linux_dsm_epyc7002/drivers/net/wireless/rtlwifi/rtl8192se/rf.c
Mike McCormack e10542c447 rtlwifi: rtl8192{c,ce,cu,se}: Remove comparisons of booleans with true
These are a potential source of confusion, as most C code treats all
non-zero values as true.

Signed-off-by: Mike McCormack <mikem@ring3k.org>
Acked-by: Larry Finger <Larry.Finger@lwfinger.net>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-06-20 15:47:43 -04:00

547 lines
15 KiB
C

/******************************************************************************
*
* Copyright(c) 2009-2010 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* wlanfae <wlanfae@realtek.com>
* Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
* Hsinchu 300, Taiwan.
*
* Larry Finger <Larry.Finger@lwfinger.net>
*
*****************************************************************************/
#include "../wifi.h"
#include "reg.h"
#include "def.h"
#include "phy.h"
#include "rf.h"
#include "dm.h"
static void _rtl92s_get_powerbase(struct ieee80211_hw *hw, u8 *p_pwrlevel,
u8 chnl, u32 *ofdmbase, u32 *mcsbase,
u8 *p_final_pwridx)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u32 pwrbase0, pwrbase1;
u8 legacy_pwrdiff = 0, ht20_pwrdiff = 0;
u8 i, pwrlevel[4];
for (i = 0; i < 2; i++)
pwrlevel[i] = p_pwrlevel[i];
/* We only care about the path A for legacy. */
if (rtlefuse->eeprom_version < 2) {
pwrbase0 = pwrlevel[0] + (rtlefuse->legacy_httxpowerdiff & 0xf);
} else if (rtlefuse->eeprom_version >= 2) {
legacy_pwrdiff = rtlefuse->txpwr_legacyhtdiff
[RF90_PATH_A][chnl - 1];
/* For legacy OFDM, tx pwr always > HT OFDM pwr.
* We do not care Path B
* legacy OFDM pwr diff. NO BB register
* to notify HW. */
pwrbase0 = pwrlevel[0] + legacy_pwrdiff;
}
pwrbase0 = (pwrbase0 << 24) | (pwrbase0 << 16) | (pwrbase0 << 8) |
pwrbase0;
*ofdmbase = pwrbase0;
/* MCS rates */
if (rtlefuse->eeprom_version >= 2) {
/* Check HT20 to HT40 diff */
if (rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20) {
for (i = 0; i < 2; i++) {
/* rf-A, rf-B */
/* HT 20<->40 pwr diff */
ht20_pwrdiff = rtlefuse->txpwr_ht20diff
[i][chnl - 1];
if (ht20_pwrdiff < 8) /* 0~+7 */
pwrlevel[i] += ht20_pwrdiff;
else /* index8-15=-8~-1 */
pwrlevel[i] -= (16 - ht20_pwrdiff);
}
}
}
/* use index of rf-A */
pwrbase1 = pwrlevel[0];
pwrbase1 = (pwrbase1 << 24) | (pwrbase1 << 16) | (pwrbase1 << 8) |
pwrbase1;
*mcsbase = pwrbase1;
/* The following is for Antenna
* diff from Ant-B to Ant-A */
p_final_pwridx[0] = pwrlevel[0];
p_final_pwridx[1] = pwrlevel[1];
switch (rtlefuse->eeprom_regulatory) {
case 3:
/* The following is for calculation
* of the power diff for Ant-B to Ant-A. */
if (rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20_40) {
p_final_pwridx[0] += rtlefuse->pwrgroup_ht40
[RF90_PATH_A][
chnl - 1];
p_final_pwridx[1] += rtlefuse->pwrgroup_ht40
[RF90_PATH_B][
chnl - 1];
} else {
p_final_pwridx[0] += rtlefuse->pwrgroup_ht20
[RF90_PATH_A][
chnl - 1];
p_final_pwridx[1] += rtlefuse->pwrgroup_ht20
[RF90_PATH_B][
chnl - 1];
}
break;
default:
break;
}
if (rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20_40) {
RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD, ("40MHz finalpwr_idx "
"(A / B) = 0x%x / 0x%x\n", p_final_pwridx[0],
p_final_pwridx[1]));
} else {
RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD, ("20MHz finalpwr_idx "
"(A / B) = 0x%x / 0x%x\n", p_final_pwridx[0],
p_final_pwridx[1]));
}
}
static void _rtl92s_set_antennadiff(struct ieee80211_hw *hw,
u8 *p_final_pwridx)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_phy *rtlphy = &(rtlpriv->phy);
char ant_pwr_diff = 0;
u32 u4reg_val = 0;
if (rtlphy->rf_type == RF_2T2R) {
ant_pwr_diff = p_final_pwridx[1] - p_final_pwridx[0];
/* range is from 7~-8,
* index = 0x0~0xf */
