linux_dsm_epyc7002/sound/pci/hda/hda_generic.c
Jaroslav Kysela 5b0cb1d850 ALSA: hda - add more NID->Control mapping
This set of changes add missing NID values to some static control
elemenents. Also, it handles all "Capture Source" or "Input Source"
controls.

Signed-off-by: Jaroslav Kysela <perex@perex.cz>
2009-12-15 09:33:04 +01:00

1115 lines
28 KiB
C

/*
* Universal Interface for Intel High Definition Audio Codec
*
* Generic widget tree parser
*
* Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
*
* This driver is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This driver is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/init.h>
#include <linux/slab.h>
#include <sound/core.h>
#include "hda_codec.h"
#include "hda_local.h"
/* widget node for parsing */
struct hda_gnode {
hda_nid_t nid; /* NID of this widget */
unsigned short nconns; /* number of input connections */
hda_nid_t *conn_list;
hda_nid_t slist[2]; /* temporay list */
unsigned int wid_caps; /* widget capabilities */
unsigned char type; /* widget type */
unsigned char pin_ctl; /* pin controls */
unsigned char checked; /* the flag indicates that the node is already parsed */
unsigned int pin_caps; /* pin widget capabilities */
unsigned int def_cfg; /* default configuration */
unsigned int amp_out_caps; /* AMP out capabilities */
unsigned int amp_in_caps; /* AMP in capabilities */
struct list_head list;
};
/* patch-specific record */
#define MAX_PCM_VOLS 2
struct pcm_vol {
struct hda_gnode *node; /* Node for PCM volume */
unsigned int index; /* connection of PCM volume */
};
struct hda_gspec {
struct hda_gnode *dac_node[2]; /* DAC node */
struct hda_gnode *out_pin_node[2]; /* Output pin (Line-Out) node */
struct pcm_vol pcm_vol[MAX_PCM_VOLS]; /* PCM volumes */
unsigned int pcm_vol_nodes; /* number of PCM volumes */
struct hda_gnode *adc_node; /* ADC node */
struct hda_gnode *cap_vol_node; /* Node for capture volume */
unsigned int cur_cap_src; /* current capture source */
struct hda_input_mux input_mux;
char cap_labels[HDA_MAX_NUM_INPUTS][16];
unsigned int def_amp_in_caps;
unsigned int def_amp_out_caps;
struct hda_pcm pcm_rec; /* PCM information */
struct list_head nid_list; /* list of widgets */
#ifdef CONFIG_SND_HDA_POWER_SAVE
#define MAX_LOOPBACK_AMPS 7
struct hda_loopback_check loopback;
int num_loopbacks;
struct hda_amp_list loopback_list[MAX_LOOPBACK_AMPS + 1];
#endif
};
/*
* retrieve the default device type from the default config value
*/
#define defcfg_type(node) (((node)->def_cfg & AC_DEFCFG_DEVICE) >> \
AC_DEFCFG_DEVICE_SHIFT)
#define defcfg_location(node) (((node)->def_cfg & AC_DEFCFG_LOCATION) >> \
AC_DEFCFG_LOCATION_SHIFT)
#define defcfg_port_conn(node) (((node)->def_cfg & AC_DEFCFG_PORT_CONN) >> \
AC_DEFCFG_PORT_CONN_SHIFT)
/*
* destructor
*/
static void snd_hda_generic_free(struct hda_codec *codec)
{
struct hda_gspec *spec = codec->spec;
struct hda_gnode *node, *n;
if (! spec)
return;
/* free all widgets */
list_for_each_entry_safe(node, n, &spec->nid_list, list) {
if (node->conn_list != node->slist)
kfree(node->conn_list);
kfree(node);
}
kfree(spec);
}
/*
* add a new widget node and read its attributes
*/
static int add_new_node(struct hda_codec *codec, struct hda_gspec *spec, hda_nid_t nid)
{
struct hda_gnode *node;
int nconns;
hda_nid_t conn_list[HDA_MAX_CONNECTIONS];
node = kzalloc(sizeof(*node), GFP_KERNEL);
if (node == NULL)
