mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
652a9dd2a0
The watchdog for rt2800usb triggers frequently causing all URB's to be canceled often enough to interrupt the normal TX flow. More research indicated that not the URB upload to the USB host were hanging, but instead the TX status reports. To correctly detect what is going on, we introduce Q_INDEX_DMA_DONE which is an index counter between Q_INDEX_DONE and Q_INDEX and indicates if the frame has been transfered to the device. This also requires the rt2x00queue timeout functions to be updated to differentiate between a DMA timeout (time between Q_INDEX and Q_INDEX_DMA_DONE timeout) and a STATUS timeout (time between Q_INDEX_DMA_DONE and Q_INDEX_DONE timeout) All Q_INDEX_DMA_DONE code was taken from the RFC from Helmut Schaa <helmut.schaa@googlemail.com> for the implementation for watchdog for rt2800pci. Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Acked-by: Gertjan van Wingerde <gwingerde@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
984 lines
26 KiB
C
984 lines
26 KiB
C
/*
|
|
Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
|
|
Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
|
|
Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
|
|
<http://rt2x00.serialmonkey.com>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the
|
|
Free Software Foundation, Inc.,
|
|
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
/*
|
|
Module: rt2x00lib
|
|
Abstract: rt2x00 queue specific routines.
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/dma-mapping.h>
|
|
|
|
#include "rt2x00.h"
|
|
#include "rt2x00lib.h"
|
|
|
|
struct sk_buff *rt2x00queue_alloc_rxskb(struct rt2x00_dev *rt2x00dev,
|
|
struct queue_entry *entry)
|
|
{
|
|
struct sk_buff *skb;
|
|
struct skb_frame_desc *skbdesc;
|
|
unsigned int frame_size;
|
|
unsigned int head_size = 0;
|
|
unsigned int tail_size = 0;
|
|
|
|
/*
|
|
* The frame size includes descriptor size, because the
|
|
* hardware directly receive the frame into the skbuffer.
|
|
*/
|
|
frame_size = entry->queue->data_size + entry->queue->desc_size;
|
|
|
|
/*
|
|
* The payload should be aligned to a 4-byte boundary,
|
|
* this means we need at least 3 bytes for moving the frame
|
|
* into the correct offset.
|
|
*/
|
|
head_size = 4;
|
|
|
|
/*
|
|
* For IV/EIV/ICV assembly we must make sure there is
|
|
* at least 8 bytes bytes available in headroom for IV/EIV
|
|
* and 8 bytes for ICV data as tailroon.
|
|
*/
|
|
if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
|
|
head_size += 8;
|
|
tail_size += 8;
|
|
}
|
|
|
|
/*
|
|
* Allocate skbuffer.
|
|
*/
|
|
skb = dev_alloc_skb(frame_size + head_size + tail_size);
|
|
if (!skb)
|
|
return NULL;
|
|
|
|
/*
|
|
* Make sure we not have a frame with the requested bytes
|
|
* available in the head and tail.
|
|
*/
|
|
skb_reserve(skb, head_size);
|
|
skb_put(skb, frame_size);
|
|
|
|
/*
|
|
* Populate skbdesc.
