mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
823 lines
25 KiB
C
823 lines
25 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#undef TRACE_SYSTEM
|
|
#define TRACE_SYSTEM rcu
|
|
|
|
#if !defined(_TRACE_RCU_H) || defined(TRACE_HEADER_MULTI_READ)
|
|
#define _TRACE_RCU_H
|
|
|
|
#include <linux/tracepoint.h>
|
|
|
|
/*
|
|
* Tracepoint for start/end markers used for utilization calculations.
|
|
* By convention, the string is of the following forms:
|
|
*
|
|
* "Start <activity>" -- Mark the start of the specified activity,
|
|
* such as "context switch". Nesting is permitted.
|
|
* "End <activity>" -- Mark the end of the specified activity.
|
|
*
|
|
* An "@" character within "<activity>" is a comment character: Data
|
|
* reduction scripts will ignore the "@" and the remainder of the line.
|
|
*/
|
|
TRACE_EVENT(rcu_utilization,
|
|
|
|
TP_PROTO(const char *s),
|
|
|
|
TP_ARGS(s),
|
|
|
|
TP_STRUCT__entry(
|
|
__field(const char *, s)
|
|
),
|
|
|
|
TP_fast_assign(
|
|
__entry->s = s;
|
|
),
|
|
|
|
TP_printk("%s", __entry->s)
|
|
);
|
|
|
|
#ifdef CONFIG_RCU_TRACE
|
|
|
|
#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
|
|
|
|
/*
|
|
* Tracepoint for grace-period events. Takes a string identifying the
|
|
* RCU flavor, the grace-period number, and a string identifying the
|
|
* grace-period-related event as follows:
|
|
*
|
|
* "AccReadyCB": CPU acclerates new callbacks to RCU_NEXT_READY_TAIL.
|
|
* "AccWaitCB": CPU accelerates new callbacks to RCU_WAIT_TAIL.
|
|
* "newreq": Request a new grace period.
|
|
* "start": Start a grace period.
|
|
* "cpustart": CPU first notices a grace-period start.
|
|
* "cpuqs": CPU passes through a quiescent state.
|
|
* "cpuonl": CPU comes online.
|
|
* "cpuofl": CPU goes offline.
|
|
* "reqwait": GP kthread sleeps waiting for grace-period request.
|
|
* "reqwaitsig": GP kthread awakened by signal from reqwait state.
|
|
* "fqswait": GP kthread waiting until time to force quiescent states.
|
|
* "fqsstart": GP kthread starts forcing quiescent states.
|
|
* "fqsend": GP kthread done forcing quiescent states.
|
|
* "fqswaitsig": GP kthread awakened by signal from fqswait state.
|
|
* "end": End a grace period.
|
|
* "cpuend": CPU first notices a grace-period end.
|
|
*/
|
|
TRACE_EVENT(rcu_grace_period,
|
|
|
|
TP_PROTO(const char *rcuname, unsigned long gpnum, const char *gpevent),
|
|
|
|
TP_ARGS(rcuname, gpnum, gpevent),
|
|
|
|
TP_STRUCT__entry(
|
|
__field(const char *, rcuname)
|
|
__field(unsigned long, gpnum)
|
|
__field(const char *, gpevent)
|
|
),
|
|
|
|
TP_fast_assign(
|
|
__entry->rcuname = rcuname;
|
|
__entry->gpnum = gpnum;
|
|
__entry->gpevent = gpevent;
|
|
),
|
|
|
|
TP_printk("%s %lu %s",
|
|
__entry->rcuname, __entry->gpnum, __entry->gpevent)
|
|
);
|
|
|
|
/*
|
|
* Tracepoint for future grace-period events, including those for no-callbacks
|
|
* CPUs. The caller should pull the data from the rcu_node structure,
|
|
* other than rcuname, which comes from the rcu_state structure, and event,
|
|
* which is one of the following:
|
|
*
|
|
* "Startleaf": Request a nocb grace period based on leaf-node data.
|
|
* "Startedleaf": Leaf-node start proved sufficient.
|
|
* "Startedleafroot": Leaf-node start proved sufficient after checking root.
|
|
* "Startedroot": Requested a nocb grace period based on root-node data.
|
|
* "StartWait": Start waiting for the requested grace period.
|
|
* "ResumeWait": Resume waiting after signal.
|
|
* "EndWait": Complete wait.
|
|
* "Cleanup": Clean up rcu_node structure after previous GP.
|
|
* "CleanupMore": Clean up, and another no-CB GP is needed.