return -ENOMEM;
node->nid = nid;
node->wid_caps = get_wcaps(codec, nid);
node->type = get_wcaps_type(node->wid_caps);
if (node->wid_caps & AC_WCAP_CONN_LIST) {
nconns = snd_hda_get_connections(codec, nid, conn_list,
HDA_MAX_CONNECTIONS);
if (nconns < 0) {
kfree(node);
return nconns;
}
} else {
nconns = 0;
}
if (nconns <= ARRAY_SIZE(node->slist))
node->conn_list = node->slist;
else {
node->conn_list = kmalloc(sizeof(hda_nid_t) * nconns,
GFP_KERNEL);
if (! node->conn_list) {
snd_printk(KERN_ERR "hda-generic: cannot malloc\n");
kfree(node);
return -ENOMEM;
}
}
memcpy(node->conn_list, conn_list, nconns * sizeof(hda_nid_t));
node->nconns = nconns;
if (node->type == AC_WID_PIN) {
node->pin_caps = snd_hda_query_pin_caps(codec, node->nid);
node->pin_ctl = snd_hda_codec_read(codec, node->nid, 0, AC_VERB_GET_PIN_WIDGET_CONTROL, 0);
node->def_cfg = snd_hda_codec_get_pincfg(codec, node->nid);
}
if (node->wid_caps & AC_WCAP_OUT_AMP) {
if (node->wid_caps & AC_WCAP_AMP_OVRD)
node->amp_out_caps = snd_hda_param_read(codec, node->nid, AC_PAR_AMP_OUT_CAP);
if (! node->amp_out_caps)
node->amp_out_caps = spec->def_amp_out_caps;
}
if (node->wid_caps & AC_WCAP_IN_AMP) {
if (node->wid_caps & AC_WCAP_AMP_OVRD)
node->amp_in_caps = snd_hda_param_read(codec, node->nid, AC_PAR_AMP_IN_CAP);
if (! node->amp_in_caps)
node->amp_in_caps = spec->def_amp_in_caps;
}
list_add_tail(&node->list, &spec->nid_list);
return 0;
}
/*
* build the AFG subtree
*/
static int build_afg_tree(struct hda_codec *codec)
{
struct hda_gspec *spec = codec->spec;
int i, nodes, err;
hda_nid_t nid;
if (snd_BUG_ON(!spec))
return -EINVAL;
spec->def_amp_out_caps = snd_hda_param_read(codec, codec->afg, AC_PAR_AMP_OUT_CAP);
spec->def_amp_in_caps = snd_hda_param_read(codec, codec->afg, AC_PAR_AMP_IN_CAP);
nodes = snd_hda_get_sub_nodes(codec, codec->afg, &nid);
if (! nid || nodes < 0) {
printk(KERN_ERR "Invalid AFG subtree\n");
return -EINVAL;
}
/* parse all nodes belonging to the AFG */
for (i = 0; i < nodes; i++, nid++) {
if ((err = add_new_node(codec, spec, nid)) < 0)
return err;
}
return 0;
}
/*
* look for the node record for the given NID
*/
/* FIXME: should avoid the braindead linear search */
static struct hda_gnode *hda_get_node(struct hda_gspec *spec, hda_nid_t nid)
{
struct hda_gnode *node;
list_for_each_entry(node, &spec->nid_list, list) {
if (node->nid == nid)
return node;
}
return NULL;
}
/*
* unmute (and set max vol) the output amplifier
*/
static int unmute_output(struct hda_codec *codec, struct hda_gnode *node)
{
unsigned int val, ofs;
snd_printdd("UNMUTE OUT: NID=0x%x\n", node->nid);
val = (node->amp_out_caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT;
ofs = (node->amp_out_caps & AC_AMPCAP_OFFSET) >> AC_AMPCAP_OFFSET_SHIFT;
if (val >= ofs)
val -= ofs;
snd_hda_codec_amp_stereo(codec, node->nid, HDA_OUTPUT, 0, 0xff, val);
return 0;
}
/*
* unmute (and set max vol) the input amplifier
*/
static int unmute_input(struct hda_codec *codec, struct hda_gnode *node, unsigned int index)
{
unsigned int val, ofs;
snd_printdd("UNMUTE IN: NID=0x%x IDX=0x%x\n", node->nid, index);
val = (node->amp_in_caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT;
ofs = (node->amp_in_caps & AC_AMPCAP_OFFSET) >> AC_AMPCAP_OFFSET_SHIFT;
if (val >= ofs)
val -= ofs;
snd_hda_codec_amp_stereo(codec, node->nid, HDA_INPUT, index, 0xff, val);
return 0;
}
/*
* select the input connection of the given node.
