
|
{
|
|
struct ext4_ext_cache cex;
|
|
int ret = 0;
|
|
|
|
if (ext4_ext_check_cache(inode, block, &cex)) {
|
|
ex->ee_block = cpu_to_le32(cex.ec_block);
|
|
ext4_ext_store_pblock(ex, cex.ec_start);
|
|
ex->ee_len = cpu_to_le16(cex.ec_len);
|
|
ret = 1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* ext4_ext_rm_idx:
|
|
* removes index from the index block.
|
|
*/
|
|
static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
|
|
struct ext4_ext_path *path)
|
|
{
|
|
int err;
|
|
ext4_fsblk_t leaf;
|
|
|
|
/* free index block */
|
|
path--;
|
|
leaf = ext4_idx_pblock(path->p_idx);
|
|
if (unlikely(path->p_hdr->eh_entries == 0)) {
|
|
EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
|
|
return -EIO;
|
|
}
|
|
err = ext4_ext_get_access(handle, inode, path);
|
|
if (err)
|
|
return err;
|
|
|
|
if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
|
|
int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
|
|
len *= sizeof(struct ext4_extent_idx);
|
|
memmove(path->p_idx, path->p_idx + 1, len);
|
|
}
|
|
|
|
le16_add_cpu(&path->p_hdr->eh_entries, -1);
|
|
err = ext4_ext_dirty(handle, inode, path);
|
|
if (err)
|
|
return err;
|
|
ext_debug("index is empty, remove it, free block %llu\n", leaf);
|
|
trace_ext4_ext_rm_idx(inode, leaf);
|
|
|
|
ext4_free_blocks(handle, inode, NULL, leaf, 1,
|
|
EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_calc_credits_for_single_extent:
|
|
* This routine returns max. credits that needed to insert an extent
|
|
* to the extent tree.
|
|
* When pass the actual path, the caller should calculate credits
|
|
* under i_data_sem.
|
|
*/
|
|
int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
|
|
struct ext4_ext_path *path)
|
|
{
|
|
if (path) {
|
|
int depth = ext_depth(inode);
|
|
int ret = 0;
|
|
|
|
/* probably there is space in leaf? */
|
|
if (le16_to_cpu(path[depth].p_hdr->eh_entries)
|
|
< le16_to_cpu(path[depth].p_hdr->eh_max)) {
|
|
|
|
/*
|
|
* There are some space in the leaf tree, no
|
|
* need to account for leaf block credit
|
|
*
|
|
* bitmaps and block group descriptor blocks
|
|
* and other metadata blocks still need to be
|
|
* accounted.
|
|
*/
|
|
/* 1 bitmap, 1 block group descriptor */
|
|
ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return ext4_chunk_trans_blocks(inode, nrblocks);
|
|
}
|
|
|
|
/*
|
|
* How many index/leaf blocks need to change/allocate to modify nrblocks?
|
|
*
|
|
* if nrblocks are fit in a single extent (chunk flag is 1), then
|
|
* in the worse case, each tree level index/leaf need to be changed
|
|
* if the tree split due to insert a new extent, then the old tree
|
|
* index/leaf need to be updated too
|
|
*
|
|
* If the nrblocks are discontiguous, they could cause
|
|
* the whole tree split more than once, but this is really rare.
|
|
*/
|
|
int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
|
|
{
|
|
int index;
|
|
int depth = ext_depth(inode);
|
|
|
|
if (chunk)
|
|
index = depth * 2;
|
|
else
|
|
index = depth * 3;
|
|
|
|
return index;
|
|
}
|
|
|
|
static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
|
|
struct ext4_extent *ex,
|
|
ext4_fsblk_t *partial_cluster,
|
|
ext4_lblk_t from, ext4_lblk_t to)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
unsigned short ee_len = ext4_ext_get_actual_len(ex);
|
|
ext4_fsblk_t pblk;
|
|
int flags = EXT4_FREE_BLOCKS_FORGET;
|
|
|
|
if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
|
|
flags |= EXT4_FREE_BLOCKS_METADATA;
|
|
/*
|
|
* For bigalloc file systems, we never free a partial cluster
|
|
* at the beginning of the extent. Instead, we make a note
|
|
* that we tried freeing the cluster, and check to see if we
|
|
* need to free it on a subsequent call to ext4_remove_blocks,
|
|
* or at the end of the ext4_truncate() operation.
|
|
*/
|
|
flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
|
|
|
|
trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
|
|
/*
|
|
* If we have a partial cluster, and it's different from the
|
|
* cluster of the last block, we need to explicitly free the
|
|
* partial cluster here.
|
|
*/
|
|
pblk = ext4_ext_pblock(ex) + ee_len - 1;
|
|
if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
|
|
ext4_free_blocks(handle, inode, NULL,
|
|
EXT4_C2B(sbi, *partial_cluster),
|
|
sbi->s_cluster_ratio, flags);
|
|
*partial_cluster = 0;
|
|
}
|
|
|
|
#ifdef EXTENTS_STATS
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
spin_lock(&sbi->s_ext_stats_lock);
|
|
sbi->s_ext_blocks += ee_len;
|
|
sbi->s_ext_extents++;
|
|
if (ee_len < sbi->s_ext_min)
|
|
sbi->s_ext_min = ee_len;
|
|
if (ee_len > sbi->s_ext_max)
|
|
sbi->s_ext_max = ee_len;
|
|
if (ext_depth(inode) > sbi->s_depth_max)
|
|
sbi->s_depth_max = ext_depth(inode);
|
|
spin_unlock(&sbi->s_ext_stats_lock);
|
|
}
|
|
#endif
|
|
if (from >= le32_to_cpu(ex->ee_block)
|
|
&& to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
|
|
/* tail removal */
|
|
ext4_lblk_t num;
|
|
|
|
num = le32_to_cpu(ex->ee_block) + ee_len - from;
|
|
pblk = ext4_ext_pblock(ex) + ee_len - num;
|
|
ext_debug("free last %u blocks starting %llu\n", num, pblk);
|
|
ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
|
|
/*
|
|
* If the block range to be freed didn't start at the
|
|
* beginning of a cluster, and we removed the entire
|
|
* extent, save the partial cluster here, since we
|
|
* might need to delete if we determine that the
|
|
* truncate operation has removed all of the blocks in
|
|
* the cluster.
|
|
*/
|
|
if (pblk & (sbi->s_cluster_ratio - 1) &&
|
|
(ee_len == num))
|
|
*partial_cluster = EXT4_B2C(sbi, pblk);
|
|
else
|
|
*partial_cluster = 0;
|
|
} else if (from == le32_to_cpu(ex->ee_block)
|
|
&& to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
|
|
/* head removal */
|
|
ext4_lblk_t num;
|
|
ext4_fsblk_t start;
|
|
|
|
num = to - from;
|
|
start = ext4_ext_pblock(ex);
|
|
|
|
ext_debug("free first %u blocks starting %llu\n", num, start);
|
|
ext4_free_blocks(handle, inode, NULL, start, num, flags);
|
|
|
|
} else {
|
|
printk(KERN_INFO "strange request: removal(2) "
|
|
"%u-%u from %u:%u\n",
|
|
from, to, le32_to_cpu(ex->ee_block), ee_len);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* ext4_ext_rm_leaf() Removes the extents associated with the
|
|
* blocks appearing between "start" and "end", and splits the extents
|
|
* if "start" and "end" appear in the same extent
|
|
*
|
|
* @handle: The journal handle
|
|
* @inode: The files inode
|
|
* @path: The path to the leaf
|
|
* @start: The first block to remove
|
|
* @end: The last block to remove
|
|
*/
|
|
static int
|
|
ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
|
|
struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
|
|
ext4_lblk_t start, ext4_lblk_t end)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
int err = 0, correct_index = 0;
|
|
int depth = ext_depth(inode), credits;
|
|
struct ext4_extent_header *eh;
|
|
ext4_lblk_t a, b;
|
|
unsigned num;
|
|
ext4_lblk_t ex_ee_block;
|
|
unsigned short ex_ee_len;
|
|
unsigned uninitialized = 0;
|
|
struct ext4_extent *ex;
|
|
|
|
/* the header must be checked already in ext4_ext_remove_space() */
|
|
ext_debug("truncate since %u in leaf to %u\n", start, end);
|
|
if (!path[depth].p_hdr)
|
|
path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
|
|
eh = path[depth].p_hdr;
|
|
if (unlikely(path[depth].p_hdr == NULL)) {
|
|
EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
|
|
return -EIO;
|
|
}
|
|
/* find where to start removing */
|
|
ex = EXT_LAST_EXTENT(eh);
|
|
|
|
ex_ee_block = le32_to_cpu(ex->ee_block);
|
|
ex_ee_len = ext4_ext_get_actual_len(ex);
|
|
|
|
trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
|
|
|
|
while (ex >= EXT_FIRST_EXTENT(eh) &&
|
|
ex_ee_block + ex_ee_len > start) {
|
|
|
|
if (ext4_ext_is_uninitialized(ex))
|
|
uninitialized = 1;
|
|
else
|
|
uninitialized = 0;
|
|
|
|
ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
|
|
uninitialized, ex_ee_len);
|
|
path[depth].p_ext = ex;
|
|
|
|
a = ex_ee_block > start ? ex_ee_block : start;
|
|
b = ex_ee_block+ex_ee_len - 1 < end ?
|
|
ex_ee_block+ex_ee_len - 1 : end;
|
|
|
|
ext_debug(" border %u:%u\n", a, b);
|
|
|
|
/* If this extent is beyond the end of the hole, skip it */
|
|
if (end < ex_ee_block) {
|
|
ex--;
|
|
ex_ee_block = le32_to_cpu(ex->ee_block);
|
|
ex_ee_len = ext4_ext_get_actual_len(ex);
|
|
continue;
|
|
} else if (b != ex_ee_block + ex_ee_len - 1) {
|
|
EXT4_ERROR_INODE(inode,
|
|
"can not handle truncate %u:%u "
|
|
"on extent %u:%u",
|
|
start, end, ex_ee_block,
|
|
ex_ee_block + ex_ee_len - 1);
|
|
err = -EIO;
|
|
goto out;
|
|
} else if (a != ex_ee_block) {
|
|
/* remove tail of the extent */
|
|
num = a - ex_ee_block;
|
|
} else {
|
|
/* remove whole extent: excellent! */
|
|
num = 0;
|
|
}
|
|
/*
|
|
* 3 for leaf, sb, and inode plus 2 (bmap and group
|
|
* descriptor) for each block group; assume two block
|
|
* groups plus ex_ee_len/blocks_per_block_group for
|
|
* the worst case
|
|
*/
|
|
credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
|
|
if (ex == EXT_FIRST_EXTENT(eh)) {
|
|
correct_index = 1;
|
|
credits += (ext_depth(inode)) + 1;
|
|
}
|
|
credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
|
|
|
|
err = ext4_ext_truncate_extend_restart(handle, inode, credits);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = ext4_ext_get_access(handle, inode, path + depth);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
|
|
a, b);
|
|
if (err)
|
|
goto out;
|
|
|
|
if (num == 0)
|
|
/* this extent is removed; mark slot entirely unused */
|
|
ext4_ext_store_pblock(ex, 0);
|
|
|
|
ex->ee_len = cpu_to_le16(num);
|
|
/*
|
|
* Do not mark uninitialized if all the blocks in the
|
|
* extent have been removed.
|
|
*/
|
|
if (uninitialized && num)
|
|
ext4_ext_mark_uninitialized(ex);
|
|
/*
|
|
* If the extent was completely released,
|
|
* we need to remove it from the leaf
|
|
*/
|
|
if (num == 0) {
|
|
if (end != EXT_MAX_BLOCKS - 1) {
|
|
/*
|
|
* For hole punching, we need to scoot all the
|
|
* extents up when an extent is removed so that
|
|
* we dont have blank extents in the middle
|
|
*/
|
|
memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
|
|
sizeof(struct ext4_extent));
|
|
|
|
/* Now get rid of the one at the end */
|
|
memset(EXT_LAST_EXTENT(eh), 0,
|
|
sizeof(struct ext4_extent));
|
|
}
|
|
le16_add_cpu(&eh->eh_entries, -1);
|
|
} else
|
|
*partial_cluster = 0;
|
|
|
|
err = ext4_ext_dirty(handle, inode, path + depth);
|
|
if (err)
|
|
goto out;
|
|
|
|
ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
|
|
ext4_ext_pblock(ex));
|
|
ex--;
|
|
ex_ee_block = le32_to_cpu(ex->ee_block);
|
|
ex_ee_len = ext4_ext_get_actual_len(ex);
|
|
}
|
|
|
|
if (correct_index && eh->eh_entries)
|
|
err = ext4_ext_correct_indexes(handle, inode, path);
|
|
|
|
/*
|
|
* If there is still a entry in the leaf node, check to see if
|
|
* it references the partial cluster. This is the only place
|
|
* where it could; if it doesn't, we can free the cluster.