|
|
*/
|
|
TRACE_EVENT(rcu_future_grace_period,
|
|
|
|
TP_PROTO(const char *rcuname, unsigned long gpnum, unsigned long completed,
|
|
unsigned long c, u8 level, int grplo, int grphi,
|
|
const char *gpevent),
|
|
|
|
TP_ARGS(rcuname, gpnum, completed, c, level, grplo, grphi, gpevent),
|
|
|
|
TP_STRUCT__entry(
|
|
__field(const char *, rcuname)
|
|
__field(unsigned long, gpnum)
|
|
__field(unsigned long, completed)
|
|
__field(unsigned long, c)
|
|
__field(u8, level)
|
|
__field(int, grplo)
|
|
__field(int, grphi)
|
|
__field(const char *, gpevent)
|
|
),
|
|
|
|
TP_fast_assign(
|
|
__entry->rcuname = rcuname;
|
|
__entry->gpnum = gpnum;
|
|
__entry->completed = completed;
|
|
__entry->c = c;
|
|
__entry->level = level;
|
|
__entry->grplo = grplo;
|
|
__entry->grphi = grphi;
|
|
__entry->gpevent = gpevent;
|
|
),
|
|
|
|
TP_printk("%s %lu %lu %lu %u %d %d %s",
|
|
__entry->rcuname, __entry->gpnum, __entry->completed,
|
|
__entry->c, __entry->level, __entry->grplo, __entry->grphi,
|
|
__entry->gpevent)
|
|
);
|
|
|
|
/*
|
|
* Tracepoint for grace-period-initialization events. These are
|
|
* distinguished by the type of RCU, the new grace-period number, the
|
|
* rcu_node structure level, the starting and ending CPU covered by the
|
|
* rcu_node structure, and the mask of CPUs that will be waited for.
|
|
* All but the type of RCU are extracted from the rcu_node structure.
|
|
*/
|
|
TRACE_EVENT(rcu_grace_period_init,
|
|
|
|
TP_PROTO(const char *rcuname, unsigned long gpnum, u8 level,
|
|
int grplo, int grphi, unsigned long qsmask),
|
|
|
|
TP_ARGS(rcuname, gpnum, level, grplo, grphi, qsmask),
|
|
|
|
TP_STRUCT__entry(
|
|
__field(const char *, rcuname)
|
|
__field(unsigned long, gpnum)
|
|
__field(u8, level)
|
|
__field(int, grplo)
|
|
__field(int, grphi)
|
|
__field(unsigned long, qsmask)
|
|
),
|
|
|
|
TP_fast_assign(
|
|
__entry->rcuname = rcuname;
|
|
__entry->gpnum = gpnum;
|
|
__entry->level = level;
|
|
__entry->grplo = grplo;
|
|
__entry->grphi = grphi;
|
|
__entry->qsmask = qsmask;
|
|
),
|
|
|
|
TP_printk("%s %lu %u %d %d %lx",
|
|
__entry->rcuname, __entry->gpnum, __entry->level,
|
|
__entry->grplo, __entry->grphi, __entry->qsmask)
|
|
);
|
|
|
|
/*
|
|
* Tracepoint for expedited grace-period events. Takes a string identifying
|
|
* the RCU flavor, the expedited grace-period sequence number, and a string
|
|
* identifying the grace-period-related event as follows:
|
|
*
|
|
* "snap": Captured snapshot of expedited grace period sequence number.
|
|
* "start": Started a real expedited grace period.
|
|
* "end": Ended a real expedited grace period.
|
|
* "endwake": Woke piggybackers up.
|
|
* "done": Someone else did the expedited grace period for us.
