linux_dsm_epyc7002/drivers/net/wan/farsync.c
Alexey Dobriyan ab611487d8 [NET]: __be'ify *_type_trans()
tr_type_trans(), hippi_type_trans() left as-is.

Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2005-07-12 12:08:43 -07:00

2713 lines
72 KiB
C

/*
* FarSync WAN driver for Linux (2.6.x kernel version)
*
* Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
*
* Copyright (C) 2001-2004 FarSite Communications Ltd.
* www.farsite.co.uk
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Author: R.J.Dunlop <bob.dunlop@farsite.co.uk>
* Maintainer: Kevin Curtis <kevin.curtis@farsite.co.uk>
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/version.h>
#include <linux/pci.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/if.h>
#include <linux/hdlc.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include "farsync.h"
/*
* Module info
*/
MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
MODULE_LICENSE("GPL");
/* Driver configuration and global parameters
* ==========================================
*/
/* Number of ports (per card) and cards supported
*/
#define FST_MAX_PORTS 4
#define FST_MAX_CARDS 32
/* Default parameters for the link
*/
#define FST_TX_QUEUE_LEN 100 /* At 8Mbps a longer queue length is
* useful, the syncppp module forces
* this down assuming a slower line I
* guess.
*/
#define FST_TXQ_DEPTH 16 /* This one is for the buffering
* of frames on the way down to the card
* so that we can keep the card busy
* and maximise throughput
*/
#define FST_HIGH_WATER_MARK 12 /* Point at which we flow control
* network layer */
#define FST_LOW_WATER_MARK 8 /* Point at which we remove flow
* control from network layer */
#define FST_MAX_MTU 8000 /* Huge but possible */
#define FST_DEF_MTU 1500 /* Common sane value */
#define FST_TX_TIMEOUT (2*HZ)
#ifdef ARPHRD_RAWHDLC
#define ARPHRD_MYTYPE ARPHRD_RAWHDLC /* Raw frames */
#else
#define ARPHRD_MYTYPE ARPHRD_HDLC /* Cisco-HDLC (keepalives etc) */
#endif
/*
* Modules parameters and associated varaibles
*/
int fst_txq_low = FST_LOW_WATER_MARK;
int fst_txq_high = FST_HIGH_WATER_MARK;
int fst_max_reads = 7;
int fst_excluded_cards = 0;
int fst_excluded_list[FST_MAX_CARDS];
module_param(fst_txq_low, int, 0);
module_param(fst_txq_high, int, 0);
module_param(fst_max_reads, int, 0);
module_param(fst_excluded_cards, int, 0);
module_param_array(fst_excluded_list, int, NULL, 0);
/* Card shared memory layout
* =========================
*/
#pragma pack(1)
/* This information is derived in part from the FarSite FarSync Smc.h
* file. Unfortunately various name clashes and the non-portability of the
* bit field declarations in that file have meant that I have chosen to
* recreate the information here.
*
* The SMC (Shared Memory Configuration) has a version number that is
* incremented every time there is a significant change. This number can
* be used to check that we have not got out of step with the firmware
* contained in the .CDE files.
*/
#define SMC_VERSION 24
#define FST_MEMSIZE 0x100000 /* Size of card memory (1Mb) */
#define SMC_BASE 0x00002000L /* Base offset of the shared memory window main
* configuration structure */
#define BFM_BASE 0x00010000L /* Base offset of the shared memory window DMA
* buffers */
#define LEN_TX_BUFFER 8192 /* Size of packet buffers */
#define LEN_RX_BUFFER 8192
#define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */
#define LEN_SMALL_RX_BUFFER 256
#define NUM_TX_BUFFER 2 /* Must be power of 2. Fixed by firmware */
#define NUM_RX_BUFFER 8
/* Interrupt retry time in milliseconds */
#define INT_RETRY_TIME 2
/* The Am186CH/CC processors support a SmartDMA mode using circular pools
* of buffer descriptors. The structure is almost identical to that used
* in the LANCE Ethernet controllers. Details available as PDF from the
* AMD web site: http://www.amd.com/products/epd/processors/\
* 2.16bitcont/3.am186cxfa/a21914/21914.pdf
*/
struct txdesc { /* Transmit descriptor */
volatile u16 ladr; /* Low order address of packet. This is a
* linear address in the Am186 memory space
*/
volatile u8 hadr; /* High order address. Low 4 bits only, high 4
* bits must be zero
*/
volatile u8 bits; /* Status and config */
volatile u16 bcnt; /* 2s complement of packet size in low 15 bits.
* Transmit terminal count interrupt enable in
* top bit.
*/
u16 unused; /* Not used in Tx */
};
struct rxdesc { /* Receive descriptor */
volatile u16 ladr; /* Low order address of packet */
volatile u8 hadr; /* High order address */
volatile u8 bits; /* Status and config */
volatile u16 bcnt; /* 2s complement of buffer size in low 15 bits.
* Receive terminal count interrupt enable in
* top bit.
*/
volatile u16 mcnt; /* Message byte count (15 bits) */
};
/* Convert a length into the 15 bit 2's complement */
/* #define cnv_bcnt(len) (( ~(len) + 1 ) & 0x7FFF ) */
/* Since we need to set the high bit to enable the completion interrupt this
* can be made a lot simpler
*/
#define cnv_bcnt(len) (-(len))
/* Status and config bits for the above */
#define DMA_OWN 0x80 /* SmartDMA owns the descriptor */
#define TX_STP 0x02 /* Tx: start of packet */
#define TX_ENP 0x01 /* Tx: end of packet */
#define RX_ERR 0x40 /* Rx: error (OR of next 4 bits) */
#define RX_FRAM 0x20 /* Rx: framing error */
#define RX_OFLO 0x10 /* Rx: overflow error */
#define RX_CRC 0x08 /* Rx: CRC error */
#define RX_HBUF 0x04 /* Rx: buffer error */
#define RX_STP 0x02 /* Rx: start of packet */
#define RX_ENP 0x01 /* Rx: end of packet */
/* Interrupts from the card are caused by various events which are presented
* in a circular buffer as several events may be processed on one physical int
*/
#define MAX_CIRBUFF 32
struct cirbuff {
u8 rdindex; /* read, then increment and wrap */
u8 wrindex; /* write, then increment and wrap */
u8 evntbuff[MAX_CIRBUFF];
};
/* Interrupt event codes.
* Where appropriate the two low order bits indicate the port number
*/
#define CTLA_CHG 0x18 /* Control signal changed */
#define CTLB_CHG 0x19
#define CTLC_CHG 0x1A
#define CTLD_CHG 0x1B
#define INIT_CPLT 0x20 /* Initialisation complete */
#define INIT_FAIL 0x21 /* Initialisation failed */
#define ABTA_SENT 0x24 /* Abort sent */
#define ABTB_SENT 0x25
#define ABTC_SENT 0x26
#define ABTD_SENT 0x27
#define TXA_UNDF 0x28 /* Transmission underflow */
#define TXB_UNDF 0x29
#define TXC_UNDF 0x2A
#define TXD_UNDF 0x2B
#define F56_INT 0x2C
#define M32_INT 0x2D
#define TE1_ALMA 0x30
/* Port physical configuration. See farsync.h for field values */
struct port_cfg {
u16 lineInterface; /* Physical interface type */
u8 x25op; /* Unused at present */
u8 internalClock; /* 1 => internal clock, 0 => external */
u8 transparentMode; /* 1 => on, 0 => off */
u8 invertClock; /* 0 => normal, 1 => inverted */
u8 padBytes[6]; /* Padding */
u32 lineSpeed; /* Speed in bps */
};
/* TE1 port physical configuration */
struct su_config {
u32 dataRate;
u8 clocking;
u8 framing;
u8 structure;
u8 interface;
u8 coding;
u8 lineBuildOut;
u8 equalizer;
u8 transparentMode;
u8 loopMode;
u8 range;
u8 txBufferMode;
u8 rxBufferMode;
u8 startingSlot;
u8 losThreshold;
u8 enableIdleCode;
u8 idleCode;
u8 spare[44];
};
/* TE1 Status */
struct su_status {
u32 receiveBufferDelay;
u32 framingErrorCount;
u32 codeViolationCount;
u32 crcErrorCount;
u32 lineAttenuation;
u8 portStarted;
u8 lossOfSignal;
u8 receiveRemoteAlarm;
u8 alarmIndicationSignal;
u8 spare[40];
};
/* Finally sling all the above together into the shared memory structure.
* Sorry it's a hodge podge of arrays, structures and unused bits, it's been
* evolving under NT for some time so I guess we're stuck with it.
* The structure starts at offset SMC_BASE.
* See farsync.h for some field values.