|
|
*/
|
|
if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
|
|
(EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
|
|
*partial_cluster)) {
|
|
int flags = EXT4_FREE_BLOCKS_FORGET;
|
|
|
|
if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
|
|
flags |= EXT4_FREE_BLOCKS_METADATA;
|
|
|
|
ext4_free_blocks(handle, inode, NULL,
|
|
EXT4_C2B(sbi, *partial_cluster),
|
|
sbi->s_cluster_ratio, flags);
|
|
*partial_cluster = 0;
|
|
}
|
|
|
|
/* if this leaf is free, then we should
|
|
* remove it from index block above */
|
|
if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
|
|
err = ext4_ext_rm_idx(handle, inode, path + depth);
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_more_to_rm:
|
|
* returns 1 if current index has to be freed (even partial)
|
|
*/
|
|
static int
|
|
ext4_ext_more_to_rm(struct ext4_ext_path *path)
|
|
{
|
|
BUG_ON(path->p_idx == NULL);
|
|
|
|
if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
|
|
return 0;
|
|
|
|
/*
|
|
* if truncate on deeper level happened, it wasn't partial,
|
|
* so we have to consider current index for truncation
|
|
*/
|
|
if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
|
|
ext4_lblk_t end)
|
|
{
|
|
struct super_block *sb = inode->i_sb;
|
|
int depth = ext_depth(inode);
|
|
struct ext4_ext_path *path;
|
|
ext4_fsblk_t partial_cluster = 0;
|
|
handle_t *handle;
|
|
int i, err;
|
|
|
|
ext_debug("truncate since %u to %u\n", start, end);
|
|
|
|
/* probably first extent we're gonna free will be last in block */
|
|
handle = ext4_journal_start(inode, depth + 1);
|
|
if (IS_ERR(handle))
|
|
return PTR_ERR(handle);
|
|
|
|
again:
|
|
ext4_ext_invalidate_cache(inode);
|
|
|
|
trace_ext4_ext_remove_space(inode, start, depth);
|
|
|
|
/*
|
|
* Check if we are removing extents inside the extent tree. If that
|
|
* is the case, we are going to punch a hole inside the extent tree
|
|
* so we have to check whether we need to split the extent covering
|
|
* the last block to remove so we can easily remove the part of it
|
|
* in ext4_ext_rm_leaf().
|
|
*/
|
|
if (end < EXT_MAX_BLOCKS - 1) {
|
|
struct ext4_extent *ex;
|
|
ext4_lblk_t ee_block;
|
|
|
|
/* find extent for this block */
|
|
path = ext4_ext_find_extent(inode, end, NULL);
|
|
if (IS_ERR(path)) {
|
|
ext4_journal_stop(handle);
|
|
return PTR_ERR(path);
|
|
}
|
|
depth = ext_depth(inode);
|
|
ex = path[depth].p_ext;
|
|
if (!ex)
|
|
goto cont;
|
|
|
|
ee_block = le32_to_cpu(ex->ee_block);
|
|
|
|
/*
|
|
* See if the last block is inside the extent, if so split
|
|
* the extent at 'end' block so we can easily remove the
|
|
* tail of the first part of the split extent in
|
|
* ext4_ext_rm_leaf().
|
|
*/
|
|
if (end >= ee_block &&
|
|
end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
|
|
int split_flag = 0;
|
|
|
|
if (ext4_ext_is_uninitialized(ex))
|
|
split_flag = EXT4_EXT_MARK_UNINIT1 |
|
|
EXT4_EXT_MARK_UNINIT2;
|
|
|
|
/*
|
|
* Split the extent in two so that 'end' is the last
|
|
* block in the first new extent
|
|
*/
|
|
err = ext4_split_extent_at(handle, inode, path,
|
|
end + 1, split_flag,
|
|
EXT4_GET_BLOCKS_PRE_IO |
|
|
EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
|
|
|
|
if (err < 0)
|
|
goto out;
|
|
}
|
|
ext4_ext_drop_refs(path);
|
|
kfree(path);
|
|
}
|
|
cont:
|
|
|
|
/*
|
|
* We start scanning from right side, freeing all the blocks
|
|
* after i_size and walking into the tree depth-wise.
|
|
*/
|
|
depth = ext_depth(inode);
|
|
path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
|
|
if (path == NULL) {
|
|
ext4_journal_stop(handle);
|
|
return -ENOMEM;
|
|
}
|
|
path[0].p_depth = depth;
|
|
path[0].p_hdr = ext_inode_hdr(inode);
|
|
|
|
if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
i = err = 0;
|
|
|
|
while (i >= 0 && err == 0) {
|
|
if (i == depth) {
|
|
/* this is leaf block */
|
|
err = ext4_ext_rm_leaf(handle, inode, path,
|
|
&partial_cluster, start,
|
|
end);
|
|
/* root level has p_bh == NULL, brelse() eats this */
|
|
brelse(path[i].p_bh);
|
|
path[i].p_bh = NULL;
|
|
i--;
|
|
continue;
|
|
}
|
|
|
|
/* this is index block */
|
|
if (!path[i].p_hdr) {
|
|
ext_debug("initialize header\n");
|
|
path[i].p_hdr = ext_block_hdr(path[i].p_bh);
|
|
}
|
|
|
|
if (!path[i].p_idx) {
|
|
/* this level hasn't been touched yet */
|
|
path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
|
|
path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
|
|
ext_debug("init index ptr: hdr 0x%p, num %d\n",
|
|
path[i].p_hdr,
|
|
le16_to_cpu(path[i].p_hdr->eh_entries));
|
|
} else {
|
|
/* we were already here, see at next index */
|
|
path[i].p_idx--;
|
|
}
|
|
|
|
ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
|
|
i, EXT_FIRST_INDEX(path[i].p_hdr),
|
|
path[i].p_idx);
|
|
if (ext4_ext_more_to_rm(path + i)) {
|
|
struct buffer_head *bh;
|
|
/* go to the next level */
|
|
ext_debug("move to level %d (block %llu)\n",
|
|
i + 1, ext4_idx_pblock(path[i].p_idx));
|
|
memset(path + i + 1, 0, sizeof(*path));
|
|
bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
|
|
if (!bh) {
|
|
/* should we reset i_size? */
|
|
err = -EIO;
|
|
break;
|
|
}
|
|
if (WARN_ON(i + 1 > depth)) {
|
|
err = -EIO;
|
|
break;
|
|
}
|
|
if (ext4_ext_check_block(inode, ext_block_hdr(bh),
|
|
depth - i - 1, bh)) {
|
|
err = -EIO;
|
|
break;
|
|
}
|
|
path[i + 1].p_bh = bh;
|
|
|
|
/* save actual number of indexes since this
|
|
* number is changed at the next iteration */
|
|
path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
|
|
i++;
|
|
} else {
|
|
/* we finished processing this index, go up */
|
|
if (path[i].p_hdr->eh_entries == 0 && i > 0) {
|
|
/* index is empty, remove it;
|
|
* handle must be already prepared by the
|
|
* truncatei_leaf() */
|
|
err = ext4_ext_rm_idx(handle, inode, path + i);
|
|
}
|
|
/* root level has p_bh == NULL, brelse() eats this */
|
|
brelse(path[i].p_bh);
|
|
path[i].p_bh = NULL;
|
|
i--;
|
|
ext_debug("return to level %d\n", i);
|
|
}
|
|
}
|
|
|
|
trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
|
|
path->p_hdr->eh_entries);
|
|
|
|
/* If we still have something in the partial cluster and we have removed
|
|
* even the first extent, then we should free the blocks in the partial
|
|
* cluster as well. */
|
|
if (partial_cluster && path->p_hdr->eh_entries == 0) {
|
|
int flags = EXT4_FREE_BLOCKS_FORGET;
|
|
|
|
if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
|
|
flags |= EXT4_FREE_BLOCKS_METADATA;
|
|
|
|
ext4_free_blocks(handle, inode, NULL,
|
|
EXT4_C2B(EXT4_SB(sb), partial_cluster),
|
|
EXT4_SB(sb)->s_cluster_ratio, flags);
|
|
partial_cluster = 0;
|
|
}
|
|
|
|
/* TODO: flexible tree reduction should be here */
|
|
if (path->p_hdr->eh_entries == 0) {
|
|
/*
|
|
* truncate to zero freed all the tree,
|
|
* so we need to correct eh_depth
|
|
*/
|
|
err = ext4_ext_get_access(handle, inode, path);
|
|
if (err == 0) {
|
|
ext_inode_hdr(inode)->eh_depth = 0;
|
|
ext_inode_hdr(inode)->eh_max =
|
|
cpu_to_le16(ext4_ext_space_root(inode, 0));
|
|
err = ext4_ext_dirty(handle, inode, path);
|
|
}
|
|
}
|
|
out:
|
|
ext4_ext_drop_refs(path);
|
|
kfree(path);
|
|
if (err == -EAGAIN)
|
|
goto again;
|
|
ext4_journal_stop(handle);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* called at mount time
|
|
*/
|
|
void ext4_ext_init(struct super_block *sb)
|
|
{
|
|
/*
|
|
* possible initialization would be here
|
|
*/
|
|
|
|
if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
|
|
#if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
|
|
printk(KERN_INFO "EXT4-fs: file extents enabled"
|
|
#ifdef AGGRESSIVE_TEST
|
|
", aggressive tests"
|
|
#endif
|
|
#ifdef CHECK_BINSEARCH
|
|
", check binsearch"
|
|
#endif
|
|
#ifdef EXTENTS_STATS
|
|
", stats"
|
|
#endif
|
|
"\n");
|
|
#endif
|
|
#ifdef EXTENTS_STATS
|
|
spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
|
|
EXT4_SB(sb)->s_ext_min = 1 << 30;
|
|
EXT4_SB(sb)->s_ext_max = 0;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*
|
|
* called at umount time
|
|
*/
|
|
void ext4_ext_release(struct super_block *sb)
|
|
{
|
|
if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
|
|
return;
|
|
|
|
#ifdef EXTENTS_STATS
|
|
if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
|
|
struct ext4_sb_info *sbi = EXT4_SB(sb);
|
|
printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
|
|
sbi->s_ext_blocks, sbi->s_ext_extents,
|
|
sbi->s_ext_blocks / sbi->s_ext_extents);
|
|
printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
|
|
sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* FIXME!! we need to try to merge to left or right after zero-out */
|
|
static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
|
|
{
|
|
ext4_fsblk_t ee_pblock;
|
|
unsigned int ee_len;
|
|
int ret;
|
|
|
|
ee_len = ext4_ext_get_actual_len(ex);
|
|
ee_pblock = ext4_ext_pblock(ex);
|
|
|
|
ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
|
|
if (ret > 0)
|
|
ret = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* ext4_split_extent_at() splits an extent at given block.
|
|
*
|
|
* @handle: the journal handle
|
|
* @inode: the file inode
|
|
* @path: the path to the extent
|
|
* @split: the logical block where the extent is splitted.
|
|
* @split_flags: indicates if the extent could be zeroout if split fails, and
|
|
* the states(init or uninit) of new extents.
|
|
* @flags: flags used to insert new extent to extent tree.
|
|
*
|
|
*
|
|
* Splits extent [a, b] into two extents [a, @split) and [@split, b], states
|
|
* of which are deterimined by split_flag.
|
|
*
|
|
* There are two cases:
|
|
* a> the extent are splitted into two extent.
|
|
* b> split is not needed, and just mark the extent.
|
|
*
|
|
* return 0 on success.