*/
static int select_input_connection(struct hda_codec *codec, struct hda_gnode *node,
unsigned int index)
{
snd_printdd("CONNECT: NID=0x%x IDX=0x%x\n", node->nid, index);
return snd_hda_codec_write_cache(codec, node->nid, 0,
AC_VERB_SET_CONNECT_SEL, index);
}
/*
* clear checked flag of each node in the node list
*/
static void clear_check_flags(struct hda_gspec *spec)
{
struct hda_gnode *node;
list_for_each_entry(node, &spec->nid_list, list) {
node->checked = 0;
}
}
/*
* parse the output path recursively until reach to an audio output widget
*
* returns 0 if not found, 1 if found, or a negative error code.
*/
static int parse_output_path(struct hda_codec *codec, struct hda_gspec *spec,
struct hda_gnode *node, int dac_idx)
{
int i, err;
struct hda_gnode *child;
if (node->checked)
return 0;
node->checked = 1;
if (node->type == AC_WID_AUD_OUT) {
if (node->wid_caps & AC_WCAP_DIGITAL) {
snd_printdd("Skip Digital OUT node %x\n", node->nid);
return 0;
}
snd_printdd("AUD_OUT found %x\n", node->nid);
if (spec->dac_node[dac_idx]) {
/* already DAC node is assigned, just unmute & connect */
return node == spec->dac_node[dac_idx];
}
spec->dac_node[dac_idx] = node;
if ((node->wid_caps & AC_WCAP_OUT_AMP) &&
spec->pcm_vol_nodes < MAX_PCM_VOLS) {
spec->pcm_vol[spec->pcm_vol_nodes].node = node;
spec->pcm_vol[spec->pcm_vol_nodes].index = 0;
spec->pcm_vol_nodes++;
}
return 1; /* found */
}
for (i = 0; i < node->nconns; i++) {
child = hda_get_node(spec, node->conn_list[i]);
if (! child)
continue;
err = parse_output_path(codec, spec, child, dac_idx);
if (err < 0)
return err;
else if (err > 0) {
/* found one,
* select the path, unmute both input and output
*/
if (node->nconns > 1)
select_input_connection(codec, node, i);
unmute_input(codec, node, i);
unmute_output(codec, node);
if (spec->dac_node[dac_idx] &&
spec->pcm_vol_nodes < MAX_PCM_VOLS &&
!(spec->dac_node[dac_idx]->wid_caps &
AC_WCAP_OUT_AMP)) {
if ((node->wid_caps & AC_WCAP_IN_AMP) ||
(node->wid_caps & AC_WCAP_OUT_AMP)) {
int n = spec->pcm_vol_nodes;
spec->pcm_vol[n].node = node;
spec->pcm_vol[n].index = i;
spec->pcm_vol_nodes++;
}
}
return 1;
}
}
return 0;
}
/*
* Look for the output PIN widget with the given jack type
* and parse the output path to that PIN.
*
* Returns the PIN node when the path to DAC is established.
*/
static struct hda_gnode *parse_output_jack(struct hda_codec *codec,
struct hda_gspec *spec,
int jack_type)
{
struct hda_gnode *node;
int err;
list_for_each_entry(node, &spec->nid_list, list) {
if (node->type != AC_WID_PIN)
continue;
/* output capable? */
if (! (node->pin_caps & AC_PINCAP_OUT))
continue;
if (defcfg_port_conn(node) == AC_JACK_PORT_NONE)
continue; /* unconnected */
if (jack_type >= 0) {
if (jack_type != defcfg_type(node))
continue;
if (node->wid_caps & AC_WCAP_DIGITAL)
continue; /* skip SPDIF */
} else {
/* output as default? */
if (! (node->pin_ctl & AC_PINCTL_OUT_EN))
continue;
}
clear_check_flags(spec);
err = parse_output_path(codec, spec, node, 0);
if (err < 0)
return NULL;
if (! err && spec->out_pin_node[0]) {
err = parse_output_path(codec, spec, node, 1);
if (err < 0)
return NULL;
}
if (err > 0) {
/* unmute the PIN output */
unmute_output(codec, node);
/* set PIN-Out enable */
snd_hda_codec_write_cache(codec, node->nid, 0,
AC_VERB_SET_PIN_WIDGET_CONTROL,
AC_PINCTL_OUT_EN |
((node->pin_caps & AC_PINCAP_HP_DRV) ?