|
|
*/
|
|
TRACE_EVENT(rcu_exp_grace_period,
|
|
|
|
TP_PROTO(const char *rcuname, unsigned long gpseq, const char *gpevent),
|
|
|
|
TP_ARGS(rcuname, gpseq, gpevent),
|
|
|
|
TP_STRUCT__entry(
|
|
__field(const char *, rcuname)
|
|
__field(unsigned long, gpseq)
|
|
__field(const char *, gpevent)
|
|
),
|
|
|
|
TP_fast_assign(
|
|
__entry->rcuname = rcuname;
|
|
__entry->gpseq = gpseq;
|
|
__entry->gpevent = gpevent;
|
|
),
|
|
|
|
TP_printk("%s %lu %s",
|
|
__entry->rcuname, __entry->gpseq, __entry->gpevent)
|
|
);
|
|
|
|
/*
|
|
* Tracepoint for expedited grace-period funnel-locking events. Takes a
|
|
* string identifying the RCU flavor, an integer identifying the rcu_node
|
|
* combining-tree level, another pair of integers identifying the lowest-
|
|
* and highest-numbered CPU associated with the current rcu_node structure,
|
|
* and a string. identifying the grace-period-related event as follows:
|
|
*
|
|
* "nxtlvl": Advance to next level of rcu_node funnel
|
|
* "wait": Wait for someone else to do expedited GP
|
|
*/
|
|
TRACE_EVENT(rcu_exp_funnel_lock,
|
|
|
|
TP_PROTO(const char *rcuname, u8 level, int grplo, int grphi,
|
|
const char *gpevent),
|
|
|
|
TP_ARGS(rcuname, level, grplo, grphi, gpevent),
|
|
|
|
TP_STRUCT__entry(
|
|
__field(const char *, rcuname)
|
|
__field(u8, level)
|
|
__field(int, grplo)
|
|
__field(int, grphi)
|
|
__field(const char *, gpevent)
|
|
),
|
|
|
|
TP_fast_assign(
|
|
__entry->rcuname = rcuname;
|
|
__entry->level = level;
|
|
__entry->grplo = grplo;
|
|
__entry->grphi = grphi;
|
|
__entry->gpevent = gpevent;
|
|
),
|
|
|
|
TP_printk("%s %d %d %d %s",
|
|
__entry->rcuname, __entry->level, __entry->grplo,
|
|
__entry->grphi, __entry->gpevent)
|
|
);
|
|
|
|
/*
|
|
* Tracepoint for RCU no-CBs CPU callback handoffs. This event is intended
|
|
* to assist debugging of these handoffs.
|
|
*
|
|
* The first argument is the name of the RCU flavor, and the second is
|
|
* the number of the offloaded CPU are extracted. The third and final
|
|
* argument is a string as follows:
|
|
*
|
|
* "WakeEmpty": Wake rcuo kthread, first CB to empty list.
|
|
* "WakeEmptyIsDeferred": Wake rcuo kthread later, first CB to empty list.
|
|
* "WakeOvf": Wake rcuo kthread, CB list is huge.
|
|
* "WakeOvfIsDeferred": Wake rcuo kthread later, CB list is huge.
|
|
* "WakeNot": Don't wake rcuo kthread.
|
|
* "WakeNotPoll": Don't wake rcuo kthread because it is polling.
|
|
* "DeferredWake": Carried out the "IsDeferred" wakeup.
|
|
* "Poll": Start of new polling cycle for rcu_nocb_poll.
|
|
* "Sleep": Sleep waiting for CBs for !rcu_nocb_poll.
|
|
* "WokeEmpty": rcuo kthread woke to find empty list.
|
|
* "WokeNonEmpty": rcuo kthread woke to find non-empty list.
|
|
* "WaitQueue": Enqueue partially done, timed wait for it to complete.
|
|
* "WokeQueue": Partial enqueue now complete.
|
|
*/
|
|
TRACE_EVENT(rcu_nocb_wake,
|
|
|
|
TP_PROTO(const char *rcuname, int cpu, const char *reason),
|
|
|
|
TP_ARGS(rcuname, cpu, reason),
|
|
|
|
TP_STRUCT__entry(
|
|
__field(const char *, rcuname)
|
|
__field(int, cpu)
|
|
__field(const char *, reason)
|
|
),
|
|
|
|
TP_fast_assign(
|
|
__entry->rcuname = rcuname;
|
|
__entry->cpu = cpu;
|
|
__entry->reason = reason;
|
|
),
|
|
|
|
TP_printk("%s %d %s", __entry->rcuname, __entry->cpu, __entry->reason)
|
|
);
|
|
|
|
/*
|
|
* Tracepoint for tasks blocking within preemptible-RCU read-side
|
|
* critical sections. Track the type of RCU (which one day might
|
|
* include SRCU), the grace-period number that the task is blocking
|
|
* (the current or the next), and the task's PID.
|
|
*/
|
|
TRACE_EVENT(rcu_preempt_task,
|
|
|
|
TP_PROTO(const char *rcuname, int pid, unsigned long gpnum),
|
|
|
|
TP_ARGS(rcuname, pid, gpnum),
|
|
|
|
TP_STRUCT__entry(
|
|
__field(const char *, rcuname)
|
|
__field(unsigned long, gpnum)
|
|
__field(int, pid)
|
|
),
|
|
|
|
TP_fast_assign(
|
|
__entry->rcuname = rcuname;
|
|
__entry->gpnum = gpnum;
|
|
__entry->pid = pid;
|
|
),
|
|
|
|
TP_printk("%s %lu %d",
|
|
__entry->rcuname, __entry->gpnum, __entry->pid)
|
|
);
|
|
|
|
/*
|
|
* Tracepoint for tasks that blocked within a given preemptible-RCU
|
|
* read-side critical section exiting that critical section. Track the
|
|
* type of RCU (which one day might include SRCU) and the task's PID.