|
|
*/
|
|
static int ext4_split_extent_at(handle_t *handle,
|
|
struct inode *inode,
|
|
struct ext4_ext_path *path,
|
|
ext4_lblk_t split,
|
|
int split_flag,
|
|
int flags)
|
|
{
|
|
ext4_fsblk_t newblock;
|
|
ext4_lblk_t ee_block;
|
|
struct ext4_extent *ex, newex, orig_ex;
|
|
struct ext4_extent *ex2 = NULL;
|
|
unsigned int ee_len, depth;
|
|
int err = 0;
|
|
|
|
ext_debug("ext4_split_extents_at: inode %lu, logical"
|
|
"block %llu\n", inode->i_ino, (unsigned long long)split);
|
|
|
|
ext4_ext_show_leaf(inode, path);
|
|
|
|
depth = ext_depth(inode);
|
|
ex = path[depth].p_ext;
|
|
ee_block = le32_to_cpu(ex->ee_block);
|
|
ee_len = ext4_ext_get_actual_len(ex);
|
|
newblock = split - ee_block + ext4_ext_pblock(ex);
|
|
|
|
BUG_ON(split < ee_block || split >= (ee_block + ee_len));
|
|
|
|
err = ext4_ext_get_access(handle, inode, path + depth);
|
|
if (err)
|
|
goto out;
|
|
|
|
if (split == ee_block) {
|
|
/*
|
|
* case b: block @split is the block that the extent begins with
|
|
* then we just change the state of the extent, and splitting
|
|
* is not needed.
|
|
*/
|
|
if (split_flag & EXT4_EXT_MARK_UNINIT2)
|
|
ext4_ext_mark_uninitialized(ex);
|
|
else
|
|
ext4_ext_mark_initialized(ex);
|
|
|
|
if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
|
|
ext4_ext_try_to_merge(inode, path, ex);
|
|
|
|
err = ext4_ext_dirty(handle, inode, path + depth);
|
|
goto out;
|
|
}
|
|
|
|
/* case a */
|
|
memcpy(&orig_ex, ex, sizeof(orig_ex));
|
|
ex->ee_len = cpu_to_le16(split - ee_block);
|
|
if (split_flag & EXT4_EXT_MARK_UNINIT1)
|
|
ext4_ext_mark_uninitialized(ex);
|
|
|
|
/*
|
|
* path may lead to new leaf, not to original leaf any more
|
|
* after ext4_ext_insert_extent() returns,
|
|
*/
|
|
err = ext4_ext_dirty(handle, inode, path + depth);
|
|
if (err)
|
|
goto fix_extent_len;
|
|
|
|
ex2 = &newex;
|
|
ex2->ee_block = cpu_to_le32(split);
|
|
ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
|
|
ext4_ext_store_pblock(ex2, newblock);
|
|
if (split_flag & EXT4_EXT_MARK_UNINIT2)
|
|
ext4_ext_mark_uninitialized(ex2);
|
|
|
|
err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
|
|
if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
|
|
err = ext4_ext_zeroout(inode, &orig_ex);
|
|
if (err)
|
|
goto fix_extent_len;
|
|
/* update the extent length and mark as initialized */
|
|
ex->ee_len = cpu_to_le16(ee_len);
|
|
ext4_ext_try_to_merge(inode, path, ex);
|
|
err = ext4_ext_dirty(handle, inode, path + depth);
|
|
goto out;
|
|
} else if (err)
|
|
goto fix_extent_len;
|
|
|
|
out:
|
|
ext4_ext_show_leaf(inode, path);
|
|
return err;
|
|
|
|
fix_extent_len:
|
|
ex->ee_len = orig_ex.ee_len;
|
|
ext4_ext_dirty(handle, inode, path + depth);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ext4_split_extents() splits an extent and mark extent which is covered
|
|
* by @map as split_flags indicates
|
|
*
|
|
* It may result in splitting the extent into multiple extents (upto three)
|
|
* There are three possibilities:
|
|
* a> There is no split required
|
|
* b> Splits in two extents: Split is happening at either end of the extent
|
|
* c> Splits in three extents: Somone is splitting in middle of the extent
|
|
*
|
|
*/
|
|
static int ext4_split_extent(handle_t *handle,
|
|
struct inode *inode,
|
|
struct ext4_ext_path *path,
|
|
struct ext4_map_blocks *map,
|
|
int split_flag,
|
|
int flags)
|
|
{
|
|
ext4_lblk_t ee_block;
|
|
struct ext4_extent *ex;
|
|
unsigned int ee_len, depth;
|
|
int err = 0;
|
|
int uninitialized;
|
|
int split_flag1, flags1;
|
|
|
|
depth = ext_depth(inode);
|
|
ex = path[depth].p_ext;
|
|
ee_block = le32_to_cpu(ex->ee_block);
|
|
ee_len = ext4_ext_get_actual_len(ex);
|
|
uninitialized = ext4_ext_is_uninitialized(ex);
|
|
|
|
if (map->m_lblk + map->m_len < ee_block + ee_len) {
|
|
split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
|
|
EXT4_EXT_MAY_ZEROOUT : 0;
|
|
flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
|
|
if (uninitialized)
|
|
split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
|
|
EXT4_EXT_MARK_UNINIT2;
|
|
err = ext4_split_extent_at(handle, inode, path,
|
|
map->m_lblk + map->m_len, split_flag1, flags1);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
ext4_ext_drop_refs(path);
|
|
path = ext4_ext_find_extent(inode, map->m_lblk, path);
|
|
if (IS_ERR(path))
|
|
return PTR_ERR(path);
|
|
|
|
if (map->m_lblk >= ee_block) {
|
|
split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
|
|
EXT4_EXT_MAY_ZEROOUT : 0;
|
|
if (uninitialized)
|
|
split_flag1 |= EXT4_EXT_MARK_UNINIT1;
|
|
if (split_flag & EXT4_EXT_MARK_UNINIT2)
|
|
split_flag1 |= EXT4_EXT_MARK_UNINIT2;
|
|
err = ext4_split_extent_at(handle, inode, path,
|
|
map->m_lblk, split_flag1, flags);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
ext4_ext_show_leaf(inode, path);
|
|
out:
|
|
return err ? err : map->m_len;
|
|
}
|
|
|
|
#define EXT4_EXT_ZERO_LEN 7
|
|
/*
|
|
* This function is called by ext4_ext_map_blocks() if someone tries to write
|
|
* to an uninitialized extent. It may result in splitting the uninitialized
|
|
* extent into multiple extents (up to three - one initialized and two
|
|
* uninitialized).
|
|
* There are three possibilities:
|
|
* a> There is no split required: Entire extent should be initialized
|
|
* b> Splits in two extents: Write is happening at either end of the extent
|
|
* c> Splits in three extents: Somone is writing in middle of the extent
|
|
*
|
|
* Pre-conditions:
|
|
* - The extent pointed to by 'path' is uninitialized.
|
|
* - The extent pointed to by 'path' contains a superset
|
|
* of the logical span [map->m_lblk, map->m_lblk + map->m_len).
|
|
*
|
|
* Post-conditions on success:
|
|
* - the returned value is the number of blocks beyond map->l_lblk
|
|
* that are allocated and initialized.
|
|
* It is guaranteed to be >= map->m_len.
|
|
*/
|
|
static int ext4_ext_convert_to_initialized(handle_t *handle,
|
|
struct inode *inode,
|
|
struct ext4_map_blocks *map,
|
|
struct ext4_ext_path *path)
|
|
{
|
|
struct ext4_extent_header *eh;
|
|
struct ext4_map_blocks split_map;
|
|
struct ext4_extent zero_ex;
|
|
struct ext4_extent *ex;
|
|
ext4_lblk_t ee_block, eof_block;
|
|
unsigned int ee_len, depth;
|
|
int allocated;
|
|
int err = 0;
|
|
int split_flag = 0;
|
|
|
|
ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
|
|
"block %llu, max_blocks %u\n", inode->i_ino,
|
|
(unsigned long long)map->m_lblk, map->m_len);
|
|
|
|
eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
|
|
inode->i_sb->s_blocksize_bits;
|
|
if (eof_block < map->m_lblk + map->m_len)
|
|
eof_block = map->m_lblk + map->m_len;
|
|
|
|
depth = ext_depth(inode);
|
|
eh = path[depth].p_hdr;
|
|
ex = path[depth].p_ext;
|
|
ee_block = le32_to_cpu(ex->ee_block);
|
|
ee_len = ext4_ext_get_actual_len(ex);
|
|
allocated = ee_len - (map->m_lblk - ee_block);
|
|
|
|
trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
|
|
|
|
/* Pre-conditions */
|
|
BUG_ON(!ext4_ext_is_uninitialized(ex));
|
|
BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
|
|
|
|
/*
|
|
* Attempt to transfer newly initialized blocks from the currently
|
|
* uninitialized extent to its left neighbor. This is much cheaper
|
|
* than an insertion followed by a merge as those involve costly
|
|
* memmove() calls. This is the common case in steady state for
|
|
* workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
|
|
* writes.
|
|
*
|
|
* Limitations of the current logic:
|
|
* - L1: we only deal with writes at the start of the extent.
|
|
* The approach could be extended to writes at the end
|
|
* of the extent but this scenario was deemed less common.
|
|
* - L2: we do not deal with writes covering the whole extent.
|
|
* This would require removing the extent if the transfer
|
|
* is possible.
|
|
* - L3: we only attempt to merge with an extent stored in the
|
|
* same extent tree node.
|
|
*/
|
|
if ((map->m_lblk == ee_block) && /*L1*/
|
|
(map->m_len < ee_len) && /*L2*/
|
|
(ex > EXT_FIRST_EXTENT(eh))) { /*L3*/
|
|
struct ext4_extent *prev_ex;
|
|
ext4_lblk_t prev_lblk;
|
|
ext4_fsblk_t prev_pblk, ee_pblk;
|
|
unsigned int prev_len, write_len;
|
|
|
|
prev_ex = ex - 1;
|
|
prev_lblk = le32_to_cpu(prev_ex->ee_block);
|
|
prev_len = ext4_ext_get_actual_len(prev_ex);
|
|
prev_pblk = ext4_ext_pblock(prev_ex);
|
|
ee_pblk = ext4_ext_pblock(ex);
|
|
write_len = map->m_len;
|
|
|
|
/*
|
|
* A transfer of blocks from 'ex' to 'prev_ex' is allowed
|
|
* upon those conditions:
|
|
* - C1: prev_ex is initialized,
|
|
* - C2: prev_ex is logically abutting ex,
|
|
* - C3: prev_ex is physically abutting ex,
|
|
* - C4: prev_ex can receive the additional blocks without
|
|
* overflowing the (initialized) length limit.
|
|
*/
|
|
if ((!ext4_ext_is_uninitialized(prev_ex)) && /*C1*/
|
|
((prev_lblk + prev_len) == ee_block) && /*C2*/
|
|
((prev_pblk + prev_len) == ee_pblk) && /*C3*/
|
|
(prev_len < (EXT_INIT_MAX_LEN - write_len))) { /*C4*/
|
|
err = ext4_ext_get_access(handle, inode, path + depth);
|
|
if (err)
|
|
goto out;
|
|
|
|
trace_ext4_ext_convert_to_initialized_fastpath(inode,
|
|
map, ex, prev_ex);
|
|
|
|
/* Shift the start of ex by 'write_len' blocks */
|
|
ex->ee_block = cpu_to_le32(ee_block + write_len);
|
|
ext4_ext_store_pblock(ex, ee_pblk + write_len);
|
|
ex->ee_len = cpu_to_le16(ee_len - write_len);
|
|
ext4_ext_mark_uninitialized(ex); /* Restore the flag */
|
|
|
|
/* Extend prev_ex by 'write_len' blocks */
|
|
prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
|
|
|
|
/* Mark the block containing both extents as dirty */
|
|
ext4_ext_dirty(handle, inode, path + depth);
|
|
|
|
/* Update path to point to the right extent */
|
|
path[depth].p_ext = prev_ex;
|
|
|
|
/* Result: number of initialized blocks past m_lblk */
|
|
allocated = write_len;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
WARN_ON(map->m_lblk < ee_block);
|
|
/*
|
|
* It is safe to convert extent to initialized via explicit
|
|
* zeroout only if extent is fully insde i_size or new_size.
|
|
*/
|
|
split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
|
|
|
|
/* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
|
|
if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
|
|
(EXT4_EXT_MAY_ZEROOUT & split_flag)) {
|
|
err = ext4_ext_zeroout(inode, ex);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = ext4_ext_get_access(handle, inode, path + depth);
|
|
if (err)
|
|
goto out;
|
|
ext4_ext_mark_initialized(ex);
|
|
ext4_ext_try_to_merge(inode, path, ex);
|
|
err = ext4_ext_dirty(handle, inode, path + depth);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* four cases:
|
|
* 1. split the extent into three extents.
|
|
* 2. split the extent into two extents, zeroout the first half.
|
|
* 3. split the extent into two extents, zeroout the second half.
|
|
* 4. split the extent into two extents with out zeroout.