AC_PINCTL_HP_EN : 0));
return node;
}
}
return NULL;
}
/*
* parse outputs
*/
static int parse_output(struct hda_codec *codec)
{
struct hda_gspec *spec = codec->spec;
struct hda_gnode *node;
/*
* Look for the output PIN widget
*/
/* first, look for the line-out pin */
node = parse_output_jack(codec, spec, AC_JACK_LINE_OUT);
if (node) /* found, remember the PIN node */
spec->out_pin_node[0] = node;
else {
/* if no line-out is found, try speaker out */
node = parse_output_jack(codec, spec, AC_JACK_SPEAKER);
if (node)
spec->out_pin_node[0] = node;
}
/* look for the HP-out pin */
node = parse_output_jack(codec, spec, AC_JACK_HP_OUT);
if (node) {
if (! spec->out_pin_node[0])
spec->out_pin_node[0] = node;
else
spec->out_pin_node[1] = node;
}
if (! spec->out_pin_node[0]) {
/* no line-out or HP pins found,
* then choose for the first output pin
*/
spec->out_pin_node[0] = parse_output_jack(codec, spec, -1);
if (! spec->out_pin_node[0])
snd_printd("hda_generic: no proper output path found\n");
}
return 0;
}
/*
* input MUX
*/
/* control callbacks */
static int capture_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct hda_gspec *spec = codec->spec;
return snd_hda_input_mux_info(&spec->input_mux, uinfo);
}
static int capture_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct hda_gspec *spec = codec->spec;
ucontrol->value.enumerated.item[0] = spec->cur_cap_src;
return 0;
}
static int capture_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct hda_gspec *spec = codec->spec;
return snd_hda_input_mux_put(codec, &spec->input_mux, ucontrol,
spec->adc_node->nid, &spec->cur_cap_src);
}
/*
* return the string name of the given input PIN widget
*/
static const char *get_input_type(struct hda_gnode *node, unsigned int *pinctl)
{
unsigned int location = defcfg_location(node);
switch (defcfg_type(node)) {
case AC_JACK_LINE_IN:
if ((location & 0x0f) == AC_JACK_LOC_FRONT)
return "Front Line";
return "Line";
case AC_JACK_CD:
#if 0
if (pinctl)
*pinctl |= AC_PINCTL_VREF_GRD;
#endif
return "CD";
case AC_JACK_AUX:
if ((location & 0x0f) == AC_JACK_LOC_FRONT)
return "Front Aux";
return "Aux";
case AC_JACK_MIC_IN:
if (pinctl &&
(node->pin_caps &
(AC_PINCAP_VREF_80 << AC_PINCAP_VREF_SHIFT)))
*pinctl |= AC_PINCTL_VREF_80;
if ((location & 0x0f) == AC_JACK_LOC_FRONT)
return "Front Mic";
return "Mic";
case AC_JACK_SPDIF_IN:
return "SPDIF";
case AC_JACK_DIG_OTHER_IN:
return "Digital";
}
return NULL;
}
/*
* parse the nodes recursively until reach to the input PIN
*
* returns 0 if not found, 1 if found, or a negative error code.
