mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-16 16:46:39 +07:00
55e00fb66f
The signal return fast path directly restores user states from the user buffer. Once that succeeds, restore supervisor states (but only when they are not yet restored). For the slow path, save supervisor states to preserve them across context switches, and restore after the user states are restored. The previous version has the overhead of an XSAVES in both the fast and the slow paths. It is addressed as the following: - In the fast path, only do an XRSTORS. - In the slow path, do a supervisor-state-only XSAVES, and relocate the buffer contents. Some thoughts in the implementation: - In the slow path, can any supervisor state become stale between save/restore? Answer: set_thread_flag(TIF_NEED_FPU_LOAD) protects the xstate buffer. - In the slow path, can any code reference a stale supervisor state register between save/restore? Answer: In the current lazy-restore scheme, any reference to xstate registers needs fpregs_lock()/fpregs_unlock() and __fpregs_load_activate(). - Are there other options? One other option is eagerly restoring all supervisor states. Currently, CET user-mode states and ENQCMD's PASID do not need to be eagerly restored. The upcoming CET kernel-mode states (24 bytes) need to be eagerly restored. To me, eagerly restoring all supervisor states adds more overhead then benefit at this point. Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lkml.kernel.org/r/20200512145444.15483-11-yu-cheng.yu@intel.com
534 lines
14 KiB
C
534 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* FPU signal frame handling routines.
|
|
*/
|
|
|
|
#include <linux/compat.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/pagemap.h>
|
|
|
|
#include <asm/fpu/internal.h>
|
|
#include <asm/fpu/signal.h>
|
|
#include <asm/fpu/regset.h>
|
|
#include <asm/fpu/xstate.h>
|
|
|
|
#include <asm/sigframe.h>
|
|
#include <asm/trace/fpu.h>
|
|
|
|
static struct _fpx_sw_bytes fx_sw_reserved, fx_sw_reserved_ia32;
|
|
|
|
/*
|
|
* Check for the presence of extended state information in the
|
|
* user fpstate pointer in the sigcontext.
|
|
*/
|
|
static inline int check_for_xstate(struct fxregs_state __user *buf,
|
|
void __user *fpstate,
|
|
struct _fpx_sw_bytes *fx_sw)
|
|
{
|
|
int min_xstate_size = sizeof(struct fxregs_state) +
|
|
sizeof(struct xstate_header);
|
|
unsigned int magic2;
|
|
|
|
if (__copy_from_user(fx_sw, &buf->sw_reserved[0], sizeof(*fx_sw)))
|
|
return -1;
|
|
|
|
/* Check for the first magic field and other error scenarios. */
|
|
if (fx_sw->magic1 != FP_XSTATE_MAGIC1 ||
|
|
fx_sw->xstate_size < min_xstate_size ||
|
|
fx_sw->xstate_size > fpu_user_xstate_size ||
|
|
fx_sw->xstate_size > fx_sw->extended_size)
|
|
return -1;
|
|
|
|
/*
|
|
* Check for the presence of second magic word at the end of memory
|
|
* layout. This detects the case where the user just copied the legacy
|
|
* fpstate layout with out copying the extended state information
|
|
* in the memory layout.
|
|
*/
|
|
if (__get_user(magic2, (__u32 __user *)(fpstate + fx_sw->xstate_size))
|
|
|| magic2 != FP_XSTATE_MAGIC2)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Signal frame handlers.
|
|
*/
|
|
static inline int save_fsave_header(struct task_struct *tsk, void __user *buf)
|
|
{
|
|
if (use_fxsr()) {
|
|
struct xregs_state *xsave = &tsk->thread.fpu.state.xsave;
|
|
struct user_i387_ia32_struct env;
|
|
struct _fpstate_32 __user *fp = buf;
|
|
|
|
fpregs_lock();
|
|
if (!test_thread_flag(TIF_NEED_FPU_LOAD))
|
|
copy_fxregs_to_kernel(&tsk->thread.fpu);
|
|
fpregs_unlock();
|
|
|
|
convert_from_fxsr(&env, tsk);
|
|
|
|
if (__copy_to_user(buf, &env, sizeof(env)) ||
|
|
__put_user(xsave->i387.swd, &fp->status) ||
|
|
__put_user(X86_FXSR_MAGIC, &fp->magic))
|
|
return -1;
|
|
} else {
|
|
struct fregs_state __user *fp = buf;
|
|
u32 swd;
|
|
if (__get_user(swd, &fp->swd) || __put_user(swd, &fp->status))
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int save_xstate_epilog(void __user *buf, int ia32_frame)
|
|
{
|
|
struct xregs_state __user *x = buf;
|
|
struct _fpx_sw_bytes *sw_bytes;
|
|
u32 xfeatures;
|
|
int err;
|
|
|
|
/* Setup the bytes not touched by the [f]xsave and reserved for SW. */
|
|
sw_bytes = ia32_frame ? &fx_sw_reserved_ia32 : &fx_sw_reserved;
|
|
err = __copy_to_user(&x->i387.sw_reserved, sw_bytes, sizeof(*sw_bytes));
|
|
|
|
if (!use_xsave())
|
|
return err;
|
|
|
|
err |= __put_user(FP_XSTATE_MAGIC2,
|
|
(__u32 __user *)(buf + fpu_user_xstate_size));
|
|
|
|
/*
|
|
* Read the xfeatures which we copied (directly from the cpu or
|
|
* from the state in task struct) to the user buffers.