|
|
*/
|
|
skbdesc = get_skb_frame_desc(skb);
|
|
memset(skbdesc, 0, sizeof(*skbdesc));
|
|
skbdesc->entry = entry;
|
|
|
|
if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
|
|
skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
|
|
skb->data,
|
|
skb->len,
|
|
DMA_FROM_DEVICE);
|
|
skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
|
|
}
|
|
|
|
return skb;
|
|
}
|
|
|
|
void rt2x00queue_map_txskb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
|
|
{
|
|
struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
|
|
|
|
skbdesc->skb_dma =
|
|
dma_map_single(rt2x00dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
|
|
skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
|
|
|
|
void rt2x00queue_unmap_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
|
|
{
|
|
struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
|
|
|
|
if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
|
|
dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
|
|
DMA_FROM_DEVICE);
|
|
skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
|
|
}
|
|
|
|
if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
|
|
dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
|
|
DMA_TO_DEVICE);
|
|
skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
|
|
|
|
void rt2x00queue_free_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
|
|
{
|
|
if (!skb)
|
|
return;
|
|
|
|
rt2x00queue_unmap_skb(rt2x00dev, skb);
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
|
|
void rt2x00queue_align_frame(struct sk_buff *skb)
|
|
{
|
|
unsigned int frame_length = skb->len;
|
|
unsigned int align = ALIGN_SIZE(skb, 0);
|
|
|
|
if (!align)
|
|
return;
|
|
|
|
skb_push(skb, align);
|
|
memmove(skb->data, skb->data + align, frame_length);
|
|
skb_trim(skb, frame_length);
|
|
}
|
|
|
|
void rt2x00queue_align_payload(struct sk_buff *skb, unsigned int header_length)
|
|
{
|
|
unsigned int frame_length = skb->len;
|
|
unsigned int align = ALIGN_SIZE(skb, header_length);
|
|
|
|
if (!align)
|
|
return;
|
|
|
|
skb_push(skb, align);
|
|
memmove(skb->data, skb->data + align, frame_length);
|
|
skb_trim(skb, frame_length);
|
|
}
|
|
|
|
void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
|
|
{
|
|
unsigned int payload_length = skb->len - header_length;
|
|
unsigned int header_align = ALIGN_SIZE(skb, 0);
|
|
unsigned int payload_align = ALIGN_SIZE(skb, header_length);
|
|
unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0;
|
|
|
|
/*
|
|
* Adjust the header alignment if the payload needs to be moved more
|
|
* than the header.
|
|
*/
|
|
if (payload_align > header_align)
|
|
header_align += 4;
|
|
|
|
/* There is nothing to do if no alignment is needed */
|
|
if (!header_align)
|
|
return;
|
|
|
|
/* Reserve the amount of space needed in front of the frame */
|
|
skb_push(skb, header_align);
|
|
|
|
/*
|
|
* Move the header.
|
|
*/
|
|
memmove(skb->data, skb->data + header_align, header_length);
|
|
|
|
/* Move the payload, if present and if required */
|
|
if (payload_length && payload_align)
|
|
memmove(skb->data + header_length + l2pad,
|
|
skb->data + header_length + l2pad + payload_align,
|
|
payload_length);
|
|
|
|
/* Trim the skb to the correct size */
|
|
skb_trim(skb, header_length + l2pad + payload_length);
|
|
}
|
|
|
|
void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
|
|
{
|
|
unsigned int l2pad = L2PAD_SIZE(header_length);
|
|
|
|
if (!l2pad)
|
|
return;
|
|
|
|
memmove(skb->data + l2pad, skb->data, header_length);
|
|
skb_pull(skb, l2pad);
|
|
}
|
|
|
|
static void rt2x00queue_create_tx_descriptor_seq(struct queue_entry *entry,
|
|
struct txentry_desc *txdesc)
|
|
{
|
|
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
|
|
struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
|
|
unsigned long irqflags;
|
|
|
|
if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) ||
|
|
unlikely(!tx_info->control.vif))
|
|
return;
|
|
|
|
/*
|
|
* Hardware should insert sequence counter.
|
|
* FIXME: We insert a software sequence counter first for
|
|
* hardware that doesn't support hardware sequence counting.
|
|
*
|
|
* This is wrong because beacons are not getting sequence
|
|
* numbers assigned properly.
|
|
*
|
|
* A secondary problem exists for drivers that cannot toggle
|
|
* sequence counting per-frame, since those will override the
|
|
* sequence counter given by mac80211.