|
|
*/
|
|
split_map.m_lblk = map->m_lblk;
|
|
split_map.m_len = map->m_len;
|
|
|
|
if (allocated > map->m_len) {
|
|
if (allocated <= EXT4_EXT_ZERO_LEN &&
|
|
(EXT4_EXT_MAY_ZEROOUT & split_flag)) {
|
|
/* case 3 */
|
|
zero_ex.ee_block =
|
|
cpu_to_le32(map->m_lblk);
|
|
zero_ex.ee_len = cpu_to_le16(allocated);
|
|
ext4_ext_store_pblock(&zero_ex,
|
|
ext4_ext_pblock(ex) + map->m_lblk - ee_block);
|
|
err = ext4_ext_zeroout(inode, &zero_ex);
|
|
if (err)
|
|
goto out;
|
|
split_map.m_lblk = map->m_lblk;
|
|
split_map.m_len = allocated;
|
|
} else if ((map->m_lblk - ee_block + map->m_len <
|
|
EXT4_EXT_ZERO_LEN) &&
|
|
(EXT4_EXT_MAY_ZEROOUT & split_flag)) {
|
|
/* case 2 */
|
|
if (map->m_lblk != ee_block) {
|
|
zero_ex.ee_block = ex->ee_block;
|
|
zero_ex.ee_len = cpu_to_le16(map->m_lblk -
|
|
ee_block);
|
|
ext4_ext_store_pblock(&zero_ex,
|
|
ext4_ext_pblock(ex));
|
|
err = ext4_ext_zeroout(inode, &zero_ex);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
split_map.m_lblk = ee_block;
|
|
split_map.m_len = map->m_lblk - ee_block + map->m_len;
|
|
allocated = map->m_len;
|
|
}
|
|
}
|
|
|
|
allocated = ext4_split_extent(handle, inode, path,
|
|
&split_map, split_flag, 0);
|
|
if (allocated < 0)
|
|
err = allocated;
|
|
|
|
out:
|
|
return err ? err : allocated;
|
|
}
|
|
|
|
/*
|
|
* This function is called by ext4_ext_map_blocks() from
|
|
* ext4_get_blocks_dio_write() when DIO to write
|
|
* to an uninitialized extent.
|
|
*
|
|
* Writing to an uninitialized extent may result in splitting the uninitialized
|
|
* extent into multiple /initialized uninitialized extents (up to three)
|
|
* There are three possibilities:
|
|
* a> There is no split required: Entire extent should be uninitialized
|
|
* b> Splits in two extents: Write is happening at either end of the extent
|
|
* c> Splits in three extents: Somone is writing in middle of the extent
|
|
*
|
|
* One of more index blocks maybe needed if the extent tree grow after
|
|
* the uninitialized extent split. To prevent ENOSPC occur at the IO
|
|
* complete, we need to split the uninitialized extent before DIO submit
|
|
* the IO. The uninitialized extent called at this time will be split
|
|
* into three uninitialized extent(at most). After IO complete, the part
|
|
* being filled will be convert to initialized by the end_io callback function
|
|
* via ext4_convert_unwritten_extents().
|
|
*
|
|
* Returns the size of uninitialized extent to be written on success.
|
|
*/
|
|
static int ext4_split_unwritten_extents(handle_t *handle,
|
|
struct inode *inode,
|
|
struct ext4_map_blocks *map,
|
|
struct ext4_ext_path *path,
|
|
int flags)
|
|
{
|
|
ext4_lblk_t eof_block;
|
|
ext4_lblk_t ee_block;
|
|
struct ext4_extent *ex;
|
|
unsigned int ee_len;
|
|
int split_flag = 0, depth;
|
|
|
|
ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
|
|
"block %llu, max_blocks %u\n", inode->i_ino,
|
|
(unsigned long long)map->m_lblk, map->m_len);
|
|
|
|
eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
|
|
inode->i_sb->s_blocksize_bits;
|
|
if (eof_block < map->m_lblk + map->m_len)
|
|
eof_block = map->m_lblk + map->m_len;
|
|
/*
|
|
* It is safe to convert extent to initialized via explicit
|
|
* zeroout only if extent is fully insde i_size or new_size.
|
|
*/
|
|
depth = ext_depth(inode);
|
|
ex = path[depth].p_ext;
|
|
ee_block = le32_to_cpu(ex->ee_block);
|
|
ee_len = ext4_ext_get_actual_len(ex);
|
|
|
|
split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
|
|
split_flag |= EXT4_EXT_MARK_UNINIT2;
|
|
|
|
flags |= EXT4_GET_BLOCKS_PRE_IO;
|
|
return ext4_split_extent(handle, inode, path, map, split_flag, flags);
|
|
}
|
|
|
|
static int ext4_convert_unwritten_extents_endio(handle_t *handle,
|
|
struct inode *inode,
|
|
struct ext4_ext_path *path)
|
|
{
|
|
struct ext4_extent *ex;
|
|
int depth;
|
|
int err = 0;
|
|
|
|
depth = ext_depth(inode);
|
|
ex = path[depth].p_ext;
|
|
|
|
ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
|
|
"block %llu, max_blocks %u\n", inode->i_ino,
|
|
(unsigned long long)le32_to_cpu(ex->ee_block),
|
|
ext4_ext_get_actual_len(ex));
|
|
|
|
err = ext4_ext_get_access(handle, inode, path + depth);
|
|
if (err)
|
|
goto out;
|
|
/* first mark the extent as initialized */
|
|
ext4_ext_mark_initialized(ex);
|
|
|
|
/* note: ext4_ext_correct_indexes() isn't needed here because
|
|
* borders are not changed
|
|
*/
|
|
ext4_ext_try_to_merge(inode, path, ex);
|
|
|
|
/* Mark modified extent as dirty */
|
|
err = ext4_ext_dirty(handle, inode, path + depth);
|
|
out:
|
|
ext4_ext_show_leaf(inode, path);
|
|
return err;
|
|
}
|
|
|
|
static void unmap_underlying_metadata_blocks(struct block_device *bdev,
|
|
sector_t block, int count)
|
|
{
|
|
int i;
|
|
for (i = 0; i < count; i++)
|
|
unmap_underlying_metadata(bdev, block + i);
|
|
}
|
|
|
|
/*
|
|
* Handle EOFBLOCKS_FL flag, clearing it if necessary
|
|
*/
|
|
static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
|
|
ext4_lblk_t lblk,
|
|
struct ext4_ext_path *path,
|
|
unsigned int len)
|
|
{
|
|
int i, depth;
|
|
struct ext4_extent_header *eh;
|
|
struct ext4_extent *last_ex;
|
|
|
|
if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
|
|
return 0;
|
|
|
|
depth = ext_depth(inode);
|
|
eh = path[depth].p_hdr;
|
|
|
|
/*
|
|
* We're going to remove EOFBLOCKS_FL entirely in future so we
|
|
* do not care for this case anymore. Simply remove the flag
|
|
* if there are no extents.
|
|
*/
|
|
if (unlikely(!eh->eh_entries))
|
|
goto out;
|
|
last_ex = EXT_LAST_EXTENT(eh);
|
|
/*
|
|
* We should clear the EOFBLOCKS_FL flag if we are writing the
|
|
* last block in the last extent in the file. We test this by
|
|
* first checking to see if the caller to
|
|
* ext4_ext_get_blocks() was interested in the last block (or
|
|
* a block beyond the last block) in the current extent. If
|
|
* this turns out to be false, we can bail out from this
|
|
* function immediately.
|
|
*/
|
|
if (lblk + len < le32_to_cpu(last_ex->ee_block) +
|
|
ext4_ext_get_actual_len(last_ex))
|
|
return 0;
|
|
/*
|
|
* If the caller does appear to be planning to write at or
|
|
* beyond the end of the current extent, we then test to see
|
|
* if the current extent is the last extent in the file, by
|
|
* checking to make sure it was reached via the rightmost node
|
|
* at each level of the tree.
|
|
*/
|
|
for (i = depth-1; i >= 0; i--)
|
|
if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
|
|
return 0;
|
|
out:
|
|
ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
|
|
return ext4_mark_inode_dirty(handle, inode);
|
|
}
|
|
|
|
/**
|
|
* ext4_find_delalloc_range: find delayed allocated block in the given range.
|
|
*
|
|
* Goes through the buffer heads in the range [lblk_start, lblk_end] and returns
|
|
* whether there are any buffers marked for delayed allocation. It returns '1'
|
|
* on the first delalloc'ed buffer head found. If no buffer head in the given
|
|
* range is marked for delalloc, it returns 0.
|
|
* lblk_start should always be <= lblk_end.
|
|
* search_hint_reverse is to indicate that searching in reverse from lblk_end to
|
|
* lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed
|
|
* block sooner). This is useful when blocks are truncated sequentially from
|
|
* lblk_start towards lblk_end.
|
|
*/
|
|
static int ext4_find_delalloc_range(struct inode *inode,
|
|
ext4_lblk_t lblk_start,
|
|
ext4_lblk_t lblk_end,
|
|
int search_hint_reverse)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct buffer_head *head, *bh = NULL;
|
|
struct page *page;
|
|
ext4_lblk_t i, pg_lblk;
|
|
pgoff_t index;
|
|
|
|
if (!test_opt(inode->i_sb, DELALLOC))
|
|
return 0;
|
|
|
|
/* reverse search wont work if fs block size is less than page size */
|
|
if (inode->i_blkbits < PAGE_CACHE_SHIFT)
|
|
search_hint_reverse = 0;
|
|
|
|
if (search_hint_reverse)
|
|
i = lblk_end;
|
|
else
|
|
i = lblk_start;
|
|
|
|
index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
|
|
|
|
while ((i >= lblk_start) && (i <= lblk_end)) {
|
|
page = find_get_page(mapping, index);
|
|
if (!page)
|
|
goto nextpage;
|
|
|
|
if (!page_has_buffers(page))
|
|
goto nextpage;
|
|
|
|
head = page_buffers(page);
|
|
if (!head)
|
|
goto nextpage;
|
|
|
|
bh = head;
|
|
pg_lblk = index << (PAGE_CACHE_SHIFT -
|
|
inode->i_blkbits);
|
|
do {
|
|
if (unlikely(pg_lblk < lblk_start)) {
|
|
/*
|
|
* This is possible when fs block size is less
|
|
* than page size and our cluster starts/ends in
|
|
* middle of the page. So we need to skip the
|
|
* initial few blocks till we reach the 'lblk'
|
|
*/
|
|
pg_lblk++;
|
|
continue;
|
|
}
|
|
|
|
/* Check if the buffer is delayed allocated and that it
|
|
* is not yet mapped. (when da-buffers are mapped during
|
|
* their writeout, their da_mapped bit is set.)
|
|
*/
|
|
if (buffer_delay(bh) && !buffer_da_mapped(bh)) {
|
|
page_cache_release(page);
|
|
trace_ext4_find_delalloc_range(inode,
|
|
lblk_start, lblk_end,
|
|
search_hint_reverse,
|
|
1, i);
|
|
return 1;
|
|
}
|
|
if (search_hint_reverse)
|
|
i--;
|
|
else
|
|
i++;
|
|
} while ((i >= lblk_start) && (i <= lblk_end) &&
|
|
((bh = bh->b_this_page) != head));
|
|
nextpage:
|
|
if (page)
|
|
page_cache_release(page);
|
|
/*
|
|
* Move to next page. 'i' will be the first lblk in the next
|
|
* page.
|
|
*/
|
|
if (search_hint_reverse)
|
|
index--;
|
|
else
|
|
index++;
|
|
i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
|
|
}
|
|
|
|
trace_ext4_find_delalloc_range(inode, lblk_start, lblk_end,
|
|
search_hint_reverse, 0, 0);
|
|
return 0;
|
|
}
|
|
|
|
int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk,
|
|
int search_hint_reverse)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
ext4_lblk_t lblk_start, lblk_end;
|
|
lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
|
|
lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
|
|
|
|
return ext4_find_delalloc_range(inode, lblk_start, lblk_end,
|
|
search_hint_reverse);
|
|
}
|
|
|
|
/**
|
|
* Determines how many complete clusters (out of those specified by the 'map')
|
|
* are under delalloc and were reserved quota for.
|
|
* This function is called when we are writing out the blocks that were
|
|
* originally written with their allocation delayed, but then the space was
|
|
* allocated using fallocate() before the delayed allocation could be resolved.
|
|
* The cases to look for are:
|
|
* ('=' indicated delayed allocated blocks
|
|
* '-' indicates non-delayed allocated blocks)
|
|
* (a) partial clusters towards beginning and/or end outside of allocated range
|
|
* are not delalloc'ed.