*/
struct fst_shared {
/* DMA descriptor rings */
struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
/* Obsolete small buffers */
u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
u8 taskStatus; /* 0x00 => initialising, 0x01 => running,
* 0xFF => halted
*/
u8 interruptHandshake; /* Set to 0x01 by adapter to signal interrupt,
* set to 0xEE by host to acknowledge interrupt
*/
u16 smcVersion; /* Must match SMC_VERSION */
u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major
* version, RR = revision and BB = build
*/
u16 txa_done; /* Obsolete completion flags */
u16 rxa_done;
u16 txb_done;
u16 rxb_done;
u16 txc_done;
u16 rxc_done;
u16 txd_done;
u16 rxd_done;
u16 mailbox[4]; /* Diagnostics mailbox. Not used */
struct cirbuff interruptEvent; /* interrupt causes */
u32 v24IpSts[FST_MAX_PORTS]; /* V.24 control input status */
u32 v24OpSts[FST_MAX_PORTS]; /* V.24 control output status */
struct port_cfg portConfig[FST_MAX_PORTS];
u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */
u16 cableStatus; /* lsb: 0=> present, 1=> absent */
u16 txDescrIndex[FST_MAX_PORTS]; /* transmit descriptor ring index */
u16 rxDescrIndex[FST_MAX_PORTS]; /* receive descriptor ring index */
u16 portMailbox[FST_MAX_PORTS][2]; /* command, modifier */
u16 cardMailbox[4]; /* Not used */
/* Number of times the card thinks the host has
* missed an interrupt by not acknowledging
* within 2mS (I guess NT has problems)
*/
u32 interruptRetryCount;
/* Driver private data used as an ID. We'll not
* use this as I'd rather keep such things
* in main memory rather than on the PCI bus
*/
u32 portHandle[FST_MAX_PORTS];
/* Count of Tx underflows for stats */
u32 transmitBufferUnderflow[FST_MAX_PORTS];
/* Debounced V.24 control input status */
u32 v24DebouncedSts[FST_MAX_PORTS];
/* Adapter debounce timers. Don't touch */
u32 ctsTimer[FST_MAX_PORTS];
u32 ctsTimerRun[FST_MAX_PORTS];
u32 dcdTimer[FST_MAX_PORTS];
u32 dcdTimerRun[FST_MAX_PORTS];
u32 numberOfPorts; /* Number of ports detected at startup */
u16 _reserved[64];
u16 cardMode; /* Bit-mask to enable features:
* Bit 0: 1 enables LED identify mode
*/
u16 portScheduleOffset;
struct su_config suConfig; /* TE1 Bits */
struct su_status suStatus;
u32 endOfSmcSignature; /* endOfSmcSignature MUST be the last member of
* the structure and marks the end of shared
* memory. Adapter code initializes it as
* END_SIG.
*/
};
/* endOfSmcSignature value */
#define END_SIG 0x12345678
/* Mailbox values. (portMailbox) */
#define NOP 0 /* No operation */
#define ACK 1 /* Positive acknowledgement to PC driver */
#define NAK 2 /* Negative acknowledgement to PC driver */
#define STARTPORT 3 /* Start an HDLC port */
#define STOPPORT 4 /* Stop an HDLC port */
#define ABORTTX 5 /* Abort the transmitter for a port */
#define SETV24O 6 /* Set V24 outputs */
/* PLX Chip Register Offsets */
#define CNTRL_9052 0x50 /* Control Register */
#define CNTRL_9054 0x6c /* Control Register */
#define INTCSR_9052 0x4c /* Interrupt control/status register */
#define INTCSR_9054 0x68 /* Interrupt control/status register */
/* 9054 DMA Registers */
/*
* Note that we will be using DMA Channel 0 for copying rx data
* and Channel 1 for copying tx data
*/
#define DMAMODE0 0x80
#define DMAPADR0 0x84
#define DMALADR0 0x88
#define DMASIZ0 0x8c
#define DMADPR0 0x90
#define DMAMODE1 0x94
#define DMAPADR1 0x98
#define DMALADR1 0x9c
#define DMASIZ1 0xa0
#define DMADPR1 0xa4
#define DMACSR0 0xa8
#define DMACSR1 0xa9
#define DMAARB 0xac
#define DMATHR 0xb0
#define DMADAC0 0xb4
#define DMADAC1 0xb8
#define DMAMARBR 0xac
#define FST_MIN_DMA_LEN 64
#define FST_RX_DMA_INT 0x01
#define FST_TX_DMA_INT 0x02
#define FST_CARD_INT 0x04
/* Larger buffers are positioned in memory at offset BFM_BASE */
struct buf_window {
u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
};
/* Calculate offset of a buffer object within the shared memory window */
#define BUF_OFFSET(X) (BFM_BASE + offsetof(struct buf_window, X))
#pragma pack()
/* Device driver private information
* =================================
*/
/* Per port (line or channel) information
*/
struct fst_port_info {
struct net_device *dev; /* Device struct - must be first */
struct fst_card_info *card; /* Card we're associated with */
int index; /* Port index on the card */
int hwif; /* Line hardware (lineInterface copy) */
int run; /* Port is running */
int mode; /* Normal or FarSync raw */
int rxpos; /* Next Rx buffer to use */
int txpos; /* Next Tx buffer to use */
int txipos; /* Next Tx buffer to check for free */
int start; /* Indication of start/stop to network */
/*
* A sixteen entry transmit queue
*/
int txqs; /* index to get next buffer to tx */
int txqe; /* index to queue next packet */
struct sk_buff *txq[FST_TXQ_DEPTH]; /* The queue */
int rxqdepth;
};
/* Per card information
*/
struct fst_card_info {
char __iomem *mem; /* Card memory mapped to kernel space */
char __iomem *ctlmem; /* Control memory for PCI cards */
unsigned int phys_mem; /* Physical memory window address */
unsigned int phys_ctlmem; /* Physical control memory address */
unsigned int irq; /* Interrupt request line number */
unsigned int nports; /* Number of serial ports */
unsigned int type; /* Type index of card */
unsigned int state; /* State of card */
spinlock_t card_lock; /* Lock for SMP access */
unsigned short pci_conf; /* PCI card config in I/O space */
/* Per port info */
struct fst_port_info ports[FST_MAX_PORTS];
struct pci_dev *device; /* Information about the pci device */
int card_no; /* Inst of the card on the system */
int family; /* TxP or TxU */
int dmarx_in_progress;
int dmatx_in_progress;
unsigned long int_count;
unsigned long int_time_ave;
void *rx_dma_handle_host;
dma_addr_t rx_dma_handle_card;
void *tx_dma_handle_host;
dma_addr_t tx_dma_handle_card;
struct sk_buff *dma_skb_rx;
struct fst_port_info *dma_port_rx;
struct fst_port_info *dma_port_tx;
int dma_len_rx;
int dma_len_tx;
int dma_txpos;
int dma_rxpos;
};
/* Convert an HDLC device pointer into a port info pointer and similar */
#define dev_to_port(D) (dev_to_hdlc(D)->priv)
#define port_to_dev(P) ((P)->dev)
/*
* Shared memory window access macros
*
* We have a nice memory based structure above, which could be directly
* mapped on i386 but might not work on other architectures unless we use
* the readb,w,l and writeb,w,l macros. Unfortunately these macros take
* physical offsets so we have to convert. The only saving grace is that
* this should all collapse back to a simple indirection eventually.
*/
#define WIN_OFFSET(X) ((long)&(((struct fst_shared *)SMC_BASE)->X))
#define FST_RDB(C,E) readb ((C)->mem + WIN_OFFSET(E))
#define FST_RDW(C,E) readw ((C)->mem + WIN_OFFSET(E))
#define FST_RDL(C,E) readl ((C)->mem + WIN_OFFSET(E))
#define FST_WRB(C,E,B) writeb ((B), (C)->mem + WIN_OFFSET(E))
#define FST_WRW(C,E,W) writew ((W), (C)->mem + WIN_OFFSET(E))
#define FST_WRL(C,E,L) writel ((L), (C)->mem + WIN_OFFSET(E))
/*
* Debug support
*/
#if FST_DEBUG
static int fst_debug_mask = { FST_DEBUG };
/* Most common debug activity is to print something if the corresponding bit
* is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
* support variable numbers of macro parameters. The inverted if prevents us
* eating someone else's else clause.
*/
#define dbg(F,fmt,A...) if ( ! ( fst_debug_mask & (F))) \
; \
else \
printk ( KERN_DEBUG FST_NAME ": " fmt, ## A )
#else
#define dbg(X...) /* NOP */
#endif
/* Printing short cuts
*/
#define printk_err(fmt,A...) printk ( KERN_ERR FST_NAME ": " fmt, ## A )
#define printk_warn(fmt,A...) printk ( KERN_WARNING FST_NAME ": " fmt, ## A )
#define printk_info(fmt,A...) printk ( KERN_INFO FST_NAME ": " fmt, ## A )
/*
* PCI ID lookup table
*/
static struct pci_device_id fst_pci_dev_id[] __devinitdata = {
{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID,
PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID,
PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID,
PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID,
PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID,
PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID,
PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID,
PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
{0,} /* End */
};
MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
/*
* Device Driver Work Queues
*
* So that we don't spend too much time processing events in the
* Interrupt Service routine, we will declare a work queue per Card
* and make the ISR schedule a task in the queue for later execution.
* In the 2.4 Kernel we used to use the immediate queue for BH's
* Now that they are gone, tasklets seem to be much better than work
* queues.