|
|
*/
|
|
spin_lock_irqsave(&intf->seqlock, irqflags);
|
|
|
|
if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
|
|
intf->seqno += 0x10;
|
|
hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
|
|
hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
|
|
|
|
spin_unlock_irqrestore(&intf->seqlock, irqflags);
|
|
|
|
__set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
|
|
}
|
|
|
|
static void rt2x00queue_create_tx_descriptor_plcp(struct queue_entry *entry,
|
|
struct txentry_desc *txdesc,
|
|
const struct rt2x00_rate *hwrate)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
|
|
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
|
|
struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
|
|
unsigned int data_length;
|
|
unsigned int duration;
|
|
unsigned int residual;
|
|
|
|
/* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
|
|
data_length = entry->skb->len + 4;
|
|
data_length += rt2x00crypto_tx_overhead(rt2x00dev, entry->skb);
|
|
|
|
/*
|
|
* PLCP setup
|
|
* Length calculation depends on OFDM/CCK rate.
|
|
*/
|
|
txdesc->signal = hwrate->plcp;
|
|
txdesc->service = 0x04;
|
|
|
|
if (hwrate->flags & DEV_RATE_OFDM) {
|
|
txdesc->length_high = (data_length >> 6) & 0x3f;
|
|
txdesc->length_low = data_length & 0x3f;
|
|
} else {
|
|
/*
|
|
* Convert length to microseconds.
|
|
*/
|
|
residual = GET_DURATION_RES(data_length, hwrate->bitrate);
|
|
duration = GET_DURATION(data_length, hwrate->bitrate);
|
|
|
|
if (residual != 0) {
|
|
duration++;
|
|
|
|
/*
|
|
* Check if we need to set the Length Extension
|
|
*/
|
|
if (hwrate->bitrate == 110 && residual <= 30)
|
|
txdesc->service |= 0x80;
|
|
}
|
|
|
|
txdesc->length_high = (duration >> 8) & 0xff;
|
|
txdesc->length_low = duration & 0xff;
|
|
|
|
/*
|
|
* When preamble is enabled we should set the
|
|
* preamble bit for the signal.
|
|
*/
|
|
if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
|
|
txdesc->signal |= 0x08;
|
|
}
|
|
}
|
|
|
|
static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
|
|
struct txentry_desc *txdesc)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
|
|
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
|
|
struct ieee80211_rate *rate =
|
|
ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
|
|
const struct rt2x00_rate *hwrate;
|
|
|
|
memset(txdesc, 0, sizeof(*txdesc));
|
|
|
|
/*
|
|
* Initialize information from queue
|
|
*/
|
|
txdesc->qid = entry->queue->qid;
|
|
txdesc->cw_min = entry->queue->cw_min;
|
|
txdesc->cw_max = entry->queue->cw_max;
|
|
txdesc->aifs = entry->queue->aifs;
|
|
|
|
/*
|
|
* Header and frame information.
|
|
*/
|
|
txdesc->length = entry->skb->len;
|
|
txdesc->header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
|
|
|
|
/*
|
|
* Check whether this frame is to be acked.
|
|
*/
|
|
if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
|
|
__set_bit(ENTRY_TXD_ACK, &txdesc->flags);
|
|
|
|
/*
|
|
* Check if this is a RTS/CTS frame
|
|
*/
|
|
if (ieee80211_is_rts(hdr->frame_control) ||
|
|
ieee80211_is_cts(hdr->frame_control)) {
|
|
__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
|
|
if (ieee80211_is_rts(hdr->frame_control))
|
|
__set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
|
|
else
|
|
__set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
|
|
if (tx_info->control.rts_cts_rate_idx >= 0)
|
|
rate =
|
|
ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
|
|
}
|
|
|
|
/*
|
|
* Determine retry information.
|
|
*/
|
|
txdesc->retry_limit = tx_info->control.rates[0].count - 1;
|
|
if (txdesc->retry_limit >= rt2x00dev->long_retry)
|
|
__set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
|
|
|
|
/*
|
|
* Check if more fragments are pending
|
|
*/
|
|
if (ieee80211_has_morefrags(hdr->frame_control)) {
|
|
__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
|
|
__set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
|
|
}
|
|
|
|
/*
|
|
* Check if more frames (!= fragments) are pending
|
|
*/
|
|
if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
|
|
__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
|
|
|
|
/*
|
|
* Beacons and probe responses require the tsf timestamp
|
|
* to be inserted into the frame, except for a frame that has been injected
|
|
* through a monitor interface. This latter is needed for testing a
|
|
* monitor interface.