|
|
* Ex:
|
|
* |----c---=|====c====|====c====|===-c----|
|
|
* |++++++ allocated ++++++|
|
|
* ==> 4 complete clusters in above example
|
|
*
|
|
* (b) partial cluster (outside of allocated range) towards either end is
|
|
* marked for delayed allocation. In this case, we will exclude that
|
|
* cluster.
|
|
* Ex:
|
|
* |----====c========|========c========|
|
|
* |++++++ allocated ++++++|
|
|
* ==> 1 complete clusters in above example
|
|
*
|
|
* Ex:
|
|
* |================c================|
|
|
* |++++++ allocated ++++++|
|
|
* ==> 0 complete clusters in above example
|
|
*
|
|
* The ext4_da_update_reserve_space will be called only if we
|
|
* determine here that there were some "entire" clusters that span
|
|
* this 'allocated' range.
|
|
* In the non-bigalloc case, this function will just end up returning num_blks
|
|
* without ever calling ext4_find_delalloc_range.
|
|
*/
|
|
static unsigned int
|
|
get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
|
|
unsigned int num_blks)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
|
|
ext4_lblk_t lblk_from, lblk_to, c_offset;
|
|
unsigned int allocated_clusters = 0;
|
|
|
|
alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
|
|
alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
|
|
|
|
/* max possible clusters for this allocation */
|
|
allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
|
|
|
|
trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
|
|
|
|
/* Check towards left side */
|
|
c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
|
|
if (c_offset) {
|
|
lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
|
|
lblk_to = lblk_from + c_offset - 1;
|
|
|
|
if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
|
|
allocated_clusters--;
|
|
}
|
|
|
|
/* Now check towards right. */
|
|
c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
|
|
if (allocated_clusters && c_offset) {
|
|
lblk_from = lblk_start + num_blks;
|
|
lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
|
|
|
|
if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
|
|
allocated_clusters--;
|
|
}
|
|
|
|
return allocated_clusters;
|
|
}
|
|
|
|
static int
|
|
ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
|
|
struct ext4_map_blocks *map,
|
|
struct ext4_ext_path *path, int flags,
|
|
unsigned int allocated, ext4_fsblk_t newblock)
|
|
{
|
|
int ret = 0;
|
|
int err = 0;
|
|
ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
|
|
|
|
ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
|
|
"block %llu, max_blocks %u, flags %x, allocated %u\n",
|
|
inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
|
|
flags, allocated);
|
|
ext4_ext_show_leaf(inode, path);
|
|
|
|
trace_ext4_ext_handle_uninitialized_extents(inode, map, allocated,
|
|
newblock);
|
|
|
|
/* get_block() before submit the IO, split the extent */
|
|
if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
|
|
ret = ext4_split_unwritten_extents(handle, inode, map,
|
|
path, flags);
|
|
/*
|
|
* Flag the inode(non aio case) or end_io struct (aio case)
|
|
* that this IO needs to conversion to written when IO is
|
|
* completed
|
|
*/
|
|
if (io)
|
|
ext4_set_io_unwritten_flag(inode, io);
|
|
else
|
|
ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
|
|
if (ext4_should_dioread_nolock(inode))
|
|
map->m_flags |= EXT4_MAP_UNINIT;
|
|
goto out;
|
|
}
|
|
/* IO end_io complete, convert the filled extent to written */
|
|
if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
|
|
ret = ext4_convert_unwritten_extents_endio(handle, inode,
|
|
path);
|
|
if (ret >= 0) {
|
|
ext4_update_inode_fsync_trans(handle, inode, 1);
|
|
err = check_eofblocks_fl(handle, inode, map->m_lblk,
|
|
path, map->m_len);
|
|
} else
|
|
err = ret;
|
|
goto out2;
|
|
}
|
|
/* buffered IO case */
|
|
/*
|
|
* repeat fallocate creation request
|
|
* we already have an unwritten extent
|
|
*/
|
|
if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
|
|
goto map_out;
|
|
|
|
/* buffered READ or buffered write_begin() lookup */
|
|
if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
|
|
/*
|
|
* We have blocks reserved already. We
|
|
* return allocated blocks so that delalloc
|
|
* won't do block reservation for us. But
|
|
* the buffer head will be unmapped so that
|
|
* a read from the block returns 0s.
|
|
*/
|
|
map->m_flags |= EXT4_MAP_UNWRITTEN;
|
|
goto out1;
|
|
}
|
|
|
|
/* buffered write, writepage time, convert*/
|
|
ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
|
|
if (ret >= 0)
|
|
ext4_update_inode_fsync_trans(handle, inode, 1);
|
|
out:
|
|
if (ret <= 0) {
|
|
err = ret;
|
|
goto out2;
|
|
} else
|
|
allocated = ret;
|
|
map->m_flags |= EXT4_MAP_NEW;
|
|
/*
|
|
* if we allocated more blocks than requested
|
|
* we need to make sure we unmap the extra block
|
|
* allocated. The actual needed block will get
|
|
* unmapped later when we find the buffer_head marked
|
|
* new.
|
|
*/
|
|
if (allocated > map->m_len) {
|
|
unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
|
|
newblock + map->m_len,
|
|
allocated - map->m_len);
|
|
allocated = map->m_len;
|
|
}
|
|
|
|
/*
|
|
* If we have done fallocate with the offset that is already
|
|
* delayed allocated, we would have block reservation
|
|
* and quota reservation done in the delayed write path.
|
|
* But fallocate would have already updated quota and block
|
|
* count for this offset. So cancel these reservation
|
|
*/
|
|
if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
|
|
unsigned int reserved_clusters;
|
|
reserved_clusters = get_reserved_cluster_alloc(inode,
|
|
map->m_lblk, map->m_len);
|
|
if (reserved_clusters)
|
|
ext4_da_update_reserve_space(inode,
|
|
reserved_clusters,
|
|
0);
|
|
}
|
|
|
|
map_out:
|
|
map->m_flags |= EXT4_MAP_MAPPED;
|
|
if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
|
|
err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
|
|
map->m_len);
|
|
if (err < 0)
|
|
goto out2;
|
|
}
|
|
out1:
|
|
if (allocated > map->m_len)
|
|
allocated = map->m_len;
|
|
ext4_ext_show_leaf(inode, path);
|
|
map->m_pblk = newblock;
|
|
map->m_len = allocated;
|
|
out2:
|
|
if (path) {
|
|
ext4_ext_drop_refs(path);
|
|
kfree(path);
|
|
}
|
|
return err ? err : allocated;
|
|
}
|
|
|
|
/*
|
|
* get_implied_cluster_alloc - check to see if the requested
|
|
* allocation (in the map structure) overlaps with a cluster already
|
|
* allocated in an extent.
|
|
* @sb The filesystem superblock structure
|
|
* @map The requested lblk->pblk mapping
|
|
* @ex The extent structure which might contain an implied
|
|
* cluster allocation
|
|
*
|
|
* This function is called by ext4_ext_map_blocks() after we failed to
|
|
* find blocks that were already in the inode's extent tree. Hence,
|
|
* we know that the beginning of the requested region cannot overlap
|
|
* the extent from the inode's extent tree. There are three cases we
|
|
* want to catch. The first is this case:
|
|
*
|
|
* |--- cluster # N--|
|
|
* |--- extent ---| |---- requested region ---|
|
|
* |==========|
|
|
*
|
|
* The second case that we need to test for is this one:
|
|
*
|
|
* |--------- cluster # N ----------------|
|
|
* |--- requested region --| |------- extent ----|
|
|
* |=======================|
|
|
*
|
|
* The third case is when the requested region lies between two extents
|
|
* within the same cluster:
|
|
* |------------- cluster # N-------------|
|
|
* |----- ex -----| |---- ex_right ----|
|
|
* |------ requested region ------|
|
|
* |================|
|
|
*
|
|
* In each of the above cases, we need to set the map->m_pblk and
|
|
* map->m_len so it corresponds to the return the extent labelled as
|
|
* "|====|" from cluster #N, since it is already in use for data in
|
|
* cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
|
|
* signal to ext4_ext_map_blocks() that map->m_pblk should be treated
|
|
* as a new "allocated" block region. Otherwise, we will return 0 and
|
|
* ext4_ext_map_blocks() will then allocate one or more new clusters
|
|
* by calling ext4_mb_new_blocks().
|
|
*/
|
|
static int get_implied_cluster_alloc(struct super_block *sb,
|
|
struct ext4_map_blocks *map,
|
|
struct ext4_extent *ex,
|
|
struct ext4_ext_path *path)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(sb);
|
|
ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
|
|
ext4_lblk_t ex_cluster_start, ex_cluster_end;
|
|
ext4_lblk_t rr_cluster_start;
|
|
ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
|
|
ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
|
|
unsigned short ee_len = ext4_ext_get_actual_len(ex);
|
|
|
|
/* The extent passed in that we are trying to match */
|
|
ex_cluster_start = EXT4_B2C(sbi, ee_block);
|
|
ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
|
|
|
|
/* The requested region passed into ext4_map_blocks() */
|
|
rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
|
|
|
|
if ((rr_cluster_start == ex_cluster_end) ||
|
|
(rr_cluster_start == ex_cluster_start)) {
|
|
if (rr_cluster_start == ex_cluster_end)
|
|
ee_start += ee_len - 1;
|
|
map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
|
|
c_offset;
|
|
map->m_len = min(map->m_len,
|
|
(unsigned) sbi->s_cluster_ratio - c_offset);
|
|
/*
|
|
* Check for and handle this case:
|
|
*
|
|
* |--------- cluster # N-------------|
|
|
* |------- extent ----|
|
|
* |--- requested region ---|
|
|
* |===========|
|
|
*/
|
|
|
|
if (map->m_lblk < ee_block)
|
|
map->m_len = min(map->m_len, ee_block - map->m_lblk);
|
|
|
|
/*
|
|
* Check for the case where there is already another allocated
|
|
* block to the right of 'ex' but before the end of the cluster.
|
|
*
|
|
* |------------- cluster # N-------------|
|
|
* |----- ex -----| |---- ex_right ----|
|
|
* |------ requested region ------|
|
|
* |================|
|
|
*/
|
|
if (map->m_lblk > ee_block) {
|
|
ext4_lblk_t next = ext4_ext_next_allocated_block(path);
|
|
map->m_len = min(map->m_len, next - map->m_lblk);
|
|
}
|
|
|
|
trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
|
|
return 1;
|
|
}
|
|
|
|
trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Block allocation/map/preallocation routine for extents based files
|
|
*
|
|
*
|
|
* Need to be called with
|
|
* down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
|
|
* (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
|
|
*
|
|
* return > 0, number of of blocks already mapped/allocated
|
|
* if create == 0 and these are pre-allocated blocks
|
|
* buffer head is unmapped
|
|
* otherwise blocks are mapped
|
|
*
|
|
* return = 0, if plain look up failed (blocks have not been allocated)
|
|
* buffer head is unmapped
|
|
*
|
|
* return < 0, error case.
|
|
*/
|
|
int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
|
|
struct ext4_map_blocks *map, int flags)
|
|
{
|
|
struct ext4_ext_path *path = NULL;
|
|
struct ext4_extent newex, *ex, *ex2;
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
ext4_fsblk_t newblock = 0;
|
|
int free_on_err = 0, err = 0, depth, ret;
|
|
unsigned int allocated = 0, offset = 0;
|
|
unsigned int allocated_clusters = 0;
|
|
struct ext4_allocation_request ar;
|
|
ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
|
|
ext4_lblk_t cluster_offset;
|
|
|
|
ext_debug("blocks %u/%u requested for inode %lu\n",
|
|
map->m_lblk, map->m_len, inode->i_ino);
|
|
trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
|
|
|
|
/* check in cache */
|
|
if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
|
|
if (!newex.ee_start_lo && !newex.ee_start_hi) {
|
|
if ((sbi->s_cluster_ratio > 1) &&
|
|
ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
|
|
map->m_flags |= EXT4_MAP_FROM_CLUSTER;
|
|
|
|
if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
|
|
/*
|
|
* block isn't allocated yet and
|
|
* user doesn't want to allocate it
|
|
*/
|
|
goto out2;
|
|
}
|
|
/* we should allocate requested block */
|
|
} else {
|
|
/* block is already allocated */
|
|
if (sbi->s_cluster_ratio > 1)
|
|
map->m_flags |= EXT4_MAP_FROM_CLUSTER;
|
|
newblock = map->m_lblk
|
|
- le32_to_cpu(newex.ee_block)
|
|
+ ext4_ext_pblock(&newex);
|
|
/* number of remaining blocks in the extent */
|
|
allocated = ext4_ext_get_actual_len(&newex) -
|
|
(map->m_lblk - le32_to_cpu(newex.ee_block));
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* find extent for this block */
|
|
path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
|
|
if (IS_ERR(path)) {
|
|
err = PTR_ERR(path);
|
|
path = NULL;
|
|
goto out2;
|
|
}
|
|
|
|
depth = ext_depth(inode);
|
|
|
|
/*
|
|
* consistent leaf must not be empty;
|
|
* this situation is possible, though, _during_ tree modification;
|
|
* this is why assert can't be put in ext4_ext_find_extent()
|
|
*/
|
|
if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
|
|
EXT4_ERROR_INODE(inode, "bad extent address "
|
|
"lblock: %lu, depth: %d pblock %lld",
|
|
(unsigned long) map->m_lblk, depth,
|
|
path[depth].p_block);
|
|
err = -EIO;
|
|
goto out2;
|
|
}
|
|
|
|
ex = path[depth].p_ext;
|
|
if (ex) {
|
|
ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
|
|
ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
|
|
unsigned short ee_len;
|
|
|
|
/*
|
|
* Uninitialized extents are treated as holes, except that
|
|
* we split out initialized portions during a write.