*/
static void do_bottom_half_tx(struct fst_card_info *card);
static void do_bottom_half_rx(struct fst_card_info *card);
static void fst_process_tx_work_q(unsigned long work_q);
static void fst_process_int_work_q(unsigned long work_q);
DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0);
DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0);
struct fst_card_info *fst_card_array[FST_MAX_CARDS];
spinlock_t fst_work_q_lock;
u64 fst_work_txq;
u64 fst_work_intq;
static void
fst_q_work_item(u64 * queue, int card_index)
{
unsigned long flags;
u64 mask;
/*
* Grab the queue exclusively
*/
spin_lock_irqsave(&fst_work_q_lock, flags);
/*
* Making an entry in the queue is simply a matter of setting
* a bit for the card indicating that there is work to do in the
* bottom half for the card. Note the limitation of 64 cards.
* That ought to be enough
*/
mask = 1 << card_index;
*queue |= mask;
spin_unlock_irqrestore(&fst_work_q_lock, flags);
}
static void
fst_process_tx_work_q(unsigned long /*void **/work_q)
{
unsigned long flags;
u64 work_txq;
int i;
/*
* Grab the queue exclusively
*/
dbg(DBG_TX, "fst_process_tx_work_q\n");
spin_lock_irqsave(&fst_work_q_lock, flags);
work_txq = fst_work_txq;
fst_work_txq = 0;
spin_unlock_irqrestore(&fst_work_q_lock, flags);
/*
* Call the bottom half for each card with work waiting
*/
for (i = 0; i < FST_MAX_CARDS; i++) {
if (work_txq & 0x01) {
if (fst_card_array[i] != NULL) {
dbg(DBG_TX, "Calling tx bh for card %d\n", i);
do_bottom_half_tx(fst_card_array[i]);
}
}
work_txq = work_txq >> 1;
}
}
static void
fst_process_int_work_q(unsigned long /*void **/work_q)
{
unsigned long flags;
u64 work_intq;
int i;
/*
* Grab the queue exclusively
*/
dbg(DBG_INTR, "fst_process_int_work_q\n");
spin_lock_irqsave(&fst_work_q_lock, flags);
work_intq = fst_work_intq;
fst_work_intq = 0;
spin_unlock_irqrestore(&fst_work_q_lock, flags);
/*
* Call the bottom half for each card with work waiting
*/
for (i = 0; i < FST_MAX_CARDS; i++) {
if (work_intq & 0x01) {
if (fst_card_array[i] != NULL) {
dbg(DBG_INTR,
"Calling rx & tx bh for card %d\n", i);
do_bottom_half_rx(fst_card_array[i]);
do_bottom_half_tx(fst_card_array[i]);
}
}
work_intq = work_intq >> 1;
}
}
/* Card control functions
* ======================
*/
/* Place the processor in reset state
*
* Used to be a simple write to card control space but a glitch in the latest
* AMD Am186CH processor means that we now have to do it by asserting and de-
* asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
* at offset 9052_CNTRL. Note the updates for the TXU.
*/
static inline void
fst_cpureset(struct fst_card_info *card)
{
unsigned char interrupt_line_register;
unsigned long j = jiffies + 1;
unsigned int regval;
if (card->family == FST_FAMILY_TXU) {
if (pci_read_config_byte
(card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
dbg(DBG_ASS,
"Error in reading interrupt line register\n");
}
/*
* Assert PLX software reset and Am186 hardware reset
* and then deassert the PLX software reset but 186 still in reset
*/
outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
/*
* We are delaying here to allow the 9054 to reset itself
*/
j = jiffies + 1;
while (jiffies < j)
/* Do nothing */ ;
outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
/*
* We are delaying here to allow the 9054 to reload its eeprom
*/
j = jiffies + 1;
while (jiffies < j)
/* Do nothing */ ;
outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
if (pci_write_config_byte
(card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
dbg(DBG_ASS,
"Error in writing interrupt line register\n");
}
} else {
regval = inl(card->pci_conf + CNTRL_9052);
outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
}
}
/* Release the processor from reset
*/
static inline void
fst_cpurelease(struct fst_card_info *card)
{
if (card->family == FST_FAMILY_TXU) {
/*
* Force posted writes to complete
*/
(void) readb(card->mem);
/*
* Release LRESET DO = 1
* Then release Local Hold, DO = 1
*/
outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
} else {
(void) readb(card->ctlmem);
}
}
/* Clear the cards interrupt flag
*/
static inline void
fst_clear_intr(struct fst_card_info *card)
{
if (card->family == FST_FAMILY_TXU) {
(void) readb(card->ctlmem);
} else {
/* Poke the appropriate PLX chip register (same as enabling interrupts)
*/
outw(0x0543, card->pci_conf + INTCSR_9052);
}
}
/* Enable card interrupts
*/
static inline void
fst_enable_intr(struct fst_card_info *card)
{
if (card->family == FST_FAMILY_TXU) {
outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
} else {
outw(0x0543, card->pci_conf + INTCSR_9052);
}
}
/* Disable card interrupts
*/
static inline void
fst_disable_intr(struct fst_card_info *card)
{
if (card->family == FST_FAMILY_TXU) {
outl(0x00000000, card->pci_conf + INTCSR_9054);
} else {
outw(0x0000, card->pci_conf + INTCSR_9052);
}
}
/* Process the result of trying to pass a received frame up the stack
*/
static void
fst_process_rx_status(int rx_status, char *name)
{
switch (rx_status) {
case NET_RX_SUCCESS:
{
/*
* Nothing to do here
*/
break;
}
case NET_RX_CN_LOW:
{
dbg(DBG_ASS, "%s: Receive Low Congestion\n", name);
break;
}
case NET_RX_CN_MOD:
{
dbg(DBG_ASS, "%s: Receive Moderate Congestion\n", name);
break;
}
case NET_RX_CN_HIGH:
{
dbg(DBG_ASS, "%s: Receive High Congestion\n", name);
break;
}
case NET_RX_DROP:
{
dbg(DBG_ASS, "%s: Received packet dropped\n", name);
break;
}
}
}
/* Initilaise DMA for PLX 9054
*/
static inline void
fst_init_dma(struct fst_card_info *card)
{
/*
* This is only required for the PLX 9054
*/
if (card->family == FST_FAMILY_TXU) {
pci_set_master(card->device);
outl(0x00020441, card->pci_conf + DMAMODE0);
outl(0x00020441, card->pci_conf + DMAMODE1);
outl(0x0, card->pci_conf + DMATHR);
}
}
/* Tx dma complete interrupt
*/
static void
fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
int len, int txpos)
{
struct net_device *dev = port_to_dev(port);
struct net_device_stats *stats = hdlc_stats(dev);
/*
* Everything is now set, just tell the card to go
*/
dbg(DBG_TX, "fst_tx_dma_complete\n");
FST_WRB(card, txDescrRing[port->index][txpos].bits,
DMA_OWN | TX_STP | TX_ENP);
stats->tx_packets++;
stats->tx_bytes += len;
dev->trans_start = jiffies;
}
/*
* Mark it for our own raw sockets interface
*/
static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
{
skb->dev = dev;
skb->mac.raw = skb->data;
skb->pkt_type = PACKET_HOST;
return htons(ETH_P_CUST);
}
/* Rx dma complete interrupt
*/
static void
fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
int len, struct sk_buff *skb, int rxp)
{
struct net_device *dev = port_to_dev(port);
struct net_device_stats *stats = hdlc_stats(dev);
int pi;
int rx_status;
dbg(DBG_TX, "fst_rx_dma_complete\n");
pi = port->index;
memcpy(skb_put(skb, len), card->rx_dma_handle_host, len);
/* Reset buffer descriptor */
FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
/* Update stats */
stats->rx_packets++;
stats->rx_bytes += len;
/* Push upstream */
dbg(DBG_RX, "Pushing the frame up the stack\n");
if (port->mode == FST_RAW)
skb->protocol = farsync_type_trans(skb, dev);
else
skb->protocol = hdlc_type_trans(skb, dev);
rx_status = netif_rx(skb);
fst_process_rx_status(rx_status, port_to_dev(port)->name);
if (rx_status == NET_RX_DROP)
stats->rx_dropped++;
dev->last_rx = jiffies;
}
/*
* Receive a frame through the DMA
*/
static inline void
fst_rx_dma(struct fst_card_info *card, unsigned char *skb,
unsigned char *mem, int len)
{
/*
* This routine will setup the DMA and start it
*/
dbg(DBG_RX, "In fst_rx_dma %p %p %d\n", skb, mem, len);
if (card->dmarx_in_progress) {
dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
}
outl((unsigned long) skb, card->pci_conf + DMAPADR0); /* Copy to here */
outl((unsigned long) mem, card->pci_conf + DMALADR0); /* from here */
outl(len, card->pci_conf + DMASIZ0); /* for this length */
outl(0x00000000c, card->pci_conf + DMADPR0); /* In this direction */
/*
* We use the dmarx_in_progress flag to flag the channel as busy
*/
card->dmarx_in_progress = 1;
outb(0x03, card->pci_conf + DMACSR0); /* Start the transfer */
}
/*
* Send a frame through the DMA
*/
static inline void
fst_tx_dma(struct fst_card_info *card, unsigned char *skb,
unsigned char *mem, int len)
{
/*
* This routine will setup the DMA and start it.