if (ant_pwr_diff > 7)
ant_pwr_diff = 7;
if (ant_pwr_diff < -8)
ant_pwr_diff = -8;
RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
("Antenna Diff from RF-B "
"to RF-A = %d (0x%x)\n", ant_pwr_diff,
ant_pwr_diff & 0xf));
ant_pwr_diff &= 0xf;
}
/* Antenna TX power difference */
rtlefuse->antenna_txpwdiff[2] = 0;/* RF-D, don't care */
rtlefuse->antenna_txpwdiff[1] = 0;/* RF-C, don't care */
rtlefuse->antenna_txpwdiff[0] = (u8)(ant_pwr_diff); /* RF-B */
u4reg_val = rtlefuse->antenna_txpwdiff[2] << 8 |
rtlefuse->antenna_txpwdiff[1] << 4 |
rtlefuse->antenna_txpwdiff[0];
rtl_set_bbreg(hw, RFPGA0_TXGAINSTAGE, (BXBTXAGC | BXCTXAGC | BXDTXAGC),
u4reg_val);
RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
("Write BCD-Diff(0x%x) = 0x%x\n",
RFPGA0_TXGAINSTAGE, u4reg_val));
}
static void _rtl92s_get_txpower_writeval_byregulatory(struct ieee80211_hw *hw,
u8 chnl, u8 index,
u32 pwrbase0,
u32 pwrbase1,
u32 *p_outwrite_val)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u8 i, chnlgroup, pwrdiff_limit[4];
u32 writeval, customer_limit;
/* Index 0 & 1= legacy OFDM, 2-5=HT_MCS rate */
switch (rtlefuse->eeprom_regulatory) {
case 0:
/* Realtek better performance increase power diff
* defined by Realtek for large power */
chnlgroup = 0;
writeval = rtlphy->mcs_txpwrlevel_origoffset
[chnlgroup][index] +
((index < 2) ? pwrbase0 : pwrbase1);
RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
("RTK better performance, "
"writeval = 0x%x\n", writeval));
break;
case 1:
/* Realtek regulatory increase power diff defined
* by Realtek for regulatory */
if (rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20_40) {
writeval = ((index < 2) ? pwrbase0 : pwrbase1);
RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
("Realtek regulatory, "
"40MHz, writeval = 0x%x\n", writeval));
} else {
if (rtlphy->pwrgroup_cnt == 1)
chnlgroup = 0;
if (rtlphy->pwrgroup_cnt >= 3) {
if (chnl <= 3)
chnlgroup = 0;
else if (chnl >= 4 && chnl <= 8)
chnlgroup = 1;
else if (chnl > 8)
chnlgroup = 2;
if (rtlphy->pwrgroup_cnt == 4)
chnlgroup++;
}
writeval = rtlphy->mcs_txpwrlevel_origoffset
[chnlgroup][index]
+ ((index < 2) ?
pwrbase0 : pwrbase1);
RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
("Realtek regulatory, "
"20MHz, writeval = 0x%x\n", writeval));
}
break;
case 2:
/* Better regulatory don't increase any power diff */
writeval = ((index < 2) ? pwrbase0 : pwrbase1);
RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
("Better regulatory, "
"writeval = 0x%x\n", writeval));
break;
case 3:
/* Customer defined power diff. increase power diff
defined by customer. */
chnlgroup = 0;
if (rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20_40) {
RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
("customer's limit, 40MHz = 0x%x\n",
rtlefuse->pwrgroup_ht40
[RF90_PATH_A][chnl - 1]));
} else {
RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
("customer's limit, 20MHz = 0x%x\n",
rtlefuse->pwrgroup_ht20
[RF90_PATH_A][chnl - 1]));
}
for (i = 0; i < 4; i++) {
pwrdiff_limit[i] =
(u8)((rtlphy->mcs_txpwrlevel_origoffset
[chnlgroup][index] & (0x7f << (i * 8)))
>> (i * 8));
if (rtlphy->current_chan_bw ==
HT_CHANNEL_WIDTH_20_40) {
if (pwrdiff_limit[i] >
rtlefuse->pwrgroup_ht40
[RF90_PATH_A][chnl - 1]) {
pwrdiff_limit[i] =
rtlefuse->pwrgroup_ht20
[RF90_PATH_A][chnl - 1];
}
} else {
if (pwrdiff_limit[i] >
rtlefuse->pwrgroup_ht20
[RF90_PATH_A][chnl - 1]) {
pwrdiff_limit[i] =
rtlefuse->pwrgroup_ht20
[RF90_PATH_A][chnl - 1];
}
}
}
customer_limit = (pwrdiff_limit[3] << 24) |
(pwrdiff_limit[2] << 16) |
(pwrdiff_limit[1] << 8) |
(pwrdiff_limit[0]);
RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
("Customer's limit = 0x%x\n",
customer_limit));
writeval = customer_limit + ((index < 2) ?