|
|
*/
|
|
TRACE_EVENT(rcu_unlock_preempted_task,
|
|
|
|
TP_PROTO(const char *rcuname, unsigned long gpnum, int pid),
|
|
|
|
TP_ARGS(rcuname, gpnum, pid),
|
|
|
|
TP_STRUCT__entry(
|
|
__field(const char *, rcuname)
|
|
__field(unsigned long, gpnum)
|
|
__field(int, pid)
|
|
),
|
|
|
|
TP_fast_assign(
|
|
__entry->rcuname = rcuname;
|
|
__entry->gpnum = gpnum;
|
|
__entry->pid = pid;
|
|
),
|
|
|
|
TP_printk("%s %lu %d", __entry->rcuname, __entry->gpnum, __entry->pid)
|
|
);
|
|
|
|
/*
|
|
* Tracepoint for quiescent-state-reporting events. These are
|
|
* distinguished by the type of RCU, the grace-period number, the
|
|
* mask of quiescent lower-level entities, the rcu_node structure level,
|
|
* the starting and ending CPU covered by the rcu_node structure, and
|
|
* whether there are any blocked tasks blocking the current grace period.
|
|
* All but the type of RCU are extracted from the rcu_node structure.
|
|
*/
|
|
TRACE_EVENT(rcu_quiescent_state_report,
|
|
|
|
TP_PROTO(const char *rcuname, unsigned long gpnum,
|
|
unsigned long mask, unsigned long qsmask,
|
|
u8 level, int grplo, int grphi, int gp_tasks),
|
|
|
|
TP_ARGS(rcuname, gpnum, mask, qsmask, level, grplo, grphi, gp_tasks),
|
|
|
|
TP_STRUCT__entry(
|
|
__field(const char *, rcuname)
|
|
__field(unsigned long, gpnum)
|
|
__field(unsigned long, mask)
|
|
__field(unsigned long, qsmask)
|
|
__field(u8, level)
|
|
__field(int, grplo)
|
|
__field(int, grphi)
|
|
__field(u8, gp_tasks)
|
|
),
|
|
|
|
TP_fast_assign(
|
|
__entry->rcuname = rcuname;
|
|
__entry->gpnum = gpnum;
|
|
__entry->mask = mask;
|
|
__entry->qsmask = qsmask;
|
|
__entry->level = level;
|
|
__entry->grplo = grplo;
|
|
__entry->grphi = grphi;
|
|
__entry->gp_tasks = gp_tasks;
|
|
),
|
|
|
|
TP_printk("%s %lu %lx>%lx %u %d %d %u",
|
|
__entry->rcuname, __entry->gpnum,
|
|
__entry->mask, __entry->qsmask, __entry->level,
|
|
__entry->grplo, __entry->grphi, __entry->gp_tasks)
|
|
);
|
|
|
|
/*
|
|
* Tracepoint for quiescent states detected by force_quiescent_state().
|
|
* These trace events include the type of RCU, the grace-period number that
|
|
* was blocked by the CPU, the CPU itself, and the type of quiescent state,
|
|
* which can be "dti" for dyntick-idle mode, "ofl" for CPU offline, "kick"
|
|
* when kicking a CPU that has been in dyntick-idle mode for too long, or
|
|
* "rqc" if the CPU got a quiescent state via its rcu_qs_ctr.
|
|
*/
|
|
TRACE_EVENT(rcu_fqs,
|
|
|
|
TP_PROTO(const char *rcuname, unsigned long gpnum, int cpu, const char *qsevent),
|
|
|
|
TP_ARGS(rcuname, gpnum, cpu, qsevent),
|
|
|
|
TP_STRUCT__entry(
|
|
__field(const char *, rcuname)
|
|
__field(unsigned long, gpnum)
|
|
__field(int, cpu)
|
|
__field(const char *, qsevent)
|
|
),
|
|
|
|
TP_fast_assign(
|
|
__entry->rcuname = rcuname;
|
|
__entry->gpnum = gpnum;
|
|
__entry->cpu = cpu;
|
|
__entry->qsevent = qsevent;
|
|
),
|
|
|
|
TP_printk("%s %lu %d %s",
|
|
__entry->rcuname, __entry->gpnum,
|
|
__entry->cpu, __entry->qsevent)
|
|
);
|
|
|
|
#endif /* #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) */
|
|
|
|
/*
|
|
* Tracepoint for dyntick-idle entry/exit events. These take a string
|
|
* as argument: "Start" for entering dyntick-idle mode, "End" for
|
|
* leaving it, "--=" for events moving towards idle, and "++=" for events
|
|
* moving away from idle. "Error on entry: not idle task" and "Error on
|
|
* exit: not idle task" indicate that a non-idle task is erroneously
|
|
* toying with the idle loop.