|
|
*/
|
|
err |= __get_user(xfeatures, (__u32 __user *)&x->header.xfeatures);
|
|
|
|
/*
|
|
* For legacy compatible, we always set FP/SSE bits in the bit
|
|
* vector while saving the state to the user context. This will
|
|
* enable us capturing any changes(during sigreturn) to
|
|
* the FP/SSE bits by the legacy applications which don't touch
|
|
* xfeatures in the xsave header.
|
|
*
|
|
* xsave aware apps can change the xfeatures in the xsave
|
|
* header as well as change any contents in the memory layout.
|
|
* xrestore as part of sigreturn will capture all the changes.
|
|
*/
|
|
xfeatures |= XFEATURE_MASK_FPSSE;
|
|
|
|
err |= __put_user(xfeatures, (__u32 __user *)&x->header.xfeatures);
|
|
|
|
return err;
|
|
}
|
|
|
|
static inline int copy_fpregs_to_sigframe(struct xregs_state __user *buf)
|
|
{
|
|
int err;
|
|
|
|
if (use_xsave())
|
|
err = copy_xregs_to_user(buf);
|
|
else if (use_fxsr())
|
|
err = copy_fxregs_to_user((struct fxregs_state __user *) buf);
|
|
else
|
|
err = copy_fregs_to_user((struct fregs_state __user *) buf);
|
|
|
|
if (unlikely(err) && __clear_user(buf, fpu_user_xstate_size))
|
|
err = -EFAULT;
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Save the fpu, extended register state to the user signal frame.
|
|
*
|
|
* 'buf_fx' is the 64-byte aligned pointer at which the [f|fx|x]save
|
|
* state is copied.
|
|
* 'buf' points to the 'buf_fx' or to the fsave header followed by 'buf_fx'.
|
|
*
|
|
* buf == buf_fx for 64-bit frames and 32-bit fsave frame.
|
|
* buf != buf_fx for 32-bit frames with fxstate.
|
|
*
|
|
* Try to save it directly to the user frame with disabled page fault handler.
|
|
* If this fails then do the slow path where the FPU state is first saved to
|
|
* task's fpu->state and then copy it to the user frame pointed to by the
|
|
* aligned pointer 'buf_fx'.
|
|
*
|
|
* If this is a 32-bit frame with fxstate, put a fsave header before
|
|
* the aligned state at 'buf_fx'.
|
|
*
|
|
* For [f]xsave state, update the SW reserved fields in the [f]xsave frame
|
|
* indicating the absence/presence of the extended state to the user.
|
|
*/
|
|
int copy_fpstate_to_sigframe(void __user *buf, void __user *buf_fx, int size)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
int ia32_fxstate = (buf != buf_fx);
|
|
int ret;
|
|
|
|
ia32_fxstate &= (IS_ENABLED(CONFIG_X86_32) ||
|
|
IS_ENABLED(CONFIG_IA32_EMULATION));
|
|
|
|
if (!access_ok(buf, size))
|
|
return -EACCES;
|
|
|
|
if (!static_cpu_has(X86_FEATURE_FPU))
|
|
return fpregs_soft_get(current, NULL, 0,
|
|
sizeof(struct user_i387_ia32_struct), NULL,
|
|
(struct _fpstate_32 __user *) buf) ? -1 : 1;
|
|
|
|
retry:
|
|
/*
|
|
* Load the FPU registers if they are not valid for the current task.
|
|
* With a valid FPU state we can attempt to save the state directly to
|
|
* userland's stack frame which will likely succeed. If it does not,
|
|
* resolve the fault in the user memory and try again.