pwrbase0 : pwrbase1);
RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
("Customer, writeval = "
"0x%x\n", writeval));
break;
default:
chnlgroup = 0;
writeval = rtlphy->mcs_txpwrlevel_origoffset[chnlgroup][index] +
((index < 2) ? pwrbase0 : pwrbase1);
RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
("RTK better performance, "
"writeval = 0x%x\n", writeval));
break;
}
if (rtlpriv->dm.dynamic_txhighpower_lvl == TX_HIGH_PWR_LEVEL_LEVEL1)
writeval = 0x10101010;
else if (rtlpriv->dm.dynamic_txhighpower_lvl ==
TX_HIGH_PWR_LEVEL_LEVEL2)
writeval = 0x0;
*p_outwrite_val = writeval;
}
static void _rtl92s_write_ofdm_powerreg(struct ieee80211_hw *hw,
u8 index, u32 val)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u16 regoffset[6] = {0xe00, 0xe04, 0xe10, 0xe14, 0xe18, 0xe1c};
u8 i, rfa_pwr[4];
u8 rfa_lower_bound = 0, rfa_upper_bound = 0, rf_pwr_diff = 0;
u32 writeval = val;
/* If path A and Path B coexist, we must limit Path A tx power.
* Protect Path B pwr over or under flow. We need to calculate
* upper and lower bound of path A tx power. */
if (rtlphy->rf_type == RF_2T2R) {
rf_pwr_diff = rtlefuse->antenna_txpwdiff[0];
/* Diff=-8~-1 */
if (rf_pwr_diff >= 8) {
/* Prevent underflow!! */
rfa_lower_bound = 0x10 - rf_pwr_diff;
/* if (rf_pwr_diff >= 0) Diff = 0-7 */
} else {
rfa_upper_bound = RF6052_MAX_TX_PWR - rf_pwr_diff;
}
}
for (i = 0; i < 4; i++) {
rfa_pwr[i] = (u8)((writeval & (0x7f << (i * 8))) >> (i * 8));
if (rfa_pwr[i] > RF6052_MAX_TX_PWR)
rfa_pwr[i] = RF6052_MAX_TX_PWR;
/* If path A and Path B coexist, we must limit Path A tx power.
* Protect Path B pwr over or under flow. We need to calculate
* upper and lower bound of path A tx power. */
if (rtlphy->rf_type == RF_2T2R) {
/* Diff=-8~-1 */
if (rf_pwr_diff >= 8) {
/* Prevent underflow!! */
if (rfa_pwr[i] < rfa_lower_bound)
rfa_pwr[i] = rfa_lower_bound;
/* Diff = 0-7 */
} else if (rf_pwr_diff >= 1) {
/* Prevent overflow */
if (rfa_pwr[i] > rfa_upper_bound)
rfa_pwr[i] = rfa_upper_bound;
}
}
}
writeval = (rfa_pwr[3] << 24) | (rfa_pwr[2] << 16) | (rfa_pwr[1] << 8) |
rfa_pwr[0];
rtl_set_bbreg(hw, regoffset[index], 0x7f7f7f7f, writeval);
}
void rtl92s_phy_rf6052_set_ofdmtxpower(struct ieee80211_hw *hw,
u8 *p_pwrlevel, u8 chnl)
{
u32 writeval, pwrbase0, pwrbase1;
u8 index = 0;
u8 finalpwr_idx[4];
_rtl92s_get_powerbase(hw, p_pwrlevel, chnl, &pwrbase0, &pwrbase1,
&finalpwr_idx[0]);
_rtl92s_set_antennadiff(hw, &finalpwr_idx[0]);
for (index = 0; index < 6; index++) {
_rtl92s_get_txpower_writeval_byregulatory(hw, chnl, index,
pwrbase0, pwrbase1, &writeval);
_rtl92s_write_ofdm_powerreg(hw, index, writeval);
}
}
void rtl92s_phy_rf6052_set_ccktxpower(struct ieee80211_hw *hw, u8 pwrlevel)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u32 txagc = 0;
bool dont_inc_cck_or_turboscanoff = false;
if (((rtlefuse->eeprom_version >= 2) &&
(rtlefuse->txpwr_safetyflag == 1)) ||