|
|
*
|
|
* These events also take a pair of numbers, which indicate the nesting
|
|
* depth before and after the event of interest. Note that task-related
|
|
* events use the upper bits of each number, while interrupt-related
|
|
* events use the lower bits.
|
|
*/
|
|
TRACE_EVENT(rcu_dyntick,
|
|
|
|
TP_PROTO(const char *polarity, long long oldnesting, long long newnesting),
|
|
|
|
TP_ARGS(polarity, oldnesting, newnesting),
|
|
|
|
TP_STRUCT__entry(
|
|
__field(const char *, polarity)
|
|
__field(long long, oldnesting)
|
|
__field(long long, newnesting)
|
|
),
|
|
|
|
TP_fast_assign(
|
|
__entry->polarity = polarity;
|
|
__entry->oldnesting = oldnesting;
|
|
__entry->newnesting = newnesting;
|
|
),
|
|
|
|
TP_printk("%s %llx %llx", __entry->polarity,
|
|
__entry->oldnesting, __entry->newnesting)
|
|
);
|
|
|
|
/*
|
|
* Tracepoint for RCU preparation for idle, the goal being to get RCU
|
|
* processing done so that the current CPU can shut off its scheduling
|
|
* clock and enter dyntick-idle mode. One way to accomplish this is
|
|
* to drain all RCU callbacks from this CPU, and the other is to have
|
|
* done everything RCU requires for the current grace period. In this
|
|
* latter case, the CPU will be awakened at the end of the current grace
|
|
* period in order to process the remainder of its callbacks.
|
|
*
|
|
* These tracepoints take a string as argument:
|
|
*
|
|
* "No callbacks": Nothing to do, no callbacks on this CPU.
|
|
* "In holdoff": Nothing to do, holding off after unsuccessful attempt.
|
|
* "Begin holdoff": Attempt failed, don't retry until next jiffy.
|
|
* "Dyntick with callbacks": Entering dyntick-idle despite callbacks.
|
|
* "Dyntick with lazy callbacks": Entering dyntick-idle w/lazy callbacks.
|
|
* "More callbacks": Still more callbacks, try again to clear them out.
|
|
* "Callbacks drained": All callbacks processed, off to dyntick idle!
|
|
* "Timer": Timer fired to cause CPU to continue processing callbacks.
|
|
* "Demigrate": Timer fired on wrong CPU, woke up correct CPU.
|
|
* "Cleanup after idle": Idle exited, timer canceled.
|
|
*/
|
|
TRACE_EVENT(rcu_prep_idle,
|
|
|
|
TP_PROTO(const char *reason),
|
|
|
|
TP_ARGS(reason),
|
|
|
|
TP_STRUCT__entry(
|
|
__field(const char *, reason)
|
|
),
|
|
|
|
TP_fast_assign(
|
|
__entry->reason = reason;
|
|
),
|
|
|
|
TP_printk("%s", __entry->reason)
|
|
);
|
|
|
|
/*
|
|
* Tracepoint for the registration of a single RCU callback function.
|
|
* The first argument is the type of RCU, the second argument is
|
|
* a pointer to the RCU callback itself, the third element is the
|
|
* number of lazy callbacks queued, and the fourth element is the
|
|
* total number of callbacks queued.
|
|
*/
|
|
TRACE_EVENT(rcu_callback,
|
|
|
|
TP_PROTO(const char *rcuname, struct rcu_head *rhp, long qlen_lazy,
|
|
long qlen),
|
|
|
|
TP_ARGS(rcuname, rhp, qlen_lazy, qlen),
|
|
|
|
TP_STRUCT__entry(
|
|
__field(const char *, rcuname)
|
|
__field(void *, rhp)
|
|
__field(void *, func)
|
|
__field(long, qlen_lazy)
|
|
__field(long, qlen)
|
|
),
|
|
|
|
TP_fast_assign(
|
|
__entry->rcuname = rcuname;
|
|
__entry->rhp = rhp;
|
|
__entry->func = rhp->func;
|
|
__entry->qlen_lazy = qlen_lazy;
|
|
__entry->qlen = qlen;
|
|
),
|
|
|
|
TP_printk("%s rhp=%p func=%pf %ld/%ld",
|
|
__entry->rcuname, __entry->rhp, __entry->func,
|
|
__entry->qlen_lazy, __entry->qlen)
|
|
);
|
|
|
|
/*
|
|
* Tracepoint for the registration of a single RCU callback of the special
|
|
* kfree() form. The first argument is the RCU type, the second argument
|
|
* is a pointer to the RCU callback, the third argument is the offset
|
|
* of the callback within the enclosing RCU-protected data structure,
|
|
* the fourth argument is the number of lazy callbacks queued, and the
|
|
* fifth argument is the total number of callbacks queued.