|
|
*/
|
|
ee_len = ext4_ext_get_actual_len(ex);
|
|
|
|
trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
|
|
|
|
/* if found extent covers block, simply return it */
|
|
if (in_range(map->m_lblk, ee_block, ee_len)) {
|
|
newblock = map->m_lblk - ee_block + ee_start;
|
|
/* number of remaining blocks in the extent */
|
|
allocated = ee_len - (map->m_lblk - ee_block);
|
|
ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
|
|
ee_block, ee_len, newblock);
|
|
|
|
/*
|
|
* Do not put uninitialized extent
|
|
* in the cache
|
|
*/
|
|
if (!ext4_ext_is_uninitialized(ex)) {
|
|
ext4_ext_put_in_cache(inode, ee_block,
|
|
ee_len, ee_start);
|
|
goto out;
|
|
}
|
|
ret = ext4_ext_handle_uninitialized_extents(
|
|
handle, inode, map, path, flags,
|
|
allocated, newblock);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if ((sbi->s_cluster_ratio > 1) &&
|
|
ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
|
|
map->m_flags |= EXT4_MAP_FROM_CLUSTER;
|
|
|
|
/*
|
|
* requested block isn't allocated yet;
|
|
* we couldn't try to create block if create flag is zero
|
|
*/
|
|
if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
|
|
/*
|
|
* put just found gap into cache to speed up
|
|
* subsequent requests
|
|
*/
|
|
ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
|
|
goto out2;
|
|
}
|
|
|
|
/*
|
|
* Okay, we need to do block allocation.
|
|
*/
|
|
map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
|
|
newex.ee_block = cpu_to_le32(map->m_lblk);
|
|
cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
|
|
|
|
/*
|
|
* If we are doing bigalloc, check to see if the extent returned
|
|
* by ext4_ext_find_extent() implies a cluster we can use.
|
|
*/
|
|
if (cluster_offset && ex &&
|
|
get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
|
|
ar.len = allocated = map->m_len;
|
|
newblock = map->m_pblk;
|
|
map->m_flags |= EXT4_MAP_FROM_CLUSTER;
|
|
goto got_allocated_blocks;
|
|
}
|
|
|
|
/* find neighbour allocated blocks */
|
|
ar.lleft = map->m_lblk;
|
|
err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
|
|
if (err)
|
|
goto out2;
|
|
ar.lright = map->m_lblk;
|
|
ex2 = NULL;
|
|
err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
|
|
if (err)
|
|
goto out2;
|
|
|
|
/* Check if the extent after searching to the right implies a
|
|
* cluster we can use. */
|
|
if ((sbi->s_cluster_ratio > 1) && ex2 &&
|
|
get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
|
|
ar.len = allocated = map->m_len;
|
|
newblock = map->m_pblk;
|
|
map->m_flags |= EXT4_MAP_FROM_CLUSTER;
|
|
goto got_allocated_blocks;
|
|
}
|
|
|
|
/*
|
|
* See if request is beyond maximum number of blocks we can have in
|
|
* a single extent. For an initialized extent this limit is
|
|
* EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
|
|
* EXT_UNINIT_MAX_LEN.
|
|
*/
|
|
if (map->m_len > EXT_INIT_MAX_LEN &&
|
|
!(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
|
|
map->m_len = EXT_INIT_MAX_LEN;
|
|
else if (map->m_len > EXT_UNINIT_MAX_LEN &&
|
|
(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
|
|
map->m_len = EXT_UNINIT_MAX_LEN;
|
|
|
|
/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
|
|
newex.ee_len = cpu_to_le16(map->m_len);
|
|
err = ext4_ext_check_overlap(sbi, inode, &newex, path);
|
|
if (err)
|
|
allocated = ext4_ext_get_actual_len(&newex);
|
|
else
|
|
allocated = map->m_len;
|
|
|
|
/* allocate new block */
|
|
ar.inode = inode;
|
|
ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
|
|
ar.logical = map->m_lblk;
|
|
/*
|
|
* We calculate the offset from the beginning of the cluster
|
|
* for the logical block number, since when we allocate a
|
|
* physical cluster, the physical block should start at the
|
|
* same offset from the beginning of the cluster. This is
|
|
* needed so that future calls to get_implied_cluster_alloc()
|
|
* work correctly.
|
|
*/
|
|
offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
|
|
ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
|
|
ar.goal -= offset;
|
|
ar.logical -= offset;
|
|
if (S_ISREG(inode->i_mode))
|
|
ar.flags = EXT4_MB_HINT_DATA;
|
|
else
|
|
/* disable in-core preallocation for non-regular files */
|
|
ar.flags = 0;
|
|
if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
|
|
ar.flags |= EXT4_MB_HINT_NOPREALLOC;
|
|
newblock = ext4_mb_new_blocks(handle, &ar, &err);
|
|
if (!newblock)
|
|
goto out2;
|
|
ext_debug("allocate new block: goal %llu, found %llu/%u\n",
|
|
ar.goal, newblock, allocated);
|
|
free_on_err = 1;
|
|
allocated_clusters = ar.len;
|
|
ar.len = EXT4_C2B(sbi, ar.len) - offset;
|
|
if (ar.len > allocated)
|
|
ar.len = allocated;
|
|
|
|
got_allocated_blocks:
|
|
/* try to insert new extent into found leaf and return */
|
|
ext4_ext_store_pblock(&newex, newblock + offset);
|
|
newex.ee_len = cpu_to_le16(ar.len);
|
|
/* Mark uninitialized */
|
|
if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
|
|
ext4_ext_mark_uninitialized(&newex);
|
|
/*
|
|
* io_end structure was created for every IO write to an
|
|
* uninitialized extent. To avoid unnecessary conversion,
|
|
* here we flag the IO that really needs the conversion.
|
|
* For non asycn direct IO case, flag the inode state
|
|
* that we need to perform conversion when IO is done.
|
|
*/
|
|
if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
|
|
if (io)
|
|
ext4_set_io_unwritten_flag(inode, io);
|
|
else
|
|
ext4_set_inode_state(inode,
|
|
EXT4_STATE_DIO_UNWRITTEN);
|
|
}
|
|
if (ext4_should_dioread_nolock(inode))
|
|
map->m_flags |= EXT4_MAP_UNINIT;
|
|
}
|
|
|
|
err = 0;
|
|
if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
|
|
err = check_eofblocks_fl(handle, inode, map->m_lblk,
|
|
path, ar.len);
|
|
if (!err)
|
|
err = ext4_ext_insert_extent(handle, inode, path,
|
|
&newex, flags);
|
|
if (err && free_on_err) {
|
|
int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
|
|
EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
|
|
/* free data blocks we just allocated */
|
|
/* not a good idea to call discard here directly,
|
|
* but otherwise we'd need to call it every free() */
|
|
ext4_discard_preallocations(inode);
|
|
ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
|
|
ext4_ext_get_actual_len(&newex), fb_flags);
|
|
goto out2;
|
|
}
|
|
|
|
/* previous routine could use block we allocated */
|
|
newblock = ext4_ext_pblock(&newex);
|
|
allocated = ext4_ext_get_actual_len(&newex);
|
|
if (allocated > map->m_len)
|
|
allocated = map->m_len;
|
|
map->m_flags |= EXT4_MAP_NEW;
|
|
|
|
/*
|
|
* Update reserved blocks/metadata blocks after successful
|
|
* block allocation which had been deferred till now.
|
|
*/
|
|
if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
|
|
unsigned int reserved_clusters;
|
|
/*
|
|
* Check how many clusters we had reserved this allocated range
|
|
*/
|
|
reserved_clusters = get_reserved_cluster_alloc(inode,
|
|
map->m_lblk, allocated);
|
|
if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
|
|
if (reserved_clusters) {
|
|
/*
|
|
* We have clusters reserved for this range.
|
|
* But since we are not doing actual allocation
|
|
* and are simply using blocks from previously
|
|
* allocated cluster, we should release the
|
|
* reservation and not claim quota.
|
|
*/
|
|
ext4_da_update_reserve_space(inode,
|
|
reserved_clusters, 0);
|
|
}
|
|
} else {
|
|
BUG_ON(allocated_clusters < reserved_clusters);
|
|
/* We will claim quota for all newly allocated blocks.*/
|
|
ext4_da_update_reserve_space(inode, allocated_clusters,
|
|
1);
|
|
if (reserved_clusters < allocated_clusters) {
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
int reservation = allocated_clusters -
|
|
reserved_clusters;
|
|
/*
|
|
* It seems we claimed few clusters outside of
|
|
* the range of this allocation. We should give
|
|
* it back to the reservation pool. This can
|
|
* happen in the following case:
|
|
*
|
|
* * Suppose s_cluster_ratio is 4 (i.e., each
|
|
* cluster has 4 blocks. Thus, the clusters
|
|
* are [0-3],[4-7],[8-11]...
|
|
* * First comes delayed allocation write for
|
|
* logical blocks 10 & 11. Since there were no
|
|
* previous delayed allocated blocks in the
|
|
* range [8-11], we would reserve 1 cluster
|
|
* for this write.
|
|
* * Next comes write for logical blocks 3 to 8.
|
|
* In this case, we will reserve 2 clusters
|
|
* (for [0-3] and [4-7]; and not for [8-11] as
|
|
* that range has a delayed allocated blocks.
|
|
* Thus total reserved clusters now becomes 3.
|
|
* * Now, during the delayed allocation writeout
|
|
* time, we will first write blocks [3-8] and
|
|
* allocate 3 clusters for writing these
|
|
* blocks. Also, we would claim all these
|
|
* three clusters above.
|
|
* * Now when we come here to writeout the
|
|
* blocks [10-11], we would expect to claim
|
|
* the reservation of 1 cluster we had made
|
|
* (and we would claim it since there are no
|
|
* more delayed allocated blocks in the range
|
|
* [8-11]. But our reserved cluster count had
|
|
* already gone to 0.
|
|
*
|
|
* Thus, at the step 4 above when we determine
|
|
* that there are still some unwritten delayed
|
|
* allocated blocks outside of our current
|
|
* block range, we should increment the
|
|
* reserved clusters count so that when the
|
|
* remaining blocks finally gets written, we
|
|
* could claim them.
|
|
*/
|
|
dquot_reserve_block(inode,
|
|
EXT4_C2B(sbi, reservation));
|
|
spin_lock(&ei->i_block_reservation_lock);
|
|
ei->i_reserved_data_blocks += reservation;
|
|
spin_unlock(&ei->i_block_reservation_lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Cache the extent and update transaction to commit on fdatasync only
|
|
* when it is _not_ an uninitialized extent.