|
|
*/
|
|
fpregs_lock();
|
|
if (test_thread_flag(TIF_NEED_FPU_LOAD))
|
|
__fpregs_load_activate();
|
|
|
|
pagefault_disable();
|
|
ret = copy_fpregs_to_sigframe(buf_fx);
|
|
pagefault_enable();
|
|
fpregs_unlock();
|
|
|
|
if (ret) {
|
|
if (!fault_in_pages_writeable(buf_fx, fpu_user_xstate_size))
|
|
goto retry;
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* Save the fsave header for the 32-bit frames. */
|
|
if ((ia32_fxstate || !use_fxsr()) && save_fsave_header(tsk, buf))
|
|
return -1;
|
|
|
|
if (use_fxsr() && save_xstate_epilog(buf_fx, ia32_fxstate))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void
|
|
sanitize_restored_user_xstate(union fpregs_state *state,
|
|
struct user_i387_ia32_struct *ia32_env,
|
|
u64 user_xfeatures, int fx_only)
|
|
{
|
|
struct xregs_state *xsave = &state->xsave;
|
|
struct xstate_header *header = &xsave->header;
|
|
|
|
if (use_xsave()) {
|
|
/*
|
|
* Note: we don't need to zero the reserved bits in the
|
|
* xstate_header here because we either didn't copy them at all,
|
|
* or we checked earlier that they aren't set.
|
|
*/
|
|
|
|
/*
|
|
* 'user_xfeatures' might have bits clear which are
|
|
* set in header->xfeatures. This represents features that
|
|
* were in init state prior to a signal delivery, and need
|
|
* to be reset back to the init state. Clear any user
|
|
* feature bits which are set in the kernel buffer to get
|
|
* them back to the init state.
|
|
*
|
|
* Supervisor state is unchanged by input from userspace.
|
|
* Ensure supervisor state bits stay set and supervisor
|
|
* state is not modified.
|
|
*/
|
|
if (fx_only)
|
|
header->xfeatures = XFEATURE_MASK_FPSSE;
|
|
else
|
|
header->xfeatures &= user_xfeatures |
|
|
xfeatures_mask_supervisor();
|
|
}
|
|
|
|
if (use_fxsr()) {
|
|
/*
|
|
* mscsr reserved bits must be masked to zero for security
|
|
* reasons.
|
|
*/
|
|
xsave->i387.mxcsr &= mxcsr_feature_mask;
|
|
|
|
if (ia32_env)
|
|
convert_to_fxsr(&state->fxsave, ia32_env);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Restore the extended state if present. Otherwise, restore the FP/SSE state.
|
|
*/
|
|
static int copy_user_to_fpregs_zeroing(void __user *buf, u64 xbv, int fx_only)
|
|
{
|
|
u64 init_bv;
|
|
int r;
|
|
|
|
if (use_xsave()) {
|
|
if (fx_only) {
|
|
init_bv = xfeatures_mask_user() & ~XFEATURE_MASK_FPSSE;
|
|
|
|
r = copy_user_to_fxregs(buf);
|
|
if (!r)
|
|
copy_kernel_to_xregs(&init_fpstate.xsave, init_bv);
|
|
return r;
|
|
} else {
|
|
init_bv = xfeatures_mask_user() & ~xbv;
|
|
|
|
r = copy_user_to_xregs(buf, xbv);
|
|
if (!r && unlikely(init_bv))
|
|
copy_kernel_to_xregs(&init_fpstate.xsave, init_bv);
|
|
return r;
|
|
}
|
|
} else if (use_fxsr()) {
|
|
return copy_user_to_fxregs(buf);
|
|
} else
|
|
return copy_user_to_fregs(buf);
|
|
}
|
|
|
|
static int __fpu__restore_sig(void __user *buf, void __user *buf_fx, int size)
|
|
{
|
|
struct user_i387_ia32_struct *envp = NULL;
|
|
int state_size = fpu_kernel_xstate_size;
|
|
int ia32_fxstate = (buf != buf_fx);
|
|
struct task_struct *tsk = current;
|
|
struct fpu *fpu = &tsk->thread.fpu;
|
|
struct user_i387_ia32_struct env;
|
|
u64 user_xfeatures = 0;
|
|
int fx_only = 0;
|
|
int ret = 0;
|
|
|
|
ia32_fxstate &= (IS_ENABLED(CONFIG_X86_32) ||
|
|
IS_ENABLED(CONFIG_IA32_EMULATION));
|
|
|
|
if (!buf) {
|
|
fpu__clear_user_states(fpu);
|
|
return 0;
|
|
}
|
|
|
|
if (!access_ok(buf, size))
|
|
return -EACCES;
|
|
|
|
if (!static_cpu_has(X86_FEATURE_FPU))
|
|
return fpregs_soft_set(current, NULL,
|
|
0, sizeof(struct user_i387_ia32_struct),
|
|
NULL, buf) != 0;
|
|
|
|
if (use_xsave()) {
|
|
struct _fpx_sw_bytes fx_sw_user;
|
|
if (unlikely(check_for_xstate(buf_fx, buf_fx, &fx_sw_user))) {
|
|
/*
|
|
* Couldn't find the extended state information in the
|
|
* memory layout. Restore just the FP/SSE and init all
|
|
* the other extended state.