|
|
*/
|
|
TRACE_EVENT(rcu_kfree_callback,
|
|
|
|
TP_PROTO(const char *rcuname, struct rcu_head *rhp, unsigned long offset,
|
|
long qlen_lazy, long qlen),
|
|
|
|
TP_ARGS(rcuname, rhp, offset, qlen_lazy, qlen),
|
|
|
|
TP_STRUCT__entry(
|
|
__field(const char *, rcuname)
|
|
__field(void *, rhp)
|
|
__field(unsigned long, offset)
|
|
__field(long, qlen_lazy)
|
|
__field(long, qlen)
|
|
),
|
|
|
|
TP_fast_assign(
|
|
__entry->rcuname = rcuname;
|
|
__entry->rhp = rhp;
|
|
__entry->offset = offset;
|
|
__entry->qlen_lazy = qlen_lazy;
|
|
__entry->qlen = qlen;
|
|
),
|
|
|
|
TP_printk("%s rhp=%p func=%ld %ld/%ld",
|
|
__entry->rcuname, __entry->rhp, __entry->offset,
|
|
__entry->qlen_lazy, __entry->qlen)
|
|
);
|
|
|
|
/*
|
|
* Tracepoint for marking the beginning rcu_do_batch, performed to start
|
|
* RCU callback invocation. The first argument is the RCU flavor,
|
|
* the second is the number of lazy callbacks queued, the third is
|
|
* the total number of callbacks queued, and the fourth argument is
|
|
* the current RCU-callback batch limit.
|
|
*/
|
|
TRACE_EVENT(rcu_batch_start,
|
|
|
|
TP_PROTO(const char *rcuname, long qlen_lazy, long qlen, long blimit),
|
|
|
|
TP_ARGS(rcuname, qlen_lazy, qlen, blimit),
|
|
|
|
TP_STRUCT__entry(
|
|
__field(const char *, rcuname)
|
|
__field(long, qlen_lazy)
|
|
__field(long, qlen)
|
|
__field(long, blimit)
|
|
),
|
|
|
|
TP_fast_assign(
|
|
__entry->rcuname = rcuname;
|
|
__entry->qlen_lazy = qlen_lazy;
|
|
__entry->qlen = qlen;
|
|
__entry->blimit = blimit;
|
|
),
|
|
|
|
TP_printk("%s CBs=%ld/%ld bl=%ld",
|
|
__entry->rcuname, __entry->qlen_lazy, __entry->qlen,
|
|
__entry->blimit)
|
|
);
|
|
|
|
/*
|
|
* Tracepoint for the invocation of a single RCU callback function.
|
|
* The first argument is the type of RCU, and the second argument is
|
|
* a pointer to the RCU callback itself.
|
|
*/
|
|
TRACE_EVENT(rcu_invoke_callback,
|
|
|
|
TP_PROTO(const char *rcuname, struct rcu_head *rhp),
|
|
|
|
TP_ARGS(rcuname, rhp),
|
|
|
|
TP_STRUCT__entry(
|
|
__field(const char *, rcuname)
|
|
__field(void *, rhp)
|
|
__field(void *, func)
|
|
),
|
|
|
|
TP_fast_assign(
|
|
__entry->rcuname = rcuname;
|
|
__entry->rhp = rhp;
|
|
__entry->func = rhp->func;
|
|
),
|
|
|
|
TP_printk("%s rhp=%p func=%pf",
|
|
__entry->rcuname, __entry->rhp, __entry->func)
|
|
);
|
|
|
|
/*
|
|
* Tracepoint for the invocation of a single RCU callback of the special
|
|
* kfree() form. The first argument is the RCU flavor, the second
|
|
* argument is a pointer to the RCU callback, and the third argument
|
|
* is the offset of the callback within the enclosing RCU-protected
|
|
* data structure.