|
|
*/
|
|
if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
|
|
ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
|
|
ext4_update_inode_fsync_trans(handle, inode, 1);
|
|
} else
|
|
ext4_update_inode_fsync_trans(handle, inode, 0);
|
|
out:
|
|
if (allocated > map->m_len)
|
|
allocated = map->m_len;
|
|
ext4_ext_show_leaf(inode, path);
|
|
map->m_flags |= EXT4_MAP_MAPPED;
|
|
map->m_pblk = newblock;
|
|
map->m_len = allocated;
|
|
out2:
|
|
if (path) {
|
|
ext4_ext_drop_refs(path);
|
|
kfree(path);
|
|
}
|
|
|
|
trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
|
|
newblock, map->m_len, err ? err : allocated);
|
|
|
|
return err ? err : allocated;
|
|
}
|
|
|
|
void ext4_ext_truncate(struct inode *inode)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct super_block *sb = inode->i_sb;
|
|
ext4_lblk_t last_block;
|
|
handle_t *handle;
|
|
loff_t page_len;
|
|
int err = 0;
|
|
|
|
/*
|
|
* finish any pending end_io work so we won't run the risk of
|
|
* converting any truncated blocks to initialized later
|
|
*/
|
|
ext4_flush_completed_IO(inode);
|
|
|
|
/*
|
|
* probably first extent we're gonna free will be last in block
|
|
*/
|
|
err = ext4_writepage_trans_blocks(inode);
|
|
handle = ext4_journal_start(inode, err);
|
|
if (IS_ERR(handle))
|
|
return;
|
|
|
|
if (inode->i_size % PAGE_CACHE_SIZE != 0) {
|
|
page_len = PAGE_CACHE_SIZE -
|
|
(inode->i_size & (PAGE_CACHE_SIZE - 1));
|
|
|
|
err = ext4_discard_partial_page_buffers(handle,
|
|
mapping, inode->i_size, page_len, 0);
|
|
|
|
if (err)
|
|
goto out_stop;
|
|
}
|
|
|
|
if (ext4_orphan_add(handle, inode))
|
|
goto out_stop;
|
|
|
|
down_write(&EXT4_I(inode)->i_data_sem);
|
|
ext4_ext_invalidate_cache(inode);
|
|
|
|
ext4_discard_preallocations(inode);
|
|
|
|
/*
|
|
* TODO: optimization is possible here.
|
|
* Probably we need not scan at all,
|
|
* because page truncation is enough.
|
|
*/
|
|
|
|
/* we have to know where to truncate from in crash case */
|
|
EXT4_I(inode)->i_disksize = inode->i_size;
|
|
ext4_mark_inode_dirty(handle, inode);
|
|
|
|
last_block = (inode->i_size + sb->s_blocksize - 1)
|
|
>> EXT4_BLOCK_SIZE_BITS(sb);
|
|
err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
|
|
|
|
/* In a multi-transaction truncate, we only make the final
|
|
* transaction synchronous.
|
|
*/
|
|
if (IS_SYNC(inode))
|
|
ext4_handle_sync(handle);
|
|
|
|
up_write(&EXT4_I(inode)->i_data_sem);
|
|
|
|
out_stop:
|
|
/*
|
|
* If this was a simple ftruncate() and the file will remain alive,
|
|
* then we need to clear up the orphan record which we created above.
|
|
* However, if this was a real unlink then we were called by
|
|
* ext4_delete_inode(), and we allow that function to clean up the
|
|
* orphan info for us.
|
|
*/
|
|
if (inode->i_nlink)
|
|
ext4_orphan_del(handle, inode);
|
|
|
|
inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
|
|
ext4_mark_inode_dirty(handle, inode);
|
|
ext4_journal_stop(handle);
|
|
}
|
|
|
|
static void ext4_falloc_update_inode(struct inode *inode,
|
|
int mode, loff_t new_size, int update_ctime)
|
|
{
|
|
struct timespec now;
|
|
|
|
if (update_ctime) {
|
|
now = current_fs_time(inode->i_sb);
|
|
if (!timespec_equal(&inode->i_ctime, &now))
|
|
inode->i_ctime = now;
|
|
}
|
|
/*
|
|
* Update only when preallocation was requested beyond
|
|
* the file size.
|
|
*/
|
|
if (!(mode & FALLOC_FL_KEEP_SIZE)) {
|
|
if (new_size > i_size_read(inode))
|
|
i_size_write(inode, new_size);
|
|
if (new_size > EXT4_I(inode)->i_disksize)
|
|
ext4_update_i_disksize(inode, new_size);
|
|
} else {
|
|
/*
|
|
* Mark that we allocate beyond EOF so the subsequent truncate
|
|
* can proceed even if the new size is the same as i_size.
|
|
*/
|
|
if (new_size > i_size_read(inode))
|
|
ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* preallocate space for a file. This implements ext4's fallocate file
|
|
* operation, which gets called from sys_fallocate system call.
|
|
* For block-mapped files, posix_fallocate should fall back to the method
|
|
* of writing zeroes to the required new blocks (the same behavior which is
|
|
* expected for file systems which do not support fallocate() system call).
|
|
*/
|
|
long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
|
|
{
|
|
struct inode *inode = file->f_path.dentry->d_inode;
|
|
handle_t *handle;
|
|
loff_t new_size;
|
|
unsigned int max_blocks;
|
|
int ret = 0;
|
|
int ret2 = 0;
|
|
int retries = 0;
|
|
int flags;
|
|
struct ext4_map_blocks map;
|
|
unsigned int credits, blkbits = inode->i_blkbits;
|
|
|
|
/*
|
|
* currently supporting (pre)allocate mode for extent-based
|
|
* files _only_
|
|
*/
|
|
if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
|
|
return -EOPNOTSUPP;
|
|
|
|
/* Return error if mode is not supported */
|
|
if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (mode & FALLOC_FL_PUNCH_HOLE)
|
|
return ext4_punch_hole(file, offset, len);
|
|
|
|
trace_ext4_fallocate_enter(inode, offset, len, mode);
|
|
map.m_lblk = offset >> blkbits;
|
|
/*
|
|
* We can't just convert len to max_blocks because
|
|
* If blocksize = 4096 offset = 3072 and len = 2048
|
|
*/
|
|
max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
|
|
- map.m_lblk;
|
|
/*
|
|
* credits to insert 1 extent into extent tree
|
|
*/
|
|
credits = ext4_chunk_trans_blocks(inode, max_blocks);
|
|
mutex_lock(&inode->i_mutex);
|
|
ret = inode_newsize_ok(inode, (len + offset));
|
|
if (ret) {
|
|
mutex_unlock(&inode->i_mutex);
|
|
trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
|
|
return ret;
|
|
}
|
|
flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
|
|
if (mode & FALLOC_FL_KEEP_SIZE)
|
|
flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
|
|
/*
|
|
* Don't normalize the request if it can fit in one extent so
|
|
* that it doesn't get unnecessarily split into multiple
|
|
* extents.
|
|
*/
|
|
if (len <= EXT_UNINIT_MAX_LEN << blkbits)
|
|
flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
|
|
retry:
|
|
while (ret >= 0 && ret < max_blocks) {
|
|
map.m_lblk = map.m_lblk + ret;
|
|
map.m_len = max_blocks = max_blocks - ret;
|
|
handle = ext4_journal_start(inode, credits);
|
|
if (IS_ERR(handle)) {
|
|
ret = PTR_ERR(handle);
|
|
break;
|
|
}
|
|
ret = ext4_map_blocks(handle, inode, &map, flags);
|
|
if (ret <= 0) {
|
|
#ifdef EXT4FS_DEBUG
|
|
WARN_ON(ret <= 0);
|
|
printk(KERN_ERR "%s: ext4_ext_map_blocks "
|
|
"returned error inode#%lu, block=%u, "
|
|
"max_blocks=%u", __func__,
|
|
inode->i_ino, map.m_lblk, max_blocks);
|
|
#endif
|
|
ext4_mark_inode_dirty(handle, inode);
|
|
ret2 = ext4_journal_stop(handle);
|
|
break;
|
|
}
|
|
if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
|
|
blkbits) >> blkbits))
|
|
new_size = offset + len;
|
|
else
|
|
new_size = ((loff_t) map.m_lblk + ret) << blkbits;
|
|
|
|
ext4_falloc_update_inode(inode, mode, new_size,
|
|
(map.m_flags & EXT4_MAP_NEW));
|
|
ext4_mark_inode_dirty(handle, inode);
|
|
ret2 = ext4_journal_stop(handle);
|
|
if (ret2)
|
|
break;
|
|
}
|
|
if (ret == -ENOSPC &&
|
|
ext4_should_retry_alloc(inode->i_sb, &retries)) {
|
|
ret = 0;
|
|
goto retry;
|
|
}
|
|
mutex_unlock(&inode->i_mutex);
|
|
trace_ext4_fallocate_exit(inode, offset, max_blocks,
|
|
ret > 0 ? ret2 : ret);
|
|
return ret > 0 ? ret2 : ret;
|
|
}
|
|
|
|
/*
|
|
* This function convert a range of blocks to written extents
|
|
* The caller of this function will pass the start offset and the size.
|
|
* all unwritten extents within this range will be converted to
|
|
* written extents.
|
|
*
|
|
* This function is called from the direct IO end io call back
|
|
* function, to convert the fallocated extents after IO is completed.
|
|
* Returns 0 on success.
|
|
*/
|
|
int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
|
|
ssize_t len)
|
|
{
|
|
handle_t *handle;
|
|
unsigned int max_blocks;
|
|
int ret = 0;
|
|
int ret2 = 0;
|
|
struct ext4_map_blocks map;
|
|
unsigned int credits, blkbits = inode->i_blkbits;
|
|
|
|
map.m_lblk = offset >> blkbits;
|
|
/*
|
|
* We can't just convert len to max_blocks because
|
|
* If blocksize = 4096 offset = 3072 and len = 2048
|
|
*/
|
|
max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
|
|
map.m_lblk);
|
|
/*
|
|
* credits to insert 1 extent into extent tree
|
|
*/
|
|
credits = ext4_chunk_trans_blocks(inode, max_blocks);
|
|
while (ret >= 0 && ret < max_blocks) {
|
|
map.m_lblk += ret;
|
|
map.m_len = (max_blocks -= ret);
|
|
handle = ext4_journal_start(inode, credits);
|
|
if (IS_ERR(handle)) {
|
|
ret = PTR_ERR(handle);
|
|
break;
|
|
}
|
|
ret = ext4_map_blocks(handle, inode, &map,
|
|
EXT4_GET_BLOCKS_IO_CONVERT_EXT);
|
|
if (ret <= 0) {
|
|
WARN_ON(ret <= 0);
|
|
ext4_msg(inode->i_sb, KERN_ERR,
|
|
"%s:%d: inode #%lu: block %u: len %u: "
|
|
"ext4_ext_map_blocks returned %d",
|
|
__func__, __LINE__, inode->i_ino, map.m_lblk,
|
|
map.m_len, ret);
|
|
}
|
|
ext4_mark_inode_dirty(handle, inode);
|
|
ret2 = ext4_journal_stop(handle);
|
|
if (ret <= 0 || ret2 )
|
|
break;
|
|
}
|
|
return ret > 0 ? ret2 : ret;
|
|
}
|
|
|
|
/*
|
|
* Callback function called for each extent to gather FIEMAP information.
|
|
*/
|
|
static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
|
|
struct ext4_ext_cache *newex, struct ext4_extent *ex,
|
|
void *data)
|
|
{
|
|
__u64 logical;
|
|
__u64 physical;
|
|
__u64 length;
|
|
__u32 flags = 0;
|
|
int ret = 0;
|
|
struct fiemap_extent_info *fieinfo = data;
|
|
unsigned char blksize_bits;
|
|
|
|
blksize_bits = inode->i_sb->s_blocksize_bits;
|
|
logical = (__u64)newex->ec_block << blksize_bits;
|
|
|
|
if (newex->ec_start == 0) {
|
|
/*
|
|
* No extent in extent-tree contains block @newex->ec_start,
|
|
* then the block may stay in 1)a hole or 2)delayed-extent.
|
|
*
|
|
* Holes or delayed-extents are processed as follows.
|
|
* 1. lookup dirty pages with specified range in pagecache.
|
|
* If no page is got, then there is no delayed-extent and
|
|
* return with EXT_CONTINUE.
|
|
* 2. find the 1st mapped buffer,
|
|
* 3. check if the mapped buffer is both in the request range
|
|
* and a delayed buffer. If not, there is no delayed-extent,
|
|
* then return.
|
|
* 4. a delayed-extent is found, the extent will be collected.
|
|
*/
|
|
ext4_lblk_t end = 0;
|
|
pgoff_t last_offset;
|
|
pgoff_t offset;
|
|
pgoff_t index;
|
|
pgoff_t start_index = 0;
|
|
struct page **pages = NULL;
|
|
struct buffer_head *bh = NULL;
|
|
struct buffer_head *head = NULL;
|
|
unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
|
|
|
|
pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
|
|
if (pages == NULL)
|
|
return -ENOMEM;
|
|
|
|
offset = logical >> PAGE_SHIFT;
|
|
repeat:
|
|
last_offset = offset;
|
|
head = NULL;
|
|
ret = find_get_pages_tag(inode->i_mapping, &offset,
|
|
PAGECACHE_TAG_DIRTY, nr_pages, pages);
|
|
|
|
if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
|
|
/* First time, try to find a mapped buffer. */
|
|
if (ret == 0) {
|
|
out:
|
|
for (index = 0; index < ret; index++)
|
|
page_cache_release(pages[index]);
|
|
/* just a hole. */
|
|
kfree(pages);
|
|
return EXT_CONTINUE;
|
|
}
|
|
index = 0;
|
|
|
|
next_page:
|
|
/* Try to find the 1st mapped buffer. */
|
|
end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
|
|
blksize_bits;
|
|
if (!page_has_buffers(pages[index]))
|
|
goto out;
|
|
head = page_buffers(pages[index]);
|
|
if (!head)
|
|
goto out;
|
|
|
|
index++;
|
|
bh = head;
|
|
do {
|
|
if (end >= newex->ec_block +
|
|
newex->ec_len)
|
|
/* The buffer is out of
|
|
* the request range.
