mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-30 12:36:41 +07:00
a5a1d1c291
There is no point in having an extra type for extra confusion. u64 is unambiguous. Conversion was done with the following coccinelle script: @rem@ @@ -typedef u64 cycle_t; @fix@ typedef cycle_t; @@ -cycle_t +u64 Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: John Stultz <john.stultz@linaro.org>
214 lines
4.8 KiB
C
214 lines
4.8 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (C) 2007 by Ralf Baechle
|
|
* Copyright (C) 2009, 2012 Cavium, Inc.
|
|
*/
|
|
#include <linux/clocksource.h>
|
|
#include <linux/export.h>
|
|
#include <linux/init.h>
|
|
#include <linux/smp.h>
|
|
|
|
#include <asm/cpu-info.h>
|
|
#include <asm/cpu-type.h>
|
|
#include <asm/time.h>
|
|
|
|
#include <asm/octeon/octeon.h>
|
|
#include <asm/octeon/cvmx-ipd-defs.h>
|
|
#include <asm/octeon/cvmx-mio-defs.h>
|
|
#include <asm/octeon/cvmx-rst-defs.h>
|
|
#include <asm/octeon/cvmx-fpa-defs.h>
|
|
|
|
static u64 f;
|
|
static u64 rdiv;
|
|
static u64 sdiv;
|
|
static u64 octeon_udelay_factor;
|
|
static u64 octeon_ndelay_factor;
|
|
|
|
void __init octeon_setup_delays(void)
|
|
{
|
|
octeon_udelay_factor = octeon_get_clock_rate() / 1000000;
|
|
/*
|
|
* For __ndelay we divide by 2^16, so the factor is multiplied
|
|
* by the same amount.
|
|
*/
|
|
octeon_ndelay_factor = (octeon_udelay_factor * 0x10000ull) / 1000ull;
|
|
|
|
preset_lpj = octeon_get_clock_rate() / HZ;
|
|
|
|
if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
|
|
union cvmx_mio_rst_boot rst_boot;
|
|
|
|
rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
|
|
rdiv = rst_boot.s.c_mul; /* CPU clock */
|
|
sdiv = rst_boot.s.pnr_mul; /* I/O clock */
|
|
f = (0x8000000000000000ull / sdiv) * 2;
|
|
} else if (current_cpu_type() == CPU_CAVIUM_OCTEON3) {
|
|
union cvmx_rst_boot rst_boot;
|
|
|
|
rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT);
|
|
rdiv = rst_boot.s.c_mul; /* CPU clock */
|
|
sdiv = rst_boot.s.pnr_mul; /* I/O clock */
|
|
f = (0x8000000000000000ull / sdiv) * 2;
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* Set the current core's cvmcount counter to the value of the
|
|
* IPD_CLK_COUNT. We do this on all cores as they are brought
|
|
* on-line. This allows for a read from a local cpu register to
|
|
* access a synchronized counter.
|
|
*
|
|
* On CPU_CAVIUM_OCTEON2 the IPD_CLK_COUNT is scaled by rdiv/sdiv.
|
|
*/
|
|
void octeon_init_cvmcount(void)
|
|
{
|
|
u64 clk_reg;
|
|
unsigned long flags;
|
|
unsigned loops = 2;
|
|
|
|
clk_reg = octeon_has_feature(OCTEON_FEATURE_FPA3) ?
|
|
CVMX_FPA_CLK_COUNT : CVMX_IPD_CLK_COUNT;
|
|
|
|
/* Clobber loops so GCC will not unroll the following while loop. */
|
|
asm("" : "+r" (loops));
|
|
|
|
local_irq_save(flags);
|
|
/*
|
|
* Loop several times so we are executing from the cache,
|
|
* which should give more deterministic timing.