|
|
*/
|
|
if ((ieee80211_is_beacon(hdr->frame_control) ||
|
|
ieee80211_is_probe_resp(hdr->frame_control)) &&
|
|
(!(tx_info->flags & IEEE80211_TX_CTL_INJECTED)))
|
|
__set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
|
|
|
|
/*
|
|
* Determine with what IFS priority this frame should be send.
|
|
* Set ifs to IFS_SIFS when the this is not the first fragment,
|
|
* or this fragment came after RTS/CTS.
|
|
*/
|
|
if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
|
|
!test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
|
|
__set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
|
|
txdesc->ifs = IFS_BACKOFF;
|
|
} else
|
|
txdesc->ifs = IFS_SIFS;
|
|
|
|
/*
|
|
* Determine rate modulation.
|
|
*/
|
|
hwrate = rt2x00_get_rate(rate->hw_value);
|
|
txdesc->rate_mode = RATE_MODE_CCK;
|
|
if (hwrate->flags & DEV_RATE_OFDM)
|
|
txdesc->rate_mode = RATE_MODE_OFDM;
|
|
|
|
/*
|
|
* Apply TX descriptor handling by components
|
|
*/
|
|
rt2x00crypto_create_tx_descriptor(entry, txdesc);
|
|
rt2x00ht_create_tx_descriptor(entry, txdesc, hwrate);
|
|
rt2x00queue_create_tx_descriptor_seq(entry, txdesc);
|
|
rt2x00queue_create_tx_descriptor_plcp(entry, txdesc, hwrate);
|
|
}
|
|
|
|
static int rt2x00queue_write_tx_data(struct queue_entry *entry,
|
|
struct txentry_desc *txdesc)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
|
|
|
|
/*
|
|
* This should not happen, we already checked the entry
|
|
* was ours. When the hardware disagrees there has been
|
|
* a queue corruption!
|
|
*/
|
|
if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
|
|
rt2x00dev->ops->lib->get_entry_state(entry))) {
|
|
ERROR(rt2x00dev,
|
|
"Corrupt queue %d, accessing entry which is not ours.\n"
|
|
"Please file bug report to %s.\n",
|
|
entry->queue->qid, DRV_PROJECT);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Add the requested extra tx headroom in front of the skb.
|
|
*/
|
|
skb_push(entry->skb, rt2x00dev->ops->extra_tx_headroom);
|
|
memset(entry->skb->data, 0, rt2x00dev->ops->extra_tx_headroom);
|
|
|
|
/*
|
|
* Call the driver's write_tx_data function, if it exists.
|
|
*/
|
|
if (rt2x00dev->ops->lib->write_tx_data)
|
|
rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
|
|
|
|
/*
|
|
* Map the skb to DMA.
|
|
*/
|
|
if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags))
|
|
rt2x00queue_map_txskb(rt2x00dev, entry->skb);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
|
|
struct txentry_desc *txdesc)
|
|
{
|
|
struct data_queue *queue = entry->queue;
|
|
|
|
queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
|
|
|
|
/*
|
|
* All processing on the frame has been completed, this means
|
|
* it is now ready to be dumped to userspace through debugfs.
|
|
*/
|
|
rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry->skb);
|
|
}
|
|
|
|
static void rt2x00queue_kick_tx_queue(struct queue_entry *entry,
|
|
struct txentry_desc *txdesc)
|
|
{
|
|
struct data_queue *queue = entry->queue;
|
|
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
|
|
|
|
/*
|
|
* Check if we need to kick the queue, there are however a few rules
|
|
* 1) Don't kick unless this is the last in frame in a burst.
|
|
* When the burst flag is set, this frame is always followed
|
|
* by another frame which in some way are related to eachother.
|
|
* This is true for fragments, RTS or CTS-to-self frames.
|
|
* 2) Rule 1 can be broken when the available entries
|
|
* in the queue are less then a certain threshold.