|
|
*/
|
|
state_size = sizeof(struct fxregs_state);
|
|
fx_only = 1;
|
|
trace_x86_fpu_xstate_check_failed(fpu);
|
|
} else {
|
|
state_size = fx_sw_user.xstate_size;
|
|
user_xfeatures = fx_sw_user.xfeatures;
|
|
}
|
|
}
|
|
|
|
if ((unsigned long)buf_fx % 64)
|
|
fx_only = 1;
|
|
|
|
if (!ia32_fxstate) {
|
|
/*
|
|
* Attempt to restore the FPU registers directly from user
|
|
* memory. For that to succeed, the user access cannot cause
|
|
* page faults. If it does, fall back to the slow path below,
|
|
* going through the kernel buffer with the enabled pagefault
|
|
* handler.
|
|
*/
|
|
fpregs_lock();
|
|
pagefault_disable();
|
|
ret = copy_user_to_fpregs_zeroing(buf_fx, user_xfeatures, fx_only);
|
|
pagefault_enable();
|
|
if (!ret) {
|
|
|
|
/*
|
|
* Restore supervisor states: previous context switch
|
|
* etc has done XSAVES and saved the supervisor states
|
|
* in the kernel buffer from which they can be restored
|
|
* now.
|
|
*
|
|
* We cannot do a single XRSTORS here - which would
|
|
* be nice - because the rest of the FPU registers are
|
|
* being restored from a user buffer directly. The
|
|
* single XRSTORS happens below, when the user buffer
|
|
* has been copied to the kernel one.
|
|
*/
|
|
if (test_thread_flag(TIF_NEED_FPU_LOAD) &&
|
|
xfeatures_mask_supervisor())
|
|
copy_kernel_to_xregs(&fpu->state.xsave,
|
|
xfeatures_mask_supervisor());
|
|
fpregs_mark_activate();
|
|
fpregs_unlock();
|
|
return 0;
|
|
}
|
|
fpregs_unlock();
|
|
} else {
|
|
/*
|
|
* For 32-bit frames with fxstate, copy the fxstate so it can
|
|
* be reconstructed later.
|
|
*/
|
|
ret = __copy_from_user(&env, buf, sizeof(env));
|
|
if (ret)
|
|
goto err_out;
|
|
envp = &env;
|
|
}
|
|
|
|
/*
|
|
* By setting TIF_NEED_FPU_LOAD it is ensured that our xstate is
|
|
* not modified on context switch and that the xstate is considered
|
|
* to be loaded again on return to userland (overriding last_cpu avoids
|
|
* the optimisation).
|
|
*/
|
|
fpregs_lock();
|
|
|
|
if (!test_thread_flag(TIF_NEED_FPU_LOAD)) {
|
|
|
|
/*
|
|
* Supervisor states are not modified by user space input. Save
|
|
* current supervisor states first and invalidate the FPU regs.
|
|
*/
|
|
if (xfeatures_mask_supervisor())
|
|
copy_supervisor_to_kernel(&fpu->state.xsave);
|
|
set_thread_flag(TIF_NEED_FPU_LOAD);
|
|
}
|
|
__fpu_invalidate_fpregs_state(fpu);
|
|
fpregs_unlock();
|
|
|
|
if (use_xsave() && !fx_only) {
|
|
u64 init_bv = xfeatures_mask_user() & ~user_xfeatures;
|
|
|
|
if (using_compacted_format()) {
|
|
ret = copy_user_to_xstate(&fpu->state.xsave, buf_fx);
|
|
} else {
|
|
ret = __copy_from_user(&fpu->state.xsave, buf_fx, state_size);
|
|
|
|
if (!ret && state_size > offsetof(struct xregs_state, header))
|
|
ret = validate_user_xstate_header(&fpu->state.xsave.header);
|
|
}
|
|
if (ret)
|
|
goto err_out;
|
|
|
|
sanitize_restored_user_xstate(&fpu->state, envp, user_xfeatures,
|
|
fx_only);
|
|
|
|
fpregs_lock();
|
|
if (unlikely(init_bv))
|
|
copy_kernel_to_xregs(&init_fpstate.xsave, init_bv);
|
|
|
|
/*
|
|
* Restore previously saved supervisor xstates along with
|
|
* copied-in user xstates.