|
|
*/
|
|
TRACE_EVENT(rcu_invoke_kfree_callback,
|
|
|
|
TP_PROTO(const char *rcuname, struct rcu_head *rhp, unsigned long offset),
|
|
|
|
TP_ARGS(rcuname, rhp, offset),
|
|
|
|
TP_STRUCT__entry(
|
|
__field(const char *, rcuname)
|
|
__field(void *, rhp)
|
|
__field(unsigned long, offset)
|
|
),
|
|
|
|
TP_fast_assign(
|
|
__entry->rcuname = rcuname;
|
|
__entry->rhp = rhp;
|
|
__entry->offset = offset;
|
|
),
|
|
|
|
TP_printk("%s rhp=%p func=%ld",
|
|
__entry->rcuname, __entry->rhp, __entry->offset)
|
|
);
|
|
|
|
/*
|
|
* Tracepoint for exiting rcu_do_batch after RCU callbacks have been
|
|
* invoked. The first argument is the name of the RCU flavor,
|
|
* the second argument is number of callbacks actually invoked,
|
|
* the third argument (cb) is whether or not any of the callbacks that
|
|
* were ready to invoke at the beginning of this batch are still
|
|
* queued, the fourth argument (nr) is the return value of need_resched(),
|
|
* the fifth argument (iit) is 1 if the current task is the idle task,
|
|
* and the sixth argument (risk) is the return value from
|
|
* rcu_is_callbacks_kthread().
|
|
*/
|
|
TRACE_EVENT(rcu_batch_end,
|
|
|
|
TP_PROTO(const char *rcuname, int callbacks_invoked,
|
|
char cb, char nr, char iit, char risk),
|
|
|
|
TP_ARGS(rcuname, callbacks_invoked, cb, nr, iit, risk),
|
|
|
|
TP_STRUCT__entry(
|
|
__field(const char *, rcuname)
|
|
__field(int, callbacks_invoked)
|
|
__field(char, cb)
|
|
__field(char, nr)
|
|
__field(char, iit)
|
|
__field(char, risk)
|
|
),
|
|
|
|
TP_fast_assign(
|
|
__entry->rcuname = rcuname;
|
|
__entry->callbacks_invoked = callbacks_invoked;
|
|
__entry->cb = cb;
|
|
__entry->nr = nr;
|
|
__entry->iit = iit;
|
|
__entry->risk = risk;
|
|
),
|
|
|
|
TP_printk("%s CBs-invoked=%d idle=%c%c%c%c",
|
|
__entry->rcuname, __entry->callbacks_invoked,
|
|
__entry->cb ? 'C' : '.',
|
|
__entry->nr ? 'S' : '.',
|
|
__entry->iit ? 'I' : '.',
|
|
__entry->risk ? 'R' : '.')
|
|
);
|
|
|
|
/*
|
|
* Tracepoint for rcutorture readers. The first argument is the name
|
|
* of the RCU flavor from rcutorture's viewpoint and the second argument
|
|
* is the callback address. The third argument is the start time in
|
|
* seconds, and the last two arguments are the grace period numbers
|
|
* at the beginning and end of the read, respectively. Note that the
|
|
* callback address can be NULL.
|
|
*/
|
|
#define RCUTORTURENAME_LEN 8
|
|
TRACE_EVENT(rcu_torture_read,
|
|
|
|
TP_PROTO(const char *rcutorturename, struct rcu_head *rhp,
|
|
unsigned long secs, unsigned long c_old, unsigned long c),
|
|
|
|
TP_ARGS(rcutorturename, rhp, secs, c_old, c),
|
|
|
|
TP_STRUCT__entry(
|
|
__field(char, rcutorturename[RCUTORTURENAME_LEN])
|
|
__field(struct rcu_head *, rhp)
|
|
__field(unsigned long, secs)
|
|
__field(unsigned long, c_old)
|
|
__field(unsigned long, c)
|
|
),
|
|
|
|
TP_fast_assign(
|
|
strncpy(__entry->rcutorturename, rcutorturename,
|
|
RCUTORTURENAME_LEN);
|
|
__entry->rcutorturename[RCUTORTURENAME_LEN - 1] = 0;
|
|
__entry->rhp = rhp;
|
|
__entry->secs = secs;
|
|
__entry->c_old = c_old;
|
|
__entry->c = c;
|
|
),
|
|
|
|
TP_printk("%s torture read %p %luus c: %lu %lu",
|
|
__entry->rcutorturename, __entry->rhp,
|
|
__entry->secs, __entry->c_old, __entry->c)
|
|
);
|
|
|
|
/*
|
|
* Tracepoint for _rcu_barrier() execution. The string "s" describes
|
|
* the _rcu_barrier phase:
|
|
* "Begin": _rcu_barrier() started.
|
|
* "EarlyExit": _rcu_barrier() piggybacked, thus early exit.
|
|
* "Inc1": _rcu_barrier() piggyback check counter incremented.