|
|
*/
|
|
if (rt2x00queue_threshold(queue) ||
|
|
!test_bit(ENTRY_TXD_BURST, &txdesc->flags))
|
|
rt2x00dev->ops->lib->kick_tx_queue(queue);
|
|
}
|
|
|
|
int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
|
|
bool local)
|
|
{
|
|
struct ieee80211_tx_info *tx_info;
|
|
struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
|
|
struct txentry_desc txdesc;
|
|
struct skb_frame_desc *skbdesc;
|
|
u8 rate_idx, rate_flags;
|
|
|
|
if (unlikely(rt2x00queue_full(queue)))
|
|
return -ENOBUFS;
|
|
|
|
if (test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) {
|
|
ERROR(queue->rt2x00dev,
|
|
"Arrived at non-free entry in the non-full queue %d.\n"
|
|
"Please file bug report to %s.\n",
|
|
queue->qid, DRV_PROJECT);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Copy all TX descriptor information into txdesc,
|
|
* after that we are free to use the skb->cb array
|
|
* for our information.
|
|
*/
|
|
entry->skb = skb;
|
|
rt2x00queue_create_tx_descriptor(entry, &txdesc);
|
|
|
|
/*
|
|
* All information is retrieved from the skb->cb array,
|
|
* now we should claim ownership of the driver part of that
|
|
* array, preserving the bitrate index and flags.
|
|
*/
|
|
tx_info = IEEE80211_SKB_CB(skb);
|
|
rate_idx = tx_info->control.rates[0].idx;
|
|
rate_flags = tx_info->control.rates[0].flags;
|
|
skbdesc = get_skb_frame_desc(skb);
|
|
memset(skbdesc, 0, sizeof(*skbdesc));
|
|
skbdesc->entry = entry;
|
|
skbdesc->tx_rate_idx = rate_idx;
|
|
skbdesc->tx_rate_flags = rate_flags;
|
|
|
|
if (local)
|
|
skbdesc->flags |= SKBDESC_NOT_MAC80211;
|
|
|
|
/*
|
|
* When hardware encryption is supported, and this frame
|
|
* is to be encrypted, we should strip the IV/EIV data from
|
|
* the frame so we can provide it to the driver separately.
|
|
*/
|
|
if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
|
|
!test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
|
|
if (test_bit(DRIVER_REQUIRE_COPY_IV, &queue->rt2x00dev->flags))
|
|
rt2x00crypto_tx_copy_iv(skb, &txdesc);
|
|
else
|
|
rt2x00crypto_tx_remove_iv(skb, &txdesc);
|
|
}
|
|
|
|
/*
|
|
* When DMA allocation is required we should guarentee to the
|
|
* driver that the DMA is aligned to a 4-byte boundary.
|
|
* However some drivers require L2 padding to pad the payload
|
|
* rather then the header. This could be a requirement for
|
|
* PCI and USB devices, while header alignment only is valid
|
|
* for PCI devices.
|
|
*/
|
|
if (test_bit(DRIVER_REQUIRE_L2PAD, &queue->rt2x00dev->flags))
|
|
rt2x00queue_insert_l2pad(entry->skb, txdesc.header_length);
|
|
else if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
|
|
rt2x00queue_align_frame(entry->skb);
|
|
|
|
/*
|
|
* It could be possible that the queue was corrupted and this
|
|
* call failed. Since we always return NETDEV_TX_OK to mac80211,
|
|
* this frame will simply be dropped.
|
|
*/
|
|
if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
|
|
clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
|
|
entry->skb = NULL;
|
|
return -EIO;
|
|
}
|
|
|
|
set_bit(ENTRY_DATA_PENDING, &entry->flags);
|
|
|
|
rt2x00queue_index_inc(queue, Q_INDEX);
|
|
rt2x00queue_write_tx_descriptor(entry, &txdesc);
|
|
rt2x00queue_kick_tx_queue(entry, &txdesc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
|
|
struct ieee80211_vif *vif,
|
|
const bool enable_beacon)
|
|
{
|
|
struct rt2x00_intf *intf = vif_to_intf(vif);
|
|
struct skb_frame_desc *skbdesc;
|
|
struct txentry_desc txdesc;
|
|
|
|
if (unlikely(!intf->beacon))
|
|
return -ENOBUFS;
|
|
|
|
mutex_lock(&intf->beacon_skb_mutex);
|
|
|
|
/*
|
|
* Clean up the beacon skb.