|
|
*/
|
|
ret = copy_kernel_to_xregs_err(&fpu->state.xsave,
|
|
user_xfeatures | xfeatures_mask_supervisor());
|
|
|
|
} else if (use_fxsr()) {
|
|
ret = __copy_from_user(&fpu->state.fxsave, buf_fx, state_size);
|
|
if (ret) {
|
|
ret = -EFAULT;
|
|
goto err_out;
|
|
}
|
|
|
|
sanitize_restored_user_xstate(&fpu->state, envp, user_xfeatures,
|
|
fx_only);
|
|
|
|
fpregs_lock();
|
|
if (use_xsave()) {
|
|
u64 init_bv;
|
|
|
|
init_bv = xfeatures_mask_user() & ~XFEATURE_MASK_FPSSE;
|
|
copy_kernel_to_xregs(&init_fpstate.xsave, init_bv);
|
|
}
|
|
|
|
ret = copy_kernel_to_fxregs_err(&fpu->state.fxsave);
|
|
} else {
|
|
ret = __copy_from_user(&fpu->state.fsave, buf_fx, state_size);
|
|
if (ret)
|
|
goto err_out;
|
|
|
|
fpregs_lock();
|
|
ret = copy_kernel_to_fregs_err(&fpu->state.fsave);
|
|
}
|
|
if (!ret)
|
|
fpregs_mark_activate();
|
|
else
|
|
fpregs_deactivate(fpu);
|
|
fpregs_unlock();
|
|
|
|
err_out:
|
|
if (ret)
|
|
fpu__clear_user_states(fpu);
|
|
return ret;
|
|
}
|
|
|
|
static inline int xstate_sigframe_size(void)
|
|
{
|
|
return use_xsave() ? fpu_user_xstate_size + FP_XSTATE_MAGIC2_SIZE :
|
|
fpu_user_xstate_size;
|
|
}
|
|
|
|
/*
|
|
* Restore FPU state from a sigframe:
|
|
*/
|
|
int fpu__restore_sig(void __user *buf, int ia32_frame)
|
|
{
|
|
void __user *buf_fx = buf;
|
|
int size = xstate_sigframe_size();
|
|
|
|
if (ia32_frame && use_fxsr()) {
|
|
buf_fx = buf + sizeof(struct fregs_state);
|
|
size += sizeof(struct fregs_state);
|
|
}
|
|
|
|
return __fpu__restore_sig(buf, buf_fx, size);
|
|
}
|
|
|
|
unsigned long
|
|
fpu__alloc_mathframe(unsigned long sp, int ia32_frame,
|
|
unsigned long *buf_fx, unsigned long *size)
|
|
{
|
|
unsigned long frame_size = xstate_sigframe_size();
|
|
|
|
*buf_fx = sp = round_down(sp - frame_size, 64);
|
|
if (ia32_frame && use_fxsr()) {
|
|
frame_size += sizeof(struct fregs_state);
|
|
sp -= sizeof(struct fregs_state);
|
|
}
|
|
|
|
*size = frame_size;
|
|
|
|
return sp;
|
|
}
|
|
/*
|
|
* Prepare the SW reserved portion of the fxsave memory layout, indicating
|
|
* the presence of the extended state information in the memory layout
|
|
* pointed by the fpstate pointer in the sigcontext.
|
|
* This will be saved when ever the FP and extended state context is
|
|
* saved on the user stack during the signal handler delivery to the user.
|
|
*/
|
|
void fpu__init_prepare_fx_sw_frame(void)
|
|
{
|
|
int size = fpu_user_xstate_size + FP_XSTATE_MAGIC2_SIZE;
|
|
|
|
fx_sw_reserved.magic1 = FP_XSTATE_MAGIC1;
|
|
fx_sw_reserved.extended_size = size;
|
|
fx_sw_reserved.xfeatures = xfeatures_mask_user();
|
|
fx_sw_reserved.xstate_size = fpu_user_xstate_size;
|
|
|
|
if (IS_ENABLED(CONFIG_IA32_EMULATION) ||
|
|
IS_ENABLED(CONFIG_X86_32)) {
|
|
int fsave_header_size = sizeof(struct fregs_state);
|
|
|
|
fx_sw_reserved_ia32 = fx_sw_reserved;
|
|
fx_sw_reserved_ia32.extended_size = size + fsave_header_size;
|
|
}
|
|
}
|
|
|