((rtlefuse->eeprom_version >= 2) &&
(rtlefuse->eeprom_regulatory != 0)))
dont_inc_cck_or_turboscanoff = true;
if (mac->act_scanning) {
txagc = 0x3f;
if (dont_inc_cck_or_turboscanoff)
txagc = pwrlevel;
} else {
txagc = pwrlevel;
if (rtlpriv->dm.dynamic_txhighpower_lvl ==
TX_HIGH_PWR_LEVEL_LEVEL1)
txagc = 0x10;
else if (rtlpriv->dm.dynamic_txhighpower_lvl ==
TX_HIGH_PWR_LEVEL_LEVEL2)
txagc = 0x0;
}
if (txagc > RF6052_MAX_TX_PWR)
txagc = RF6052_MAX_TX_PWR;
rtl_set_bbreg(hw, RTXAGC_CCK_MCS32, BTX_AGCRATECCK, txagc);
}
bool rtl92s_phy_rf6052_config(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
u32 u4reg_val = 0;
u8 rfpath;
bool rtstatus = true;
struct bb_reg_def *pphyreg;
/* Initialize RF */
for (rfpath = 0; rfpath < rtlphy->num_total_rfpath; rfpath++) {
pphyreg = &rtlphy->phyreg_def[rfpath];
/* Store original RFENV control type */
switch (rfpath) {
case RF90_PATH_A:
case RF90_PATH_C:
u4reg_val = rtl92s_phy_query_bb_reg(hw,
pphyreg->rfintfs,
BRFSI_RFENV);
break;
case RF90_PATH_B:
case RF90_PATH_D:
u4reg_val = rtl92s_phy_query_bb_reg(hw,
pphyreg->rfintfs,
BRFSI_RFENV << 16);
break;
}
/* Set RF_ENV enable */
rtl92s_phy_set_bb_reg(hw, pphyreg->rfintfe,
BRFSI_RFENV << 16, 0x1);
/* Set RF_ENV output high */
rtl92s_phy_set_bb_reg(hw, pphyreg->rfintfo, BRFSI_RFENV, 0x1);
/* Set bit number of Address and Data for RF register */
rtl92s_phy_set_bb_reg(hw, pphyreg->rfhssi_para2,
B3WIRE_ADDRESSLENGTH, 0x0);
rtl92s_phy_set_bb_reg(hw, pphyreg->rfhssi_para2,
B3WIRE_DATALENGTH, 0x0);
/* Initialize RF fom connfiguration file */
switch (rfpath) {
case RF90_PATH_A:
rtstatus = rtl92s_phy_config_rf(hw,
(enum radio_path)rfpath);
break;
case RF90_PATH_B:
rtstatus = rtl92s_phy_config_rf(hw,
(enum radio_path)rfpath);
break;
case RF90_PATH_C:
break;
case RF90_PATH_D:
break;
}
/* Restore RFENV control type */
switch (rfpath) {
case RF90_PATH_A:
case RF90_PATH_C:
rtl92s_phy_set_bb_reg(hw, pphyreg->rfintfs, BRFSI_RFENV,
u4reg_val);
break;
case RF90_PATH_B:
case RF90_PATH_D:
rtl92s_phy_set_bb_reg(hw, pphyreg->rfintfs,
BRFSI_RFENV << 16,
u4reg_val);
break;
}
if (rtstatus != true) {
printk(KERN_ERR "Radio[%d] Fail!!", rfpath);
goto fail;
}
}
return rtstatus;
fail:
return rtstatus;
}
void rtl92s_phy_rf6052_set_bandwidth(struct ieee80211_hw *hw, u8 bandwidth)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
switch (bandwidth) {
case HT_CHANNEL_WIDTH_20:
rtlphy->rfreg_chnlval[0] = ((rtlphy->rfreg_chnlval[0] &
0xfffff3ff) | 0x0400);
rtl_set_rfreg(hw, RF90_PATH_A, RF_CHNLBW, RFREG_OFFSET_MASK,
rtlphy->rfreg_chnlval[0]);
break;
case HT_CHANNEL_WIDTH_20_40:
rtlphy->rfreg_chnlval[0] = ((rtlphy->rfreg_chnlval[0] &
0xfffff3ff));
rtl_set_rfreg(hw, RF90_PATH_A, RF_CHNLBW, RFREG_OFFSET_MASK,
rtlphy->rfreg_chnlval[0]);
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
("unknown bandwidth: %#X\n",
bandwidth));
break;
}
}