|
|
*/
|
|
rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
|
|
intf->beacon->skb = NULL;
|
|
|
|
if (!enable_beacon) {
|
|
rt2x00dev->ops->lib->kill_tx_queue(intf->beacon->queue);
|
|
mutex_unlock(&intf->beacon_skb_mutex);
|
|
return 0;
|
|
}
|
|
|
|
intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
|
|
if (!intf->beacon->skb) {
|
|
mutex_unlock(&intf->beacon_skb_mutex);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Copy all TX descriptor information into txdesc,
|
|
* after that we are free to use the skb->cb array
|
|
* for our information.
|
|
*/
|
|
rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
|
|
|
|
/*
|
|
* Fill in skb descriptor
|
|
*/
|
|
skbdesc = get_skb_frame_desc(intf->beacon->skb);
|
|
memset(skbdesc, 0, sizeof(*skbdesc));
|
|
skbdesc->entry = intf->beacon;
|
|
|
|
/*
|
|
* Send beacon to hardware and enable beacon genaration..
|
|
*/
|
|
rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
|
|
|
|
mutex_unlock(&intf->beacon_skb_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void rt2x00queue_for_each_entry(struct data_queue *queue,
|
|
enum queue_index start,
|
|
enum queue_index end,
|
|
void (*fn)(struct queue_entry *entry))
|
|
{
|
|
unsigned long irqflags;
|
|
unsigned int index_start;
|
|
unsigned int index_end;
|
|
unsigned int i;
|
|
|
|
if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
|
|
ERROR(queue->rt2x00dev,
|
|
"Entry requested from invalid index range (%d - %d)\n",
|
|
start, end);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Only protect the range we are going to loop over,
|
|
* if during our loop a extra entry is set to pending
|
|
* it should not be kicked during this run, since it
|
|
* is part of another TX operation.
|
|
*/
|
|
spin_lock_irqsave(&queue->lock, irqflags);
|
|
index_start = queue->index[start];
|
|
index_end = queue->index[end];
|
|
spin_unlock_irqrestore(&queue->lock, irqflags);
|
|
|
|
/*
|
|
* Start from the TX done pointer, this guarentees that we will
|
|
* send out all frames in the correct order.
|
|
*/
|
|
if (index_start < index_end) {
|
|
for (i = index_start; i < index_end; i++)
|
|
fn(&queue->entries[i]);
|
|
} else {
|
|
for (i = index_start; i < queue->limit; i++)
|
|
fn(&queue->entries[i]);
|
|
|
|
for (i = 0; i < index_end; i++)
|
|
fn(&queue->entries[i]);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
|
|
|
|
struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
|
|
const enum data_queue_qid queue)
|
|
{
|
|
int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
|
|
|
|
if (queue == QID_RX)
|
|
return rt2x00dev->rx;
|
|
|
|
if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
|
|
return &rt2x00dev->tx[queue];
|
|
|
|
if (!rt2x00dev->bcn)
|
|
return NULL;
|
|
|
|
if (queue == QID_BEACON)
|
|
return &rt2x00dev->bcn[0];
|
|