*/
dbg(DBG_TX, "In fst_tx_dma %p %p %d\n", skb, mem, len);
if (card->dmatx_in_progress) {
dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
}
outl((unsigned long) skb, card->pci_conf + DMAPADR1); /* Copy from here */
outl((unsigned long) mem, card->pci_conf + DMALADR1); /* to here */
outl(len, card->pci_conf + DMASIZ1); /* for this length */
outl(0x000000004, card->pci_conf + DMADPR1); /* In this direction */
/*
* We use the dmatx_in_progress to flag the channel as busy
*/
card->dmatx_in_progress = 1;
outb(0x03, card->pci_conf + DMACSR1); /* Start the transfer */
}
/* Issue a Mailbox command for a port.
* Note we issue them on a fire and forget basis, not expecting to see an
* error and not waiting for completion.
*/
static void
fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
{
struct fst_card_info *card;
unsigned short mbval;
unsigned long flags;
int safety;
card = port->card;
spin_lock_irqsave(&card->card_lock, flags);
mbval = FST_RDW(card, portMailbox[port->index][0]);
safety = 0;
/* Wait for any previous command to complete */
while (mbval > NAK) {
spin_unlock_irqrestore(&card->card_lock, flags);
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(1);
spin_lock_irqsave(&card->card_lock, flags);
if (++safety > 2000) {
printk_err("Mailbox safety timeout\n");
break;
}
mbval = FST_RDW(card, portMailbox[port->index][0]);
}
if (safety > 0) {
dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
}
if (mbval == NAK) {
dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
}
FST_WRW(card, portMailbox[port->index][0], cmd);
if (cmd == ABORTTX || cmd == STARTPORT) {
port->txpos = 0;
port->txipos = 0;
port->start = 0;
}
spin_unlock_irqrestore(&card->card_lock, flags);
}
/* Port output signals control
*/
static inline void
fst_op_raise(struct fst_port_info *port, unsigned int outputs)
{
outputs |= FST_RDL(port->card, v24OpSts[port->index]);
FST_WRL(port->card, v24OpSts[port->index], outputs);
if (port->run)
fst_issue_cmd(port, SETV24O);
}
static inline void
fst_op_lower(struct fst_port_info *port, unsigned int outputs)
{
outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
FST_WRL(port->card, v24OpSts[port->index], outputs);
if (port->run)
fst_issue_cmd(port, SETV24O);
}
/*
* Setup port Rx buffers
*/
static void
fst_rx_config(struct fst_port_info *port)
{
int i;
int pi;
unsigned int offset;
unsigned long flags;
struct fst_card_info *card;
pi = port->index;
card = port->card;
spin_lock_irqsave(&card->card_lock, flags);
for (i = 0; i < NUM_RX_BUFFER; i++) {
offset = BUF_OFFSET(rxBuffer[pi][i][0]);
FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
}
port->rxpos = 0;
spin_unlock_irqrestore(&card->card_lock, flags);
}
/*
* Setup port Tx buffers
*/
static void
fst_tx_config(struct fst_port_info *port)
{
int i;
int pi;
unsigned int offset;
unsigned long flags;
struct fst_card_info *card;
pi = port->index;
card = port->card;
spin_lock_irqsave(&card->card_lock, flags);
for (i = 0; i < NUM_TX_BUFFER; i++) {
offset = BUF_OFFSET(txBuffer[pi][i][0]);
FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
FST_WRB(card, txDescrRing[pi][i].bits, 0);
}
port->txpos = 0;
port->txipos = 0;
port->start = 0;
spin_unlock_irqrestore(&card->card_lock, flags);
}
/* TE1 Alarm change interrupt event
*/
static void
fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
{
u8 los;
u8 rra;
u8 ais;
los = FST_RDB(card, suStatus.lossOfSignal);
rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
ais = FST_RDB(card, suStatus.alarmIndicationSignal);
if (los) {
/*
* Lost the link
*/
if (netif_carrier_ok(port_to_dev(port))) {
dbg(DBG_INTR, "Net carrier off\n");
netif_carrier_off(port_to_dev(port));
}
} else {
/*
* Link available
*/
if (!netif_carrier_ok(port_to_dev(port))) {
dbg(DBG_INTR, "Net carrier on\n");
netif_carrier_on(port_to_dev(port));
}
}
if (los)
dbg(DBG_INTR, "Assert LOS Alarm\n");
else
dbg(DBG_INTR, "De-assert LOS Alarm\n");
if (rra)
dbg(DBG_INTR, "Assert RRA Alarm\n");
else
dbg(DBG_INTR, "De-assert RRA Alarm\n");
if (ais)
dbg(DBG_INTR, "Assert AIS Alarm\n");
else
dbg(DBG_INTR, "De-assert AIS Alarm\n");
}
/* Control signal change interrupt event
*/
static void
fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
{
int signals;
signals = FST_RDL(card, v24DebouncedSts[port->index]);
if (signals & (((port->hwif == X21) || (port->hwif == X21D))
? IPSTS_INDICATE : IPSTS_DCD)) {
if (!netif_carrier_ok(port_to_dev(port))) {
dbg(DBG_INTR, "DCD active\n");
netif_carrier_on(port_to_dev(port));
}
} else {
if (netif_carrier_ok(port_to_dev(port))) {
dbg(DBG_INTR, "DCD lost\n");
netif_carrier_off(port_to_dev(port));
}
}
}
/* Log Rx Errors
*/
static void
fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
unsigned char dmabits, int rxp, unsigned short len)
{
struct net_device *dev = port_to_dev(port);
struct net_device_stats *stats = hdlc_stats(dev);
/*
* Increment the appropriate error counter
*/
stats->rx_errors++;
if (dmabits & RX_OFLO) {
stats->rx_fifo_errors++;
dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
card->card_no, port->index, rxp);
}
if (dmabits & RX_CRC) {
stats->rx_crc_errors++;
dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
card->card_no, port->index);
}
if (dmabits & RX_FRAM) {
stats->rx_frame_errors++;
dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
card->card_no, port->index);
}
if (dmabits == (RX_STP | RX_ENP)) {
stats->rx_length_errors++;
dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
len, card->card_no, port->index);
}
}
/* Rx Error Recovery
*/
static void
fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
unsigned char dmabits, int rxp, unsigned short len)
{
int i;
int pi;
pi = port->index;
/*
* Discard buffer descriptors until we see the start of the
* next frame. Note that for long frames this could be in
* a subsequent interrupt.
*/
i = 0;
while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
rxp = (rxp+1) % NUM_RX_BUFFER;
if (++i > NUM_RX_BUFFER) {
dbg(DBG_ASS, "intr_rx: Discarding more bufs"
" than we have\n");
break;
}
dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
}
dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
/* Discard the terminal buffer */
if (!(dmabits & DMA_OWN)) {
FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
rxp = (rxp+1) % NUM_RX_BUFFER;
}
port->rxpos = rxp;
return;
}
/* Rx complete interrupt
*/
static void
fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
{
unsigned char dmabits;
int pi;
int rxp;
int rx_status;
unsigned short len;
struct sk_buff *skb;
struct net_device *dev = port_to_dev(port);
struct net_device_stats *stats = hdlc_stats(dev);
/* Check we have a buffer to process */
pi = port->index;
rxp = port->rxpos;
dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
if (dmabits & DMA_OWN) {
dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
pi, rxp);
return;
}
if (card->dmarx_in_progress) {
return;
}
/* Get buffer length */
len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
/* Discard the CRC */
len -= 2;
if (len == 0) {
/*
* This seems to happen on the TE1 interface sometimes
* so throw the frame away and log the event.
*/
printk_err("Frame received with 0 length. Card %d Port %d\n",
card->card_no, port->index);
/* Return descriptor to card */
FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
rxp = (rxp+1) % NUM_RX_BUFFER;
port->rxpos = rxp;
return;
}
/* Check buffer length and for other errors. We insist on one packet
* in one buffer. This simplifies things greatly and since we've
* allocated 8K it shouldn't be a real world limitation
*/
dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
fst_log_rx_error(card, port, dmabits, rxp, len);
fst_recover_rx_error(card, port, dmabits, rxp, len);
return;
}
/* Allocate SKB */
if ((skb = dev_alloc_skb(len)) == NULL) {
dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
stats->rx_dropped++;
/* Return descriptor to card */
FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
rxp = (rxp+1) % NUM_RX_BUFFER;
port->rxpos = rxp;
return;
}
/*
* We know the length we need to receive, len.