*/
static int parse_adc_sub_nodes(struct hda_codec *codec, struct hda_gspec *spec,
struct hda_gnode *node)
{
int i, err;
unsigned int pinctl;
char *label;
const char *type;
if (node->checked)
return 0;
node->checked = 1;
if (node->type != AC_WID_PIN) {
for (i = 0; i < node->nconns; i++) {
struct hda_gnode *child;
child = hda_get_node(spec, node->conn_list[i]);
if (! child)
continue;
err = parse_adc_sub_nodes(codec, spec, child);
if (err < 0)
return err;
if (err > 0) {
/* found one,
* select the path, unmute both input and output
*/
if (node->nconns > 1)
select_input_connection(codec, node, i);
unmute_input(codec, node, i);
unmute_output(codec, node);
return err;
}
}
return 0;
}
/* input capable? */
if (! (node->pin_caps & AC_PINCAP_IN))
return 0;
if (defcfg_port_conn(node) == AC_JACK_PORT_NONE)
return 0; /* unconnected */
if (node->wid_caps & AC_WCAP_DIGITAL)
return 0; /* skip SPDIF */
if (spec->input_mux.num_items >= HDA_MAX_NUM_INPUTS) {
snd_printk(KERN_ERR "hda_generic: Too many items for capture\n");
return -EINVAL;
}
pinctl = AC_PINCTL_IN_EN;
/* create a proper capture source label */
type = get_input_type(node, &pinctl);
if (! type) {
/* input as default? */
if (! (node->pin_ctl & AC_PINCTL_IN_EN))
return 0;
type = "Input";
}
label = spec->cap_labels[spec->input_mux.num_items];
strcpy(label, type);
spec->input_mux.items[spec->input_mux.num_items].label = label;
/* unmute the PIN external input */
unmute_input(codec, node, 0); /* index = 0? */
/* set PIN-In enable */
snd_hda_codec_write_cache(codec, node->nid, 0,
AC_VERB_SET_PIN_WIDGET_CONTROL, pinctl);
return 1; /* found */
}
/* add a capture source element */
static void add_cap_src(struct hda_gspec *spec, int idx)
{
struct hda_input_mux_item *csrc;
char *buf;
int num, ocap;
num = spec->input_mux.num_items;
csrc = &spec->input_mux.items[num];
buf = spec->cap_labels[num];
for (ocap = 0; ocap < num; ocap++) {
if (! strcmp(buf, spec->cap_labels[ocap])) {
/* same label already exists,
* put the index number to be unique
*/
sprintf(buf, "%s %d", spec->cap_labels[ocap], num);
break;
}
}
csrc->index = idx;
spec->input_mux.num_items++;
}
/*
* parse input
*/
static int parse_input_path(struct hda_codec *codec, struct hda_gnode *adc_node)
{
struct hda_gspec *spec = codec->spec;
struct hda_gnode *node;
int i, err;
snd_printdd("AUD_IN = %x\n", adc_node->nid);
clear_check_flags(spec);
// awk added - fixed no recording due to muted widget
unmute_input(codec, adc_node, 0);
/*
* check each connection of the ADC
* if it reaches to a proper input PIN, add the path as the
* input path.
*/
/* first, check the direct connections to PIN widgets */
for (i = 0; i < adc_node->nconns; i++) {
node = hda_get_node(spec, adc_node->conn_list[i]);
if (node && node->type == AC_WID_PIN) {
err = parse_adc_sub_nodes(codec, spec, node);
if (err < 0)
return err;
else if (err > 0)
add_cap_src(spec, i);
}
}
/* ... then check the rests, more complicated connections */
for (i = 0; i < adc_node->nconns; i++) {
node = hda_get_node(spec, adc_node->conn_list[i]);
if (node && node->type != AC_WID_PIN) {
err = parse_adc_sub_nodes(codec, spec, node);
if (err < 0)
return err;
else if (err > 0)
add_cap_src(spec, i);
}
}
if (! spec->input_mux.num_items)
return 0; /* no input path found... */
snd_printdd("[Capture Source] NID=0x%x, #SRC=%d\n", adc_node->nid, spec->input_mux.num_items);
for (i = 0; i < spec->input_mux.num_items; i++)
snd_printdd(" [%s] IDX=0x%x\n", spec->input_mux.items[i].label,
spec->input_mux.items[i].index);
spec->adc_node = adc_node;
return 1;
}
/*
* parse input
*/
static int parse_input(struct hda_codec *codec)
{
struct hda_gspec *spec = codec->spec;
struct hda_gnode *node;
int err;
/*
* At first we look for an audio input widget.
* If it reaches to certain input PINs, we take it as the
* input path.