else if (queue == QID_ATIM && atim)
|
|
return &rt2x00dev->bcn[1];
|
|
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00queue_get_queue);
|
|
|
|
struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
|
|
enum queue_index index)
|
|
{
|
|
struct queue_entry *entry;
|
|
unsigned long irqflags;
|
|
|
|
if (unlikely(index >= Q_INDEX_MAX)) {
|
|
ERROR(queue->rt2x00dev,
|
|
"Entry requested from invalid index type (%d)\n", index);
|
|
return NULL;
|
|
}
|
|
|
|
spin_lock_irqsave(&queue->lock, irqflags);
|
|
|
|
entry = &queue->entries[queue->index[index]];
|
|
|
|
spin_unlock_irqrestore(&queue->lock, irqflags);
|
|
|
|
return entry;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
|
|
|
|
void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
|
|
{
|
|
unsigned long irqflags;
|
|
|
|
if (unlikely(index >= Q_INDEX_MAX)) {
|
|
ERROR(queue->rt2x00dev,
|
|
"Index change on invalid index type (%d)\n", index);
|
|
return;
|
|
}
|
|
|
|
spin_lock_irqsave(&queue->lock, irqflags);
|
|
|
|
queue->index[index]++;
|
|
if (queue->index[index] >= queue->limit)
|
|
queue->index[index] = 0;
|
|
|
|
queue->last_action[index] = jiffies;
|
|
|
|
if (index == Q_INDEX) {
|
|
queue->length++;
|
|
} else if (index == Q_INDEX_DONE) {
|
|
queue->length--;
|
|
queue->count++;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&queue->lock, irqflags);
|
|
}
|
|
|
|
static void rt2x00queue_reset(struct data_queue *queue)
|
|
{
|
|
unsigned long irqflags;
|
|
unsigned int i;
|
|
|
|
spin_lock_irqsave(&queue->lock, irqflags);
|
|
|
|
queue->count = 0;
|
|
queue->length = 0;
|
|
|
|
for (i = 0; i < Q_INDEX_MAX; i++) {
|
|
queue->index[i] = 0;
|
|
queue->last_action[i] = jiffies;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&queue->lock, irqflags);
|
|
}
|
|
|
|
void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct data_queue *queue;
|
|
|
|
txall_queue_for_each(rt2x00dev, queue)
|
|
rt2x00dev->ops->lib->kill_tx_queue(queue);
|
|
}
|
|
|
|
void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct data_queue *queue;
|
|
unsigned int i;
|
|
|
|
queue_for_each(rt2x00dev, queue) {
|
|
rt2x00queue_reset(queue);
|
|
|
|
for (i = 0; i < queue->limit; i++) {
|
|
rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
|
|
if (queue->qid == QID_RX)
|
|
rt2x00queue_index_inc(queue, Q_INDEX);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int rt2x00queue_alloc_entries(struct data_queue *queue,
|
|
const struct data_queue_desc *qdesc)
|
|
{
|
|
struct queue_entry *entries;
|
|
unsigned int entry_size;
|
|
unsigned int i;
|
|
|
|
rt2x00queue_reset(queue);
|
|
|
|
queue->limit = qdesc->entry_num;
|
|
queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
|
|
queue->data_size = qdesc->data_size;
|
|
queue->desc_size = qdesc->desc_size;
|
|
|
|
/*
|
|
* Allocate all queue entries.