* It's not worth using the DMA for reads of less than
* FST_MIN_DMA_LEN
*/
if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
memcpy_fromio(skb_put(skb, len),
card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
len);
/* Reset buffer descriptor */
FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
/* Update stats */
stats->rx_packets++;
stats->rx_bytes += len;
/* Push upstream */
dbg(DBG_RX, "Pushing frame up the stack\n");
if (port->mode == FST_RAW)
skb->protocol = farsync_type_trans(skb, dev);
else
skb->protocol = hdlc_type_trans(skb, dev);
rx_status = netif_rx(skb);
fst_process_rx_status(rx_status, port_to_dev(port)->name);
if (rx_status == NET_RX_DROP) {
stats->rx_dropped++;
}
dev->last_rx = jiffies;
} else {
card->dma_skb_rx = skb;
card->dma_port_rx = port;
card->dma_len_rx = len;
card->dma_rxpos = rxp;
fst_rx_dma(card, (char *) card->rx_dma_handle_card,
(char *) BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
}
if (rxp != port->rxpos) {
dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
}
rxp = (rxp+1) % NUM_RX_BUFFER;
port->rxpos = rxp;
}
/*
* The bottom halfs to the ISR
*
*/
static void
do_bottom_half_tx(struct fst_card_info *card)
{
struct fst_port_info *port;
int pi;
int txq_length;
struct sk_buff *skb;
unsigned long flags;
struct net_device *dev;
struct net_device_stats *stats;
/*
* Find a free buffer for the transmit
* Step through each port on this card
*/
dbg(DBG_TX, "do_bottom_half_tx\n");
for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
if (!port->run)
continue;
dev = port_to_dev(port);
stats = hdlc_stats(dev);
while (!
(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
DMA_OWN)
&& !(card->dmatx_in_progress)) {
/*
* There doesn't seem to be a txdone event per-se
* We seem to have to deduce it, by checking the DMA_OWN
* bit on the next buffer we think we can use
*/
spin_lock_irqsave(&card->card_lock, flags);
if ((txq_length = port->txqe - port->txqs) < 0) {
/*
* This is the case where one has wrapped and the
* maths gives us a negative number
*/
txq_length = txq_length + FST_TXQ_DEPTH;
}
spin_unlock_irqrestore(&card->card_lock, flags);
if (txq_length > 0) {
/*
* There is something to send
*/
spin_lock_irqsave(&card->card_lock, flags);
skb = port->txq[port->txqs];
port->txqs++;
if (port->txqs == FST_TXQ_DEPTH) {
port->txqs = 0;
}
spin_unlock_irqrestore(&card->card_lock, flags);
/*
* copy the data and set the required indicators on the
* card.
*/
FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
cnv_bcnt(skb->len));
if ((skb->len < FST_MIN_DMA_LEN)
|| (card->family == FST_FAMILY_TXP)) {
/* Enqueue the packet with normal io */
memcpy_toio(card->mem +
BUF_OFFSET(txBuffer[pi]
[port->
txpos][0]),
skb->data, skb->len);
FST_WRB(card,
txDescrRing[pi][port->txpos].
bits,
DMA_OWN | TX_STP | TX_ENP);
stats->tx_packets++;
stats->tx_bytes += skb->len;
dev->trans_start = jiffies;
} else {
/* Or do it through dma */
memcpy(card->tx_dma_handle_host,
skb->data, skb->len);
card->dma_port_tx = port;
card->dma_len_tx = skb->len;
card->dma_txpos = port->txpos;
fst_tx_dma(card,
(char *) card->
tx_dma_handle_card,
(char *)
BUF_OFFSET(txBuffer[pi]
[port->txpos][0]),
skb->len);
}
if (++port->txpos >= NUM_TX_BUFFER)
port->txpos = 0;
/*
* If we have flow control on, can we now release it?
*/
if (port->start) {
if (txq_length < fst_txq_low) {
netif_wake_queue(port_to_dev
(port));
port->start = 0;
}
}
dev_kfree_skb(skb);
} else {
/*
* Nothing to send so break out of the while loop
*/
break;
}
}
}
}
static void
do_bottom_half_rx(struct fst_card_info *card)
{
struct fst_port_info *port;
int pi;
int rx_count = 0;
/* Check for rx completions on all ports on this card */
dbg(DBG_RX, "do_bottom_half_rx\n");
for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
if (!port->run)
continue;
while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
& DMA_OWN) && !(card->dmarx_in_progress)) {
if (rx_count > fst_max_reads) {
/*
* Don't spend forever in receive processing
* Schedule another event
*/
fst_q_work_item(&fst_work_intq, card->card_no);
tasklet_schedule(&fst_int_task);
break; /* Leave the loop */
}
fst_intr_rx(card, port);
rx_count++;
}
}
}
/*
* The interrupt service routine
* Dev_id is our fst_card_info pointer
*/
irqreturn_t
fst_intr(int irq, void *dev_id, struct pt_regs *regs)
{
struct fst_card_info *card;
struct fst_port_info *port;
int rdidx; /* Event buffer indices */
int wridx;
int event; /* Actual event for processing */
unsigned int dma_intcsr = 0;
unsigned int do_card_interrupt;
unsigned int int_retry_count;
if ((card = dev_id) == NULL) {
dbg(DBG_INTR, "intr: spurious %d\n", irq);
return IRQ_NONE;
}
/*
* Check to see if the interrupt was for this card
* return if not
* Note that the call to clear the interrupt is important
*/
dbg(DBG_INTR, "intr: %d %p\n", irq, card);
if (card->state != FST_RUNNING) {
printk_err
("Interrupt received for card %d in a non running state (%d)\n",
card->card_no, card->state);
/*
* It is possible to really be running, i.e. we have re-loaded
* a running card
* Clear and reprime the interrupt source
*/
fst_clear_intr(card);
return IRQ_HANDLED;
}
/* Clear and reprime the interrupt source */
fst_clear_intr(card);
/*
* Is the interrupt for this card (handshake == 1)
*/
do_card_interrupt = 0;
if (FST_RDB(card, interruptHandshake) == 1) {
do_card_interrupt += FST_CARD_INT;
/* Set the software acknowledge */
FST_WRB(card, interruptHandshake, 0xEE);
}
if (card->family == FST_FAMILY_TXU) {
/*
* Is it a DMA Interrupt
*/
dma_intcsr = inl(card->pci_conf + INTCSR_9054);
if (dma_intcsr & 0x00200000) {
/*
* DMA Channel 0 (Rx transfer complete)
*/
dbg(DBG_RX, "DMA Rx xfer complete\n");
outb(0x8, card->pci_conf + DMACSR0);
fst_rx_dma_complete(card, card->dma_port_rx,
card->dma_len_rx, card->dma_skb_rx,
card->dma_rxpos);
card->dmarx_in_progress = 0;
do_card_interrupt += FST_RX_DMA_INT;
}
if (dma_intcsr & 0x00400000) {
/*
* DMA Channel 1 (Tx transfer complete)
*/
dbg(DBG_TX, "DMA Tx xfer complete\n");
outb(0x8, card->pci_conf + DMACSR1);
fst_tx_dma_complete(card, card->dma_port_tx,
card->dma_len_tx, card->dma_txpos);
card->dmatx_in_progress = 0;
do_card_interrupt += FST_TX_DMA_INT;
}
}
/*
* Have we been missing Interrupts
*/
int_retry_count = FST_RDL(card, interruptRetryCount);
if (int_retry_count) {
dbg(DBG_ASS, "Card %d int_retry_count is %d\n",
card->card_no, int_retry_count);
FST_WRL(card, interruptRetryCount, 0);
}
if (!do_card_interrupt) {
return IRQ_HANDLED;
}
/* Scehdule the bottom half of the ISR */
fst_q_work_item(&fst_work_intq, card->card_no);
tasklet_schedule(&fst_int_task);
/* Drain the event queue */
rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
while (rdidx != wridx) {
event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
port = &card->ports[event & 0x03];
dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
switch (event) {
case TE1_ALMA:
dbg(DBG_INTR, "TE1 Alarm intr\n");
if (port->run)
fst_intr_te1_alarm(card, port);
break;
case CTLA_CHG:
case CTLB_CHG:
case CTLC_CHG:
case CTLD_CHG:
if (port->run)
fst_intr_ctlchg(card, port);
break;
case ABTA_SENT:
case ABTB_SENT:
case ABTC_SENT:
case ABTD_SENT:
dbg(DBG_TX, "Abort complete port %d\n", port->index);
break;
case TXA_UNDF:
case TXB_UNDF:
case TXC_UNDF:
case TXD_UNDF:
/* Difficult to see how we'd get this given that we
* always load up the entire packet for DMA.