|
|
*/
|
|
while (loops--) {
|
|
u64 clk_count = cvmx_read_csr(clk_reg);
|
|
if (rdiv != 0) {
|
|
clk_count *= rdiv;
|
|
if (f != 0) {
|
|
asm("dmultu\t%[cnt],%[f]\n\t"
|
|
"mfhi\t%[cnt]"
|
|
: [cnt] "+r" (clk_count)
|
|
: [f] "r" (f)
|
|
: "hi", "lo");
|
|
}
|
|
}
|
|
write_c0_cvmcount(clk_count);
|
|
}
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static u64 octeon_cvmcount_read(struct clocksource *cs)
|
|
{
|
|
return read_c0_cvmcount();
|
|
}
|
|
|
|
static struct clocksource clocksource_mips = {
|
|
.name = "OCTEON_CVMCOUNT",
|
|
.read = octeon_cvmcount_read,
|
|
.mask = CLOCKSOURCE_MASK(64),
|
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
|
};
|
|
|
|
unsigned long long notrace sched_clock(void)
|
|
{
|
|
/* 64-bit arithmatic can overflow, so use 128-bit. */
|
|
u64 t1, t2, t3;
|
|
unsigned long long rv;
|
|
u64 mult = clocksource_mips.mult;
|
|
u64 shift = clocksource_mips.shift;
|
|
u64 cnt = read_c0_cvmcount();
|
|
|
|
asm (
|
|
"dmultu\t%[cnt],%[mult]\n\t"
|
|
"nor\t%[t1],$0,%[shift]\n\t"
|
|
"mfhi\t%[t2]\n\t"
|
|
"mflo\t%[t3]\n\t"
|
|
"dsll\t%[t2],%[t2],1\n\t"
|
|
"dsrlv\t%[rv],%[t3],%[shift]\n\t"
|
|
"dsllv\t%[t1],%[t2],%[t1]\n\t"
|
|
"or\t%[rv],%[t1],%[rv]\n\t"
|
|
: [rv] "=&r" (rv), [t1] "=&r" (t1), [t2] "=&r" (t2), [t3] "=&r" (t3)
|
|
: [cnt] "r" (cnt), [mult] "r" (mult), [shift] "r" (shift)
|
|
: "hi", "lo");
|
|
return rv;
|
|
}
|
|
|
|
void __init plat_time_init(void)
|
|
{
|
|
clocksource_mips.rating = 300;
|
|
clocksource_register_hz(&clocksource_mips, octeon_get_clock_rate());
|
|
}
|
|
|
|
void __udelay(unsigned long us)
|
|
{
|
|
u64 cur, end, inc;
|
|
|
|
cur = read_c0_cvmcount();
|
|
|
|
inc = us * octeon_udelay_factor;
|
|
end = cur + inc;
|
|
|
|
while (end > cur)
|
|
cur = read_c0_cvmcount();
|
|
}
|
|
EXPORT_SYMBOL(__udelay);
|
|
|
|
void __ndelay(unsigned long ns)
|
|
{
|
|
u64 cur, end, inc;
|
|
|
|
cur = read_c0_cvmcount();
|
|
|
|
inc = ((ns * octeon_ndelay_factor) >> 16);
|
|
end = cur + inc;
|
|
|
|
while (end > cur)
|
|
cur = read_c0_cvmcount();
|
|
}
|
|
EXPORT_SYMBOL(__ndelay);
|
|
|
|
void __delay(unsigned long loops)
|
|
{
|
|
u64 cur, end;
|
|
|
|
cur = read_c0_cvmcount();
|
|
end = cur + loops;
|
|
|
|
while (end > cur)
|
|
cur = read_c0_cvmcount();
|
|
}
|
|
EXPORT_SYMBOL(__delay);
|
|
|
|
|
|
/**
|
|
* octeon_io_clk_delay - wait for a given number of io clock cycles to pass.
|
|
*
|
|
* We scale the wait by the clock ratio, and then wait for the
|
|
* corresponding number of core clocks.
|
|
*
|
|
* @count: The number of clocks to wait.
|
|
*/
|
|
void octeon_io_clk_delay(unsigned long count)
|
|
{
|
|
u64 cur, end;
|
|
|
|
cur = read_c0_cvmcount();
|
|
if (rdiv != 0) {
|
|
end = count * rdiv;
|
|
if (f != 0) {
|
|
asm("dmultu\t%[cnt],%[f]\n\t"
|
|
"mfhi\t%[cnt]"
|
|
: [cnt] "+r" (end)
|
|
: [f] "r" (f)
|
|
: "hi", "lo");
|
|
}
|
|
end = cur + end;
|
|
} else {
|
|
end = cur + count;
|
|
}
|
|
while (end > cur)
|
|
cur = read_c0_cvmcount();
|
|
}
|
|
EXPORT_SYMBOL(octeon_io_clk_delay);
|