|
|
*/
|
|
goto out;
|
|
|
|
if (buffer_mapped(bh) &&
|
|
end >= newex->ec_block) {
|
|
start_index = index - 1;
|
|
/* get the 1st mapped buffer. */
|
|
goto found_mapped_buffer;
|
|
}
|
|
|
|
bh = bh->b_this_page;
|
|
end++;
|
|
} while (bh != head);
|
|
|
|
/* No mapped buffer in the range found in this page,
|
|
* We need to look up next page.
|
|
*/
|
|
if (index >= ret) {
|
|
/* There is no page left, but we need to limit
|
|
* newex->ec_len.
|
|
*/
|
|
newex->ec_len = end - newex->ec_block;
|
|
goto out;
|
|
}
|
|
goto next_page;
|
|
} else {
|
|
/*Find contiguous delayed buffers. */
|
|
if (ret > 0 && pages[0]->index == last_offset)
|
|
head = page_buffers(pages[0]);
|
|
bh = head;
|
|
index = 1;
|
|
start_index = 0;
|
|
}
|
|
|
|
found_mapped_buffer:
|
|
if (bh != NULL && buffer_delay(bh)) {
|
|
/* 1st or contiguous delayed buffer found. */
|
|
if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
|
|
/*
|
|
* 1st delayed buffer found, record
|
|
* the start of extent.
|
|
*/
|
|
flags |= FIEMAP_EXTENT_DELALLOC;
|
|
newex->ec_block = end;
|
|
logical = (__u64)end << blksize_bits;
|
|
}
|
|
/* Find contiguous delayed buffers. */
|
|
do {
|
|
if (!buffer_delay(bh))
|
|
goto found_delayed_extent;
|
|
bh = bh->b_this_page;
|
|
end++;
|
|
} while (bh != head);
|
|
|
|
for (; index < ret; index++) {
|
|
if (!page_has_buffers(pages[index])) {
|
|
bh = NULL;
|
|
break;
|
|
}
|
|
head = page_buffers(pages[index]);
|
|
if (!head) {
|
|
bh = NULL;
|
|
break;
|
|
}
|
|
|
|
if (pages[index]->index !=
|
|
pages[start_index]->index + index
|
|
- start_index) {
|
|
/* Blocks are not contiguous. */
|
|
bh = NULL;
|
|
break;
|
|
}
|
|
bh = head;
|
|
do {
|
|
if (!buffer_delay(bh))
|
|
/* Delayed-extent ends. */
|
|
goto found_delayed_extent;
|
|
bh = bh->b_this_page;
|
|
end++;
|
|
} while (bh != head);
|
|
}
|
|
} else if (!(flags & FIEMAP_EXTENT_DELALLOC))
|
|
/* a hole found. */
|
|
goto out;
|
|
|
|
found_delayed_extent:
|
|
newex->ec_len = min(end - newex->ec_block,
|
|
(ext4_lblk_t)EXT_INIT_MAX_LEN);
|
|
if (ret == nr_pages && bh != NULL &&
|
|
newex->ec_len < EXT_INIT_MAX_LEN &&
|
|
buffer_delay(bh)) {
|
|
/* Have not collected an extent and continue. */
|
|
for (index = 0; index < ret; index++)
|
|
page_cache_release(pages[index]);
|
|
goto repeat;
|
|
}
|
|
|
|
for (index = 0; index < ret; index++)
|
|
page_cache_release(pages[index]);
|
|
kfree(pages);
|
|
}
|
|
|
|
physical = (__u64)newex->ec_start << blksize_bits;
|
|
length = (__u64)newex->ec_len << blksize_bits;
|
|
|
|
if (ex && ext4_ext_is_uninitialized(ex))
|
|
flags |= FIEMAP_EXTENT_UNWRITTEN;
|
|
|
|
if (next == EXT_MAX_BLOCKS)
|
|
flags |= FIEMAP_EXTENT_LAST;
|
|
|
|
ret = fiemap_fill_next_extent(fieinfo, logical, physical,
|
|
length, flags);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (ret == 1)
|
|
return EXT_BREAK;
|
|
return EXT_CONTINUE;
|
|
}
|
|
/* fiemap flags we can handle specified here */
|
|
#define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
|
|
|
|
static int ext4_xattr_fiemap(struct inode *inode,
|
|
struct fiemap_extent_info *fieinfo)
|
|
{
|
|
__u64 physical = 0;
|
|
__u64 length;
|
|
__u32 flags = FIEMAP_EXTENT_LAST;
|
|
int blockbits = inode->i_sb->s_blocksize_bits;
|
|
int error = 0;
|
|
|
|
/* in-inode? */
|
|
if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
|
|
struct ext4_iloc iloc;
|
|
int offset; /* offset of xattr in inode */
|
|
|
|
error = ext4_get_inode_loc(inode, &iloc);
|
|
if (error)
|
|
return error;
|
|
physical = iloc.bh->b_blocknr << blockbits;
|
|
offset = EXT4_GOOD_OLD_INODE_SIZE +
|
|
EXT4_I(inode)->i_extra_isize;
|
|
physical += offset;
|
|
length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
|
|
flags |= FIEMAP_EXTENT_DATA_INLINE;
|
|
brelse(iloc.bh);
|
|
} else { /* external block */
|
|
physical = EXT4_I(inode)->i_file_acl << blockbits;
|
|
length = inode->i_sb->s_blocksize;
|
|
}
|
|
|
|
if (physical)
|
|
error = fiemap_fill_next_extent(fieinfo, 0, physical,
|
|
length, flags);
|
|
return (error < 0 ? error : 0);
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_punch_hole
|
|
*
|
|
* Punches a hole of "length" bytes in a file starting
|
|
* at byte "offset"
|
|
*
|
|
* @inode: The inode of the file to punch a hole in
|
|
* @offset: The starting byte offset of the hole
|
|
* @length: The length of the hole
|
|
*
|
|
* Returns the number of blocks removed or negative on err
|
|
*/
|
|
int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
|
|
{
|
|
struct inode *inode = file->f_path.dentry->d_inode;
|
|
struct super_block *sb = inode->i_sb;
|
|
ext4_lblk_t first_block, stop_block;
|
|
struct address_space *mapping = inode->i_mapping;
|
|
handle_t *handle;
|
|
loff_t first_page, last_page, page_len;
|
|
loff_t first_page_offset, last_page_offset;
|
|
int credits, err = 0;
|
|
|
|
/* No need to punch hole beyond i_size */
|
|
if (offset >= inode->i_size)
|
|
return 0;
|
|
|
|
/*
|
|
* If the hole extends beyond i_size, set the hole
|
|
* to end after the page that contains i_size
|
|
*/
|
|
if (offset + length > inode->i_size) {
|
|
length = inode->i_size +
|
|
PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
|
|
offset;
|
|
}
|
|
|
|
first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
|
|
last_page = (offset + length) >> PAGE_CACHE_SHIFT;
|
|
|
|
first_page_offset = first_page << PAGE_CACHE_SHIFT;
|
|
last_page_offset = last_page << PAGE_CACHE_SHIFT;
|
|
|
|
/*
|
|
* Write out all dirty pages to avoid race conditions
|
|
* Then release them.
|
|
*/
|
|
if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
|
|
err = filemap_write_and_wait_range(mapping,
|
|
offset, offset + length - 1);
|
|
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/* Now release the pages */
|
|
if (last_page_offset > first_page_offset) {
|
|
truncate_inode_pages_range(mapping, first_page_offset,
|
|
last_page_offset-1);
|
|
}
|
|
|
|
/* finish any pending end_io work */
|
|
ext4_flush_completed_IO(inode);
|
|
|
|
credits = ext4_writepage_trans_blocks(inode);
|
|
handle = ext4_journal_start(inode, credits);
|
|
if (IS_ERR(handle))
|
|
return PTR_ERR(handle);
|
|
|
|
err = ext4_orphan_add(handle, inode);
|
|
if (err)
|
|
goto out;
|
|
|
|
/*
|
|
* Now we need to zero out the non-page-aligned data in the
|
|
* pages at the start and tail of the hole, and unmap the buffer
|
|
* heads for the block aligned regions of the page that were
|
|
* completely zeroed.
|
|
*/
|
|
if (first_page > last_page) {
|
|
/*
|
|
* If the file space being truncated is contained within a page
|
|
* just zero out and unmap the middle of that page
|
|
*/
|
|
err = ext4_discard_partial_page_buffers(handle,
|
|
mapping, offset, length, 0);
|
|
|
|
if (err)
|
|
goto out;
|
|
} else {
|
|
/*
|
|
* zero out and unmap the partial page that contains
|
|
* the start of the hole
|
|
*/
|
|
page_len = first_page_offset - offset;
|
|
if (page_len > 0) {
|
|
err = ext4_discard_partial_page_buffers(handle, mapping,
|
|
offset, page_len, 0);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* zero out and unmap the partial page that contains
|
|
* the end of the hole
|
|
*/
|
|
page_len = offset + length - last_page_offset;
|
|
if (page_len > 0) {
|
|
err = ext4_discard_partial_page_buffers(handle, mapping,
|
|
last_page_offset, page_len, 0);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If i_size is contained in the last page, we need to
|
|
* unmap and zero the partial page after i_size
|
|
*/
|
|
if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
|
|
inode->i_size % PAGE_CACHE_SIZE != 0) {
|
|
|
|
page_len = PAGE_CACHE_SIZE -
|
|
(inode->i_size & (PAGE_CACHE_SIZE - 1));
|
|
|
|
if (page_len > 0) {
|
|
err = ext4_discard_partial_page_buffers(handle,
|
|
mapping, inode->i_size, page_len, 0);
|
|
|
|
if (err)
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
first_block = (offset + sb->s_blocksize - 1) >>
|
|
EXT4_BLOCK_SIZE_BITS(sb);
|
|
stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
|
|
|
|
/* If there are no blocks to remove, return now */
|
|
if (first_block >= stop_block)
|
|
goto out;
|
|
|
|
down_write(&EXT4_I(inode)->i_data_sem);
|
|
ext4_ext_invalidate_cache(inode);
|
|
ext4_discard_preallocations(inode);
|
|
|
|
err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
|
|
|
|
ext4_ext_invalidate_cache(inode);
|
|
ext4_discard_preallocations(inode);
|
|
|
|
if (IS_SYNC(inode))
|
|
ext4_handle_sync(handle);
|
|
|
|
up_write(&EXT4_I(inode)->i_data_sem);
|
|
|
|
out:
|
|
ext4_orphan_del(handle, inode);
|
|
inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
|
|
ext4_mark_inode_dirty(handle, inode);
|
|
ext4_journal_stop(handle);
|
|
return err;
|
|
}
|
|
int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
|
|
__u64 start, __u64 len)
|
|
{
|
|
ext4_lblk_t start_blk;
|
|
int error = 0;
|
|
|
|
/* fallback to generic here if not in extents fmt */
|
|
if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
|
|
return generic_block_fiemap(inode, fieinfo, start, len,
|
|
ext4_get_block);
|
|
|
|
if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
|
|
return -EBADR;
|
|
|
|
if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
|
|
error = ext4_xattr_fiemap(inode, fieinfo);
|
|
} else {
|
|
ext4_lblk_t len_blks;
|
|
__u64 last_blk;
|
|
|
|
start_blk = start >> inode->i_sb->s_blocksize_bits;
|
|
last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
|
|
if (last_blk >= EXT_MAX_BLOCKS)
|
|
last_blk = EXT_MAX_BLOCKS-1;
|
|
len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
|
|
|
|
/*
|
|
* Walk the extent tree gathering extent information.
|
|
* ext4_ext_fiemap_cb will push extents back to user.
|
|
*/
|
|
error = ext4_ext_walk_space(inode, start_blk, len_blks,
|
|
ext4_ext_fiemap_cb, fieinfo);
|
|
}
|
|
|
|
return error;
|
|
}
|