*/
list_for_each_entry(node, &spec->nid_list, list) {
if (node->wid_caps & AC_WCAP_DIGITAL)
continue; /* skip SPDIF */
if (node->type == AC_WID_AUD_IN) {
err = parse_input_path(codec, node);
if (err < 0)
return err;
else if (err > 0)
return 0;
}
}
snd_printd("hda_generic: no proper input path found\n");
return 0;
}
#ifdef CONFIG_SND_HDA_POWER_SAVE
static void add_input_loopback(struct hda_codec *codec, hda_nid_t nid,
int dir, int idx)
{
struct hda_gspec *spec = codec->spec;
struct hda_amp_list *p;
if (spec->num_loopbacks >= MAX_LOOPBACK_AMPS) {
snd_printk(KERN_ERR "hda_generic: Too many loopback ctls\n");
return;
}
p = &spec->loopback_list[spec->num_loopbacks++];
p->nid = nid;
p->dir = dir;
p->idx = idx;
spec->loopback.amplist = spec->loopback_list;
}
#else
#define add_input_loopback(codec,nid,dir,idx)
#endif
/*
* create mixer controls if possible
*/
static int create_mixer(struct hda_codec *codec, struct hda_gnode *node,
unsigned int index, const char *type,
const char *dir_sfx, int is_loopback)
{
char name[32];
int err;
int created = 0;
struct snd_kcontrol_new knew;
if (type)
sprintf(name, "%s %s Switch", type, dir_sfx);
else
sprintf(name, "%s Switch", dir_sfx);
if ((node->wid_caps & AC_WCAP_IN_AMP) &&
(node->amp_in_caps & AC_AMPCAP_MUTE)) {
knew = (struct snd_kcontrol_new)HDA_CODEC_MUTE(name, node->nid, index, HDA_INPUT);
if (is_loopback)
add_input_loopback(codec, node->nid, HDA_INPUT, index);
snd_printdd("[%s] NID=0x%x, DIR=IN, IDX=0x%x\n", name, node->nid, index);
err = snd_hda_ctl_add(codec, node->nid,
snd_ctl_new1(&knew, codec));
if (err < 0)
return err;
created = 1;
} else if ((node->wid_caps & AC_WCAP_OUT_AMP) &&
(node->amp_out_caps & AC_AMPCAP_MUTE)) {
knew = (struct snd_kcontrol_new)HDA_CODEC_MUTE(name, node->nid, 0, HDA_OUTPUT);
if (is_loopback)
add_input_loopback(codec, node->nid, HDA_OUTPUT, 0);
snd_printdd("[%s] NID=0x%x, DIR=OUT\n", name, node->nid);
err = snd_hda_ctl_add(codec, node->nid,
snd_ctl_new1(&knew, codec));
if (err < 0)
return err;
created = 1;
}
if (type)
sprintf(name, "%s %s Volume", type, dir_sfx);
else
sprintf(name, "%s Volume", dir_sfx);
if ((node->wid_caps & AC_WCAP_IN_AMP) &&
(node->amp_in_caps & AC_AMPCAP_NUM_STEPS)) {
knew = (struct snd_kcontrol_new)HDA_CODEC_VOLUME(name, node->nid, index, HDA_INPUT);
snd_printdd("[%s] NID=0x%x, DIR=IN, IDX=0x%x\n", name, node->nid, index);
err = snd_hda_ctl_add(codec, node->nid,
snd_ctl_new1(&knew, codec));
if (err < 0)
return err;
created = 1;
} else if ((node->wid_caps & AC_WCAP_OUT_AMP) &&
(node->amp_out_caps & AC_AMPCAP_NUM_STEPS)) {
knew = (struct snd_kcontrol_new)HDA_CODEC_VOLUME(name, node->nid, 0, HDA_OUTPUT);
snd_printdd("[%s] NID=0x%x, DIR=OUT\n", name, node->nid);
err = snd_hda_ctl_add(codec, node->nid,
snd_ctl_new1(&knew, codec));
if (err < 0)
return err;
created = 1;
}
return created;
}
/*
* check whether the controls with the given name and direction suffix already exist
*/