*/
dbg(DBG_TX, "Tx underflow port %d\n", port->index);
hdlc_stats(port_to_dev(port))->tx_errors++;
hdlc_stats(port_to_dev(port))->tx_fifo_errors++;
dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
card->card_no, port->index);
break;
case INIT_CPLT:
dbg(DBG_INIT, "Card init OK intr\n");
break;
case INIT_FAIL:
dbg(DBG_INIT, "Card init FAILED intr\n");
card->state = FST_IFAILED;
break;
default:
printk_err("intr: unknown card event %d. ignored\n",
event);
break;
}
/* Bump and wrap the index */
if (++rdidx >= MAX_CIRBUFF)
rdidx = 0;
}
FST_WRB(card, interruptEvent.rdindex, rdidx);
return IRQ_HANDLED;
}
/* Check that the shared memory configuration is one that we can handle
* and that some basic parameters are correct
*/
static void
check_started_ok(struct fst_card_info *card)
{
int i;
/* Check structure version and end marker */
if (FST_RDW(card, smcVersion) != SMC_VERSION) {
printk_err("Bad shared memory version %d expected %d\n",
FST_RDW(card, smcVersion), SMC_VERSION);
card->state = FST_BADVERSION;
return;
}
if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
printk_err("Missing shared memory signature\n");
card->state = FST_BADVERSION;
return;
}
/* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
if ((i = FST_RDB(card, taskStatus)) == 0x01) {
card->state = FST_RUNNING;
} else if (i == 0xFF) {
printk_err("Firmware initialisation failed. Card halted\n");
card->state = FST_HALTED;
return;
} else if (i != 0x00) {
printk_err("Unknown firmware status 0x%x\n", i);
card->state = FST_HALTED;
return;
}
/* Finally check the number of ports reported by firmware against the
* number we assumed at card detection. Should never happen with
* existing firmware etc so we just report it for the moment.
*/
if (FST_RDL(card, numberOfPorts) != card->nports) {
printk_warn("Port count mismatch on card %d."
" Firmware thinks %d we say %d\n", card->card_no,
FST_RDL(card, numberOfPorts), card->nports);
}
}
static int
set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
struct fstioc_info *info)
{
int err;
unsigned char my_framing;
/* Set things according to the user set valid flags
* Several of the old options have been invalidated/replaced by the
* generic hdlc package.
*/
err = 0;
if (info->valid & FSTVAL_PROTO) {
if (info->proto == FST_RAW)
port->mode = FST_RAW;
else
port->mode = FST_GEN_HDLC;
}
if (info->valid & FSTVAL_CABLE)
err = -EINVAL;
if (info->valid & FSTVAL_SPEED)
err = -EINVAL;
if (info->valid & FSTVAL_PHASE)
FST_WRB(card, portConfig[port->index].invertClock,
info->invertClock);
if (info->valid & FSTVAL_MODE)
FST_WRW(card, cardMode, info->cardMode);
if (info->valid & FSTVAL_TE1) {
FST_WRL(card, suConfig.dataRate, info->lineSpeed);
FST_WRB(card, suConfig.clocking, info->clockSource);
my_framing = FRAMING_E1;
if (info->framing == E1)
my_framing = FRAMING_E1;
if (info->framing == T1)
my_framing = FRAMING_T1;
if (info->framing == J1)
my_framing = FRAMING_J1;
FST_WRB(card, suConfig.framing, my_framing);
FST_WRB(card, suConfig.structure, info->structure);
FST_WRB(card, suConfig.interface, info->interface);
FST_WRB(card, suConfig.coding, info->coding);
FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
FST_WRB(card, suConfig.equalizer, info->equalizer);
FST_WRB(card, suConfig.transparentMode, info->transparentMode);
FST_WRB(card, suConfig.loopMode, info->loopMode);
FST_WRB(card, suConfig.range, info->range);
FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
FST_WRB(card, suConfig.startingSlot, info->startingSlot);
FST_WRB(card, suConfig.losThreshold, info->losThreshold);
if (info->idleCode)
FST_WRB(card, suConfig.enableIdleCode, 1);
else
FST_WRB(card, suConfig.enableIdleCode, 0);
FST_WRB(card, suConfig.idleCode, info->idleCode);
#if FST_DEBUG
if (info->valid & FSTVAL_TE1) {
printk("Setting TE1 data\n");
printk("Line Speed = %d\n", info->lineSpeed);
printk("Start slot = %d\n", info->startingSlot);
printk("Clock source = %d\n", info->clockSource);
printk("Framing = %d\n", my_framing);
printk("Structure = %d\n", info->structure);
printk("interface = %d\n", info->interface);
printk("Coding = %d\n", info->coding);
printk("Line build out = %d\n", info->lineBuildOut);
printk("Equaliser = %d\n", info->equalizer);
printk("Transparent mode = %d\n",
info->transparentMode);
printk("Loop mode = %d\n", info->loopMode);
printk("Range = %d\n", info->range);
printk("Tx Buffer mode = %d\n", info->txBufferMode);
printk("Rx Buffer mode = %d\n", info->rxBufferMode);
printk("LOS Threshold = %d\n", info->losThreshold);
printk("Idle Code = %d\n", info->idleCode);
}
#endif
}
#if FST_DEBUG
if (info->valid & FSTVAL_DEBUG) {
fst_debug_mask = info->debug;
}
#endif
return err;
}
static void
gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
struct fstioc_info *info)
{
int i;
memset(info, 0, sizeof (struct fstioc_info));
i = port->index;
info->kernelVersion = LINUX_VERSION_CODE;
info->nports = card->nports;
info->type = card->type;
info->state = card->state;
info->proto = FST_GEN_HDLC;
info->index = i;
#if FST_DEBUG
info->debug = fst_debug_mask;
#endif
/* Only mark information as valid if card is running.
* Copy the data anyway in case it is useful for diagnostics
*/
info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
#if FST_DEBUG
| FSTVAL_DEBUG
#endif
;
info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
info->internalClock = FST_RDB(card, portConfig[i].internalClock);
info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
info->invertClock = FST_RDB(card, portConfig[i].invertClock);
info->v24IpSts = FST_RDL(card, v24IpSts[i]);
info->v24OpSts = FST_RDL(card, v24OpSts[i]);
info->clockStatus = FST_RDW(card, clockStatus[i]);
info->cableStatus = FST_RDW(card, cableStatus);
info->cardMode = FST_RDW(card, cardMode);
info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
/*
* The T2U can report cable presence for both A or B
* in bits 0 and 1 of cableStatus. See which port we are and
* do the mapping.
*/
if (card->family == FST_FAMILY_TXU) {
if (port->index == 0) {
/*
* Port A
*/
info->cableStatus = info->cableStatus & 1;
} else {
/*
* Port B
*/
info->cableStatus = info->cableStatus >> 1;
info->cableStatus = info->cableStatus & 1;
}
}
/*
* Some additional bits if we are TE1
*/
if (card->type == FST_TYPE_TE1) {
info->lineSpeed = FST_RDL(card, suConfig.dataRate);
info->clockSource = FST_RDB(card, suConfig.clocking);
info->framing = FST_RDB(card, suConfig.framing);
info->structure = FST_RDB(card, suConfig.structure);
info->interface = FST_RDB(card, suConfig.interface);
info->coding = FST_RDB(card, suConfig.coding);
info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
info->equalizer = FST_RDB(card, suConfig.equalizer);
info->loopMode = FST_RDB(card, suConfig.loopMode);
info->range = FST_RDB(card, suConfig.range);
info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
info->startingSlot = FST_RDB(card, suConfig.startingSlot);
info->losThreshold = FST_RDB(card, suConfig.losThreshold);
if (FST_RDB(card, suConfig.enableIdleCode))
info->idleCode = FST_RDB(card, suConfig.idleCode);
else
info->idleCode = 0;
info->receiveBufferDelay =
FST_RDL(card, suStatus.receiveBufferDelay);
info->framingErrorCount =
FST_RDL(card, suStatus.framingErrorCount);
info->codeViolationCount =
FST_RDL(card, suStatus.codeViolationCount);
info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
info->receiveRemoteAlarm =
FST_RDB(card, suStatus.receiveRemoteAlarm);
info->alarmIndicationSignal =
FST_RDB(card, suStatus.alarmIndicationSignal);
}
}
static int
fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
struct ifreq *ifr)
{
sync_serial_settings sync;
int i;
if (ifr->ifr_settings.size != sizeof (sync)) {
return -ENOMEM;
}
if (copy_from_user
(&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
return -EFAULT;
}
if (sync.loopback)
return -EINVAL;
i = port->index;
switch (ifr->ifr_settings.type) {
case IF_IFACE_V35:
FST_WRW(card, portConfig[i].lineInterface, V35);
port->hwif = V35;
break;
case IF_IFACE_V24:
FST_WRW(card, portConfig[i].lineInterface, V24);
port->hwif = V24;
break;
case IF_IFACE_X21:
FST_WRW(card, portConfig[i].lineInterface, X21);
port->hwif = X21;
break;
case IF_IFACE_X21D:
FST_WRW(card, portConfig[i].lineInterface, X21D);
port->hwif = X21D;
break;
case IF_IFACE_T1:
FST_WRW(card, portConfig[i].lineInterface, T1);
port->hwif = T1;
break;
case IF_IFACE_E1:
FST_WRW(card, portConfig[i].lineInterface, E1);
port->hwif = E1;
break;
case IF_IFACE_SYNC_SERIAL:
break;
default:
return -EINVAL;
}
switch (sync.clock_type) {
case CLOCK_EXT:
FST_WRB(card, portConfig[i].internalClock, EXTCLK);
break;
case CLOCK_INT:
FST_WRB(card, portConfig[i].internalClock, INTCLK);
break;
default:
return -EINVAL;
}
FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
return 0;
}
static int
fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
struct ifreq *ifr)
{
sync_serial_settings sync;
int i;
/* First check what line type is set, we'll default to reporting X.21
* if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
* changed
*/
switch (port->hwif) {
case E1:
ifr->ifr_settings.type = IF_IFACE_E1;
break;
case T1:
ifr->ifr_settings.type = IF_IFACE_T1;
break;
case V35:
ifr->ifr_settings.type = IF_IFACE_V35;
break;
case V24:
ifr->ifr_settings.type = IF_IFACE_V24;
break;
case X21D:
ifr->ifr_settings.type = IF_IFACE_X21D;
break;
case X21:
default:
ifr->ifr_settings.type = IF_IFACE_X21;
break;
}
if (ifr->ifr_settings.size == 0) {
return 0; /* only type requested */
}
if (ifr->ifr_settings.size < sizeof (sync)) {
return -ENOMEM;
}
i = port->index;
sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
/* Lucky card and linux use same encoding here */
sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
INTCLK ? CLOCK_INT : CLOCK_EXT;
sync.loopback = 0;
if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
return -EFAULT;
}
ifr->ifr_settings.size = sizeof (sync);
return 0;
}
static int
fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct fst_card_info *card;
struct fst_port_info *port;
struct fstioc_write wrthdr;
struct fstioc_info info;
unsigned long flags;
dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
port = dev_to_port(dev);
card = port->card;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
switch (cmd) {
case FSTCPURESET:
fst_cpureset(card);
card->state = FST_RESET;
return 0;
case FSTCPURELEASE:
fst_cpurelease(card);
card->state = FST_STARTING;
return 0;
case FSTWRITE: /* Code write (download) */
/* First copy in the header with the length and offset of data
* to write
*/
if (ifr->ifr_data == NULL) {
return -EINVAL;
}
if (copy_from_user(&wrthdr, ifr->ifr_data,
sizeof (struct fstioc_write))) {
return -EFAULT;
}
/* Sanity check the parameters. We don't support partial writes
* when going over the top
*/
if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE
|| wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
return -ENXIO;
}
/* Now copy the data to the card.