|
|
* "OfflineNoCB": _rcu_barrier() found callback on never-online CPU
|
|
* "OnlineNoCB": _rcu_barrier() found online no-CBs CPU.
|
|
* "OnlineQ": _rcu_barrier() found online CPU with callbacks.
|
|
* "OnlineNQ": _rcu_barrier() found online CPU, no callbacks.
|
|
* "IRQ": An rcu_barrier_callback() callback posted on remote CPU.
|
|
* "IRQNQ": An rcu_barrier_callback() callback found no callbacks.
|
|
* "CB": An rcu_barrier_callback() invoked a callback, not the last.
|
|
* "LastCB": An rcu_barrier_callback() invoked the last callback.
|
|
* "Inc2": _rcu_barrier() piggyback check counter incremented.
|
|
* The "cpu" argument is the CPU or -1 if meaningless, the "cnt" argument
|
|
* is the count of remaining callbacks, and "done" is the piggybacking count.
|
|
*/
|
|
TRACE_EVENT(rcu_barrier,
|
|
|
|
TP_PROTO(const char *rcuname, const char *s, int cpu, int cnt, unsigned long done),
|
|
|
|
TP_ARGS(rcuname, s, cpu, cnt, done),
|
|
|
|
TP_STRUCT__entry(
|
|
__field(const char *, rcuname)
|
|
__field(const char *, s)
|
|
__field(int, cpu)
|
|
__field(int, cnt)
|
|
__field(unsigned long, done)
|
|
),
|
|
|
|
TP_fast_assign(
|
|
__entry->rcuname = rcuname;
|
|
__entry->s = s;
|
|
__entry->cpu = cpu;
|
|
__entry->cnt = cnt;
|
|
__entry->done = done;
|
|
),
|
|
|
|
TP_printk("%s %s cpu %d remaining %d # %lu",
|
|
__entry->rcuname, __entry->s, __entry->cpu, __entry->cnt,
|
|
__entry->done)
|
|
);
|
|
|
|
#else /* #ifdef CONFIG_RCU_TRACE */
|
|
|
|
#define trace_rcu_grace_period(rcuname, gpnum, gpevent) do { } while (0)
|
|
#define trace_rcu_future_grace_period(rcuname, gpnum, completed, c, \
|
|
level, grplo, grphi, event) \
|
|
do { } while (0)
|
|
#define trace_rcu_grace_period_init(rcuname, gpnum, level, grplo, grphi, \
|
|
qsmask) do { } while (0)
|
|
#define trace_rcu_exp_grace_period(rcuname, gqseq, gpevent) \
|
|
do { } while (0)
|
|
#define trace_rcu_exp_funnel_lock(rcuname, level, grplo, grphi, gpevent) \
|
|
do { } while (0)
|
|
#define trace_rcu_nocb_wake(rcuname, cpu, reason) do { } while (0)
|
|
#define trace_rcu_preempt_task(rcuname, pid, gpnum) do { } while (0)
|
|
#define trace_rcu_unlock_preempted_task(rcuname, gpnum, pid) do { } while (0)
|
|
#define trace_rcu_quiescent_state_report(rcuname, gpnum, mask, qsmask, level, \
|
|
grplo, grphi, gp_tasks) do { } \
|
|
while (0)
|
|
#define trace_rcu_fqs(rcuname, gpnum, cpu, qsevent) do { } while (0)
|
|
#define trace_rcu_dyntick(polarity, oldnesting, newnesting) do { } while (0)
|
|
#define trace_rcu_prep_idle(reason) do { } while (0)
|
|
#define trace_rcu_callback(rcuname, rhp, qlen_lazy, qlen) do { } while (0)
|
|
#define trace_rcu_kfree_callback(rcuname, rhp, offset, qlen_lazy, qlen) \
|
|
do { } while (0)
|
|
#define trace_rcu_batch_start(rcuname, qlen_lazy, qlen, blimit) \
|
|
do { } while (0)
|
|
#define trace_rcu_invoke_callback(rcuname, rhp) do { } while (0)
|
|
#define trace_rcu_invoke_kfree_callback(rcuname, rhp, offset) do { } while (0)
|
|
#define trace_rcu_batch_end(rcuname, callbacks_invoked, cb, nr, iit, risk) \
|
|
do { } while (0)
|
|
#define trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
|
|
do { } while (0)
|
|
#define trace_rcu_barrier(name, s, cpu, cnt, done) do { } while (0)
|
|
|
|
#endif /* #else #ifdef CONFIG_RCU_TRACE */
|
|
|
|
#endif /* _TRACE_RCU_H */
|
|
|
|
/* This part must be outside protection */
|
|
#include <trace/define_trace.h>
|