static int check_existing_control(struct hda_codec *codec, const char *type, const char *dir)
{
struct snd_ctl_elem_id id;
memset(&id, 0, sizeof(id));
sprintf(id.name, "%s %s Volume", type, dir);
id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
if (snd_ctl_find_id(codec->bus->card, &id))
return 1;
sprintf(id.name, "%s %s Switch", type, dir);
id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
if (snd_ctl_find_id(codec->bus->card, &id))
return 1;
return 0;
}
/*
* build output mixer controls
*/
static int create_output_mixers(struct hda_codec *codec, const char **names)
{
struct hda_gspec *spec = codec->spec;
int i, err;
for (i = 0; i < spec->pcm_vol_nodes; i++) {
err = create_mixer(codec, spec->pcm_vol[i].node,
spec->pcm_vol[i].index,
names[i], "Playback", 0);
if (err < 0)
return err;
}
return 0;
}
static int build_output_controls(struct hda_codec *codec)
{
struct hda_gspec *spec = codec->spec;
static const char *types_speaker[] = { "Speaker", "Headphone" };
static const char *types_line[] = { "Front", "Headphone" };
switch (spec->pcm_vol_nodes) {
case 1:
return create_mixer(codec, spec->pcm_vol[0].node,
spec->pcm_vol[0].index,
"Master", "Playback", 0);
case 2:
if (defcfg_type(spec->out_pin_node[0]) == AC_JACK_SPEAKER)
return create_output_mixers(codec, types_speaker);
else
return create_output_mixers(codec, types_line);
}
return 0;
}
/* create capture volume/switch */
static int build_input_controls(struct hda_codec *codec)
{
struct hda_gspec *spec = codec->spec;
struct hda_gnode *adc_node = spec->adc_node;
int i, err;
static struct snd_kcontrol_new cap_sel = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Capture Source",
.info = capture_source_info,
.get = capture_source_get,
.put = capture_source_put,
};
if (! adc_node || ! spec->input_mux.num_items)
return 0; /* not found */
spec->cur_cap_src = 0;
select_input_connection(codec, adc_node,
spec->input_mux.items[0].index);
/* create capture volume and switch controls if the ADC has an amp */
/* do we have only a single item? */
if (spec->input_mux.num_items == 1) {
err = create_mixer(codec, adc_node,
spec->input_mux.items[0].index,
NULL, "Capture", 0);
if (err < 0)
return err;
return 0;
}
/* create input MUX if multiple sources are available */
err = snd_hda_ctl_add(codec, spec->adc_node->nid,
snd_ctl_new1(&cap_sel, codec));
if (err < 0)
return err;
/* no volume control? */
if (! (adc_node->wid_caps & AC_WCAP_IN_AMP) ||
! (adc_node->amp_in_caps & AC_AMPCAP_NUM_STEPS))
return 0;
for (i = 0; i < spec->input_mux.num_items; i++) {
struct snd_kcontrol_new knew;
char name[32];
sprintf(name, "%s Capture Volume",
spec->input_mux.items[i].label);
knew = (struct snd_kcontrol_new)
HDA_CODEC_VOLUME(name, adc_node->nid,
spec->input_mux.items[i].index,
HDA_INPUT);
err = snd_hda_ctl_add(codec, adc_node->nid,
snd_ctl_new1(&knew, codec));
if (err < 0)
return err;
}
return 0;
}
/*
* parse the nodes recursively until reach to the output PIN.