* This will probably break on some architectures.
* I'll fix it when I have something to test on.
*/
if (copy_from_user(card->mem + wrthdr.offset,
ifr->ifr_data + sizeof (struct fstioc_write),
wrthdr.size)) {
return -EFAULT;
}
/* Writes to the memory of a card in the reset state constitute
* a download
*/
if (card->state == FST_RESET) {
card->state = FST_DOWNLOAD;
}
return 0;
case FSTGETCONF:
/* If card has just been started check the shared memory config
* version and marker
*/
if (card->state == FST_STARTING) {
check_started_ok(card);
/* If everything checked out enable card interrupts */
if (card->state == FST_RUNNING) {
spin_lock_irqsave(&card->card_lock, flags);
fst_enable_intr(card);
FST_WRB(card, interruptHandshake, 0xEE);
spin_unlock_irqrestore(&card->card_lock, flags);
}
}
if (ifr->ifr_data == NULL) {
return -EINVAL;
}
gather_conf_info(card, port, &info);
if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
return -EFAULT;
}
return 0;
case FSTSETCONF:
/*
* Most of the settings have been moved to the generic ioctls
* this just covers debug and board ident now
*/
if (card->state != FST_RUNNING) {
printk_err
("Attempt to configure card %d in non-running state (%d)\n",
card->card_no, card->state);
return -EIO;
}
if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
return -EFAULT;
}
return set_conf_from_info(card, port, &info);
case SIOCWANDEV:
switch (ifr->ifr_settings.type) {
case IF_GET_IFACE:
return fst_get_iface(card, port, ifr);
case IF_IFACE_SYNC_SERIAL:
case IF_IFACE_V35:
case IF_IFACE_V24:
case IF_IFACE_X21:
case IF_IFACE_X21D:
case IF_IFACE_T1:
case IF_IFACE_E1:
return fst_set_iface(card, port, ifr);
case IF_PROTO_RAW:
port->mode = FST_RAW;
return 0;
case IF_GET_PROTO:
if (port->mode == FST_RAW) {
ifr->ifr_settings.type = IF_PROTO_RAW;
return 0;
}
return hdlc_ioctl(dev, ifr, cmd);
default:
port->mode = FST_GEN_HDLC;
dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
ifr->ifr_settings.type);
return hdlc_ioctl(dev, ifr, cmd);
}
default:
/* Not one of ours. Pass through to HDLC package */
return hdlc_ioctl(dev, ifr, cmd);
}
}
static void
fst_openport(struct fst_port_info *port)
{
int signals;
int txq_length;
/* Only init things if card is actually running. This allows open to
* succeed for downloads etc.
*/
if (port->card->state == FST_RUNNING) {
if (port->run) {
dbg(DBG_OPEN, "open: found port already running\n");
fst_issue_cmd(port, STOPPORT);
port->run = 0;
}
fst_rx_config(port);
fst_tx_config(port);
fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
fst_issue_cmd(port, STARTPORT);
port->run = 1;
signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
if (signals & (((port->hwif == X21) || (port->hwif == X21D))
? IPSTS_INDICATE : IPSTS_DCD))
netif_carrier_on(port_to_dev(port));
else
netif_carrier_off(port_to_dev(port));
txq_length = port->txqe - port->txqs;
port->txqe = 0;
port->txqs = 0;
}
}
static void
fst_closeport(struct fst_port_info *port)
{
if (port->card->state == FST_RUNNING) {
if (port->run) {
port->run = 0;
fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
fst_issue_cmd(port, STOPPORT);
} else {
dbg(DBG_OPEN, "close: port not running\n");
}
}
}
static int
fst_open(struct net_device *dev)
{
int err;
struct fst_port_info *port;
port = dev_to_port(dev);
if (!try_module_get(THIS_MODULE))
return -EBUSY;
if (port->mode != FST_RAW) {
err = hdlc_open(dev);
if (err)
return err;
}
fst_openport(port);
netif_wake_queue(dev);
return 0;
}
static int
fst_close(struct net_device *dev)
{
struct fst_port_info *port;
struct fst_card_info *card;
unsigned char tx_dma_done;
unsigned char rx_dma_done;
port = dev_to_port(dev);
card = port->card;
tx_dma_done = inb(card->pci_conf + DMACSR1);
rx_dma_done = inb(card->pci_conf + DMACSR0);
dbg(DBG_OPEN,
"Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
rx_dma_done);
netif_stop_queue(dev);
fst_closeport(dev_to_port(dev));
if (port->mode != FST_RAW) {
hdlc_close(dev);
}
module_put(THIS_MODULE);
return 0;
}
static int
fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
{
/*
* Setting currently fixed in FarSync card so we check and forget
*/
if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
return -EINVAL;
return 0;
}
static void
fst_tx_timeout(struct net_device *dev)
{
struct fst_port_info *port;
struct fst_card_info *card;
struct net_device_stats *stats = hdlc_stats(dev);
port = dev_to_port(dev);
card = port->card;
stats->tx_errors++;
stats->tx_aborted_errors++;
dbg(DBG_ASS, "Tx timeout card %d port %d\n",
card->card_no, port->index);
fst_issue_cmd(port, ABORTTX);
dev->trans_start = jiffies;
netif_wake_queue(dev);
port->start = 0;
}
static int
fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct fst_card_info *card;
struct fst_port_info *port;
struct net_device_stats *stats = hdlc_stats(dev);
unsigned long flags;
int txq_length;
port = dev_to_port(dev);
card = port->card;
dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
/* Drop packet with error if we don't have carrier */
if (!netif_carrier_ok(dev)) {
dev_kfree_skb(skb);
stats->tx_errors++;
stats->tx_carrier_errors++;
dbg(DBG_ASS,
"Tried to transmit but no carrier on card %d port %d\n",
card->card_no, port->index);
return 0;
}
/* Drop it if it's too big! MTU failure ? */
if (skb->len > LEN_TX_BUFFER) {
dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
LEN_TX_BUFFER);
dev_kfree_skb(skb);
stats->tx_errors++;
return 0;
}
/*
* We are always going to queue the packet
* so that the bottom half is the only place we tx from
* Check there is room in the port txq
*/
spin_lock_irqsave(&card->card_lock, flags);
if ((txq_length = port->txqe - port->txqs) < 0) {
/*
* This is the case where the next free has wrapped but the
* last used hasn't
*/
txq_length = txq_length + FST_TXQ_DEPTH;
}
spin_unlock_irqrestore(&card->card_lock, flags);
if (txq_length > fst_txq_high) {
/*
* We have got enough buffers in the pipeline. Ask the network
* layer to stop sending frames down
*/
netif_stop_queue(dev);
port->start = 1; /* I'm using this to signal stop sent up */
}
if (txq_length == FST_TXQ_DEPTH - 1) {
/*
* This shouldn't have happened but such is life
*/
dev_kfree_skb(skb);
stats->tx_errors++;
dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
card->card_no, port->index);
return 0;
}
/*
* queue the buffer
*/
spin_lock_irqsave(&card->card_lock, flags);
port->txq[port->txqe] = skb;
port->txqe++;
if (port->txqe == FST_TXQ_DEPTH)
port->txqe = 0;
spin_unlock_irqrestore(&card->card_lock, flags);
/* Scehdule the bottom half which now does transmit processing */
fst_q_work_item(&fst_work_txq, card->card_no);
tasklet_schedule(&fst_tx_task);
return 0;
}
/*
* Card setup having checked hardware resources.