|
|
*/
|
|
entry_size = sizeof(*entries) + qdesc->priv_size;
|
|
entries = kzalloc(queue->limit * entry_size, GFP_KERNEL);
|
|
if (!entries)
|
|
return -ENOMEM;
|
|
|
|
#define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
|
|
( ((char *)(__base)) + ((__limit) * (__esize)) + \
|
|
((__index) * (__psize)) )
|
|
|
|
for (i = 0; i < queue->limit; i++) {
|
|
entries[i].flags = 0;
|
|
entries[i].queue = queue;
|
|
entries[i].skb = NULL;
|
|
entries[i].entry_idx = i;
|
|
entries[i].priv_data =
|
|
QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
|
|
sizeof(*entries), qdesc->priv_size);
|
|
}
|
|
|
|
#undef QUEUE_ENTRY_PRIV_OFFSET
|
|
|
|
queue->entries = entries;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rt2x00queue_free_skbs(struct rt2x00_dev *rt2x00dev,
|
|
struct data_queue *queue)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (!queue->entries)
|
|
return;
|
|
|
|
for (i = 0; i < queue->limit; i++) {
|
|
if (queue->entries[i].skb)
|
|
rt2x00queue_free_skb(rt2x00dev, queue->entries[i].skb);
|
|
}
|
|
}
|
|
|
|
static int rt2x00queue_alloc_rxskbs(struct rt2x00_dev *rt2x00dev,
|
|
struct data_queue *queue)
|
|
{
|
|
unsigned int i;
|
|
struct sk_buff *skb;
|
|
|
|
for (i = 0; i < queue->limit; i++) {
|
|
skb = rt2x00queue_alloc_rxskb(rt2x00dev, &queue->entries[i]);
|
|
if (!skb)
|
|
return -ENOMEM;
|
|
queue->entries[i].skb = skb;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct data_queue *queue;
|
|
int status;
|
|
|
|
status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
|
|
if (status)
|
|
goto exit;
|
|
|
|
tx_queue_for_each(rt2x00dev, queue) {
|
|
status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
|
|
if (status)
|
|
goto exit;
|
|
}
|
|
|
|
status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
|
|
if (status)
|
|
goto exit;
|
|
|
|
if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
|
|
status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
|
|
rt2x00dev->ops->atim);
|
|
if (status)
|
|
goto exit;
|
|
}
|
|
|
|
status = rt2x00queue_alloc_rxskbs(rt2x00dev, rt2x00dev->rx);
|
|
if (status)
|
|
goto exit;
|
|
|
|
return 0;
|
|
|
|
exit:
|
|
ERROR(rt2x00dev, "Queue entries allocation failed.\n");
|
|
|
|
rt2x00queue_uninitialize(rt2x00dev);
|
|
|
|
return status;
|
|
}
|
|
|
|
void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct data_queue *queue;
|
|
|
|
rt2x00queue_free_skbs(rt2x00dev, rt2x00dev->rx);
|
|
|
|
queue_for_each(rt2x00dev, queue) {
|
|
kfree(queue->entries);
|
|
queue->entries = NULL;
|
|
}
|
|
}
|
|
|
|
static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
|
|
struct data_queue *queue, enum data_queue_qid qid)
|
|
{
|
|
spin_lock_init(&queue->lock);
|
|
|
|
queue->rt2x00dev = rt2x00dev;
|
|
queue->qid = qid;
|
|
queue->txop = 0;
|
|
queue->aifs = 2;
|
|
queue->cw_min = 5;
|
|
queue->cw_max = 10;
|
|
}
|
|
|
|
int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct data_queue *queue;
|
|
enum data_queue_qid qid;
|
|
unsigned int req_atim =
|
|
!!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* We need the following queues:
|
|
* RX: 1
|
|
* TX: ops->tx_queues
|
|
* Beacon: 1
|
|
* Atim: 1 (if required)
|
|
*/
|
|
rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
|
|
|
|
queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL);
|
|
if (!queue) {
|
|
ERROR(rt2x00dev, "Queue allocation failed.\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Initialize pointers
|
|
*/
|
|
rt2x00dev->rx = queue;
|
|
rt2x00dev->tx = &queue[1];
|
|
rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
|
|
|
|
/*
|
|
* Initialize queue parameters.
|
|
* RX: qid = QID_RX
|
|
* TX: qid = QID_AC_BE + index
|
|
* TX: cw_min: 2^5 = 32.
|
|
* TX: cw_max: 2^10 = 1024.
|
|
* BCN: qid = QID_BEACON
|
|
* ATIM: qid = QID_ATIM
|
|
*/
|
|
rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
|
|
|
|
qid = QID_AC_BE;
|
|
tx_queue_for_each(rt2x00dev, queue)
|
|
rt2x00queue_init(rt2x00dev, queue, qid++);
|
|
|
|
rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
|
|
if (req_atim)
|
|
rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
kfree(rt2x00dev->rx);
|
|
rt2x00dev->rx = NULL;
|
|
rt2x00dev->tx = NULL;
|
|
rt2x00dev->bcn = NULL;
|
|
}
|