*
* returns 0 - if not found,
* 1 - if found, but no mixer is created
* 2 - if found and mixer was already created, (just skip)
* a negative error code
*/
static int parse_loopback_path(struct hda_codec *codec, struct hda_gspec *spec,
struct hda_gnode *node, struct hda_gnode *dest_node,
const char *type)
{
int i, err;
if (node->checked)
return 0;
node->checked = 1;
if (node == dest_node) {
/* loopback connection found */
return 1;
}
for (i = 0; i < node->nconns; i++) {
struct hda_gnode *child = hda_get_node(spec, node->conn_list[i]);
if (! child)
continue;
err = parse_loopback_path(codec, spec, child, dest_node, type);
if (err < 0)
return err;
else if (err >= 1) {
if (err == 1) {
err = create_mixer(codec, node, i, type,
"Playback", 1);
if (err < 0)
return err;
if (err > 0)
return 2; /* ok, created */
/* not created, maybe in the lower path */
err = 1;
}
/* connect and unmute */
if (node->nconns > 1)
select_input_connection(codec, node, i);
unmute_input(codec, node, i);
unmute_output(codec, node);
return err;
}
}
return 0;
}
/*
* parse the tree and build the loopback controls
*/
static int build_loopback_controls(struct hda_codec *codec)
{
struct hda_gspec *spec = codec->spec;
struct hda_gnode *node;
int err;
const char *type;
if (! spec->out_pin_node[0])
return 0;
list_for_each_entry(node, &spec->nid_list, list) {
if (node->type != AC_WID_PIN)
continue;
/* input capable? */
if (! (node->pin_caps & AC_PINCAP_IN))
return 0;
type = get_input_type(node, NULL);
if (type) {
if (check_existing_control(codec, type, "Playback"))
continue;
clear_check_flags(spec);
err = parse_loopback_path(codec, spec,
spec->out_pin_node[0],
node, type);
if (err < 0)
return err;
if (! err)
continue;
}
}
return 0;
}
/*
* build mixer controls
*/
static int build_generic_controls(struct hda_codec *codec)
{
int err;
if ((err = build_input_controls(codec)) < 0 ||
(err = build_output_controls(codec)) < 0 ||
(err = build_loopback_controls(codec)) < 0)
return err;
return 0;
}
/*
* PCM
*/
static struct hda_pcm_stream generic_pcm_playback = {
.substreams = 1,
.channels_min = 2,
.channels_max = 2,
};
static int generic_pcm2_prepare(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
unsigned int stream_tag,
unsigned int format,
struct snd_pcm_substream *substream)
{
struct hda_gspec *spec = codec->spec;
snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
snd_hda_codec_setup_stream(codec, spec->dac_node[1]->nid,
stream_tag, 0, format);
return 0;
}
static int generic_pcm2_cleanup(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
struct snd_pcm_substream *substream)
{
struct hda_gspec *spec = codec->spec;
snd_hda_codec_cleanup_stream(codec, hinfo->nid);
snd_hda_codec_cleanup_stream(codec, spec->dac_node[1]->nid);
return 0;
}
static int build_generic_pcms(struct hda_codec *codec)
{
struct hda_gspec *spec = codec->spec;
struct hda_pcm *info = &spec->pcm_rec;
if (! spec->dac_node[0] && ! spec->adc_node) {
snd_printd("hda_generic: no PCM found\n");
return 0;
}
codec->num_pcms = 1;
codec->pcm_info = info;
info->name = "HDA Generic";
if (spec->dac_node[0]) {
info->stream[0] = generic_pcm_playback;
info->stream[0].nid = spec->dac_node[0]->nid;
if (spec->dac_node[1]) {
info->stream[0].ops.prepare = generic_pcm2_prepare;
info->stream[0].ops.cleanup = generic_pcm2_cleanup;
}
}
if (spec->adc_node) {
info->stream[1] = generic_pcm_playback;
info->stream[1].nid = spec->adc_node->nid;
}
return 0;
}
#ifdef CONFIG_SND_HDA_POWER_SAVE
static int generic_check_power_status(struct hda_codec *codec, hda_nid_t nid)
{
struct hda_gspec *spec = codec->spec;
return snd_hda_check_amp_list_power(codec, &spec->loopback, nid);
}
#endif
/*
*/
static struct hda_codec_ops generic_patch_ops = {
.build_controls = build_generic_controls,
.build_pcms = build_generic_pcms,
.free = snd_hda_generic_free,
#ifdef CONFIG_SND_HDA_POWER_SAVE
.check_power_status = generic_check_power_status,
#endif
};
/*
* the generic parser
*/
int snd_hda_parse_generic_codec(struct hda_codec *codec)
{
struct hda_gspec *spec;
int err;
if(!codec->afg)
return 0;
spec = kzalloc(sizeof(*spec), GFP_KERNEL);
if (spec == NULL) {
printk(KERN_ERR "hda_generic: can't allocate spec\n");
return -ENOMEM;
}
codec->spec = spec;
INIT_LIST_HEAD(&spec->nid_list);
if ((err = build_afg_tree(codec)) < 0)
goto error;
if ((err = parse_input(codec)) < 0 ||
(err = parse_output(codec)) < 0)
goto error;
codec->patch_ops = generic_patch_ops;
return 0;
error:
snd_hda_generic_free(codec);
return err;
}
EXPORT_SYMBOL(snd_hda_parse_generic_codec);