* Should be pretty bizarre if we get an error here (kernel memory
* exhaustion is one possibility). If we do see a problem we report it
* via a printk and leave the corresponding interface and all that follow
* disabled.
*/
static char *type_strings[] __devinitdata = {
"no hardware", /* Should never be seen */
"FarSync T2P",
"FarSync T4P",
"FarSync T1U",
"FarSync T2U",
"FarSync T4U",
"FarSync TE1"
};
static void __devinit
fst_init_card(struct fst_card_info *card)
{
int i;
int err;
/* We're working on a number of ports based on the card ID. If the
* firmware detects something different later (should never happen)
* we'll have to revise it in some way then.
*/
for (i = 0; i < card->nports; i++) {
err = register_hdlc_device(card->ports[i].dev);
if (err < 0) {
int j;
printk_err ("Cannot register HDLC device for port %d"
" (errno %d)\n", i, -err );
for (j = i; j < card->nports; j++) {
free_netdev(card->ports[j].dev);
card->ports[j].dev = NULL;
}
card->nports = i;
break;
}
}
printk_info("%s-%s: %s IRQ%d, %d ports\n",
port_to_dev(&card->ports[0])->name,
port_to_dev(&card->ports[card->nports - 1])->name,
type_strings[card->type], card->irq, card->nports);
}
/*
* Initialise card when detected.
* Returns 0 to indicate success, or errno otherwise.
*/
static int __devinit
fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
static int firsttime_done = 0;
static int no_of_cards_added = 0;
struct fst_card_info *card;
int err = 0;
int i;
if (!firsttime_done) {
printk_info("FarSync WAN driver " FST_USER_VERSION
" (c) 2001-2004 FarSite Communications Ltd.\n");
firsttime_done = 1;
dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
}
/*
* We are going to be clever and allow certain cards not to be
* configured. An exclude list can be provided in /etc/modules.conf
*/
if (fst_excluded_cards != 0) {
/*
* There are cards to exclude
*
*/
for (i = 0; i < fst_excluded_cards; i++) {
if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
printk_info("FarSync PCI device %d not assigned\n",
(pdev->devfn) >> 3);
return -EBUSY;
}
}
}
/* Allocate driver private data */
card = kmalloc(sizeof (struct fst_card_info), GFP_KERNEL);
if (card == NULL) {
printk_err("FarSync card found but insufficient memory for"
" driver storage\n");
return -ENOMEM;
}
memset(card, 0, sizeof (struct fst_card_info));
/* Try to enable the device */
if ((err = pci_enable_device(pdev)) != 0) {
printk_err("Failed to enable card. Err %d\n", -err);
kfree(card);
return err;
}
if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
printk_err("Failed to allocate regions. Err %d\n", -err);
pci_disable_device(pdev);
kfree(card);
return err;
}
/* Get virtual addresses of memory regions */
card->pci_conf = pci_resource_start(pdev, 1);
card->phys_mem = pci_resource_start(pdev, 2);
card->phys_ctlmem = pci_resource_start(pdev, 3);
if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
printk_err("Physical memory remap failed\n");
pci_release_regions(pdev);
pci_disable_device(pdev);
kfree(card);
return -ENODEV;
}
if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
printk_err("Control memory remap failed\n");
pci_release_regions(pdev);
pci_disable_device(pdev);
kfree(card);
return -ENODEV;
}
dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
/* Register the interrupt handler */
if (request_irq(pdev->irq, fst_intr, SA_SHIRQ, FST_DEV_NAME, card)) {
printk_err("Unable to register interrupt %d\n", card->irq);
pci_release_regions(pdev);
pci_disable_device(pdev);
iounmap(card->ctlmem);
iounmap(card->mem);
kfree(card);
return -ENODEV;
}
/* Record info we need */
card->irq = pdev->irq;
card->type = ent->driver_data;
card->family = ((ent->driver_data == FST_TYPE_T2P) ||
(ent->driver_data == FST_TYPE_T4P))
? FST_FAMILY_TXP : FST_FAMILY_TXU;
if ((ent->driver_data == FST_TYPE_T1U) ||
(ent->driver_data == FST_TYPE_TE1))
card->nports = 1;
else
card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
(ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
card->state = FST_UNINIT;
spin_lock_init ( &card->card_lock );
for ( i = 0 ; i < card->nports ; i++ ) {
struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
hdlc_device *hdlc;
if (!dev) {
while (i--)
free_netdev(card->ports[i].dev);
printk_err ("FarSync: out of memory\n");
free_irq(card->irq, card);
pci_release_regions(pdev);
pci_disable_device(pdev);
iounmap(card->ctlmem);
iounmap(card->mem);
kfree(card);
return -ENODEV;
}
card->ports[i].dev = dev;
card->ports[i].card = card;
card->ports[i].index = i;
card->ports[i].run = 0;
hdlc = dev_to_hdlc(dev);
/* Fill in the net device info */
/* Since this is a PCI setup this is purely
* informational. Give them the buffer addresses
* and basic card I/O.
*/
dev->mem_start = card->phys_mem
+ BUF_OFFSET ( txBuffer[i][0][0]);
dev->mem_end = card->phys_mem
+ BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]);
dev->base_addr = card->pci_conf;
dev->irq = card->irq;
dev->tx_queue_len = FST_TX_QUEUE_LEN;
dev->open = fst_open;
dev->stop = fst_close;
dev->do_ioctl = fst_ioctl;
dev->watchdog_timeo = FST_TX_TIMEOUT;
dev->tx_timeout = fst_tx_timeout;
hdlc->attach = fst_attach;
hdlc->xmit = fst_start_xmit;
}
card->device = pdev;
dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
card->nports, card->irq);
dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
card->pci_conf, card->phys_mem, card->phys_ctlmem);
/* Reset the card's processor */
fst_cpureset(card);
card->state = FST_RESET;
/* Initialise DMA (if required) */
fst_init_dma(card);
/* Record driver data for later use */
pci_set_drvdata(pdev, card);
/* Remainder of card setup */
fst_card_array[no_of_cards_added] = card;
card->card_no = no_of_cards_added++; /* Record instance and bump it */
fst_init_card(card);
if (card->family == FST_FAMILY_TXU) {
/*
* Allocate a dma buffer for transmit and receives
*/
card->rx_dma_handle_host =
pci_alloc_consistent(card->device, FST_MAX_MTU,
&card->rx_dma_handle_card);
if (card->rx_dma_handle_host == NULL) {
printk_err("Could not allocate rx dma buffer\n");
fst_disable_intr(card);
pci_release_regions(pdev);
pci_disable_device(pdev);
iounmap(card->ctlmem);
iounmap(card->mem);
kfree(card);
return -ENOMEM;
}
card->tx_dma_handle_host =
pci_alloc_consistent(card->device, FST_MAX_MTU,
&card->tx_dma_handle_card);
if (card->tx_dma_handle_host == NULL) {
printk_err("Could not allocate tx dma buffer\n");
fst_disable_intr(card);
pci_release_regions(pdev);
pci_disable_device(pdev);
iounmap(card->ctlmem);
iounmap(card->mem);
kfree(card);
return -ENOMEM;
}
}
return 0; /* Success */
}
/*
* Cleanup and close down a card
*/
static void __devexit
fst_remove_one(struct pci_dev *pdev)
{
struct fst_card_info *card;
int i;
card = pci_get_drvdata(pdev);
for (i = 0; i < card->nports; i++) {
struct net_device *dev = port_to_dev(&card->ports[i]);
unregister_hdlc_device(dev);
}
fst_disable_intr(card);
free_irq(card->irq, card);
iounmap(card->ctlmem);
iounmap(card->mem);
pci_release_regions(pdev);
if (card->family == FST_FAMILY_TXU) {
/*
* Free dma buffers
*/
pci_free_consistent(card->device, FST_MAX_MTU,
card->rx_dma_handle_host,
card->rx_dma_handle_card);
pci_free_consistent(card->device, FST_MAX_MTU,
card->tx_dma_handle_host,
card->tx_dma_handle_card);
}
fst_card_array[card->card_no] = NULL;
}
static struct pci_driver fst_driver = {
.name = FST_NAME,
.id_table = fst_pci_dev_id,
.probe = fst_add_one,
.remove = __devexit_p(fst_remove_one),
.suspend = NULL,
.resume = NULL,
};
static int __init
fst_init(void)
{
int i;
for (i = 0; i < FST_MAX_CARDS; i++)
fst_card_array[i] = NULL;
spin_lock_init(&fst_work_q_lock);
return pci_module_init(&fst_driver);
}
static void __exit
fst_cleanup_module(void)
{
printk_info("FarSync WAN driver unloading\n");
pci_unregister_driver(&fst_driver);
}
module_init(fst_init);
module_exit(fst_cleanup_module);