mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-23 02:19:38 +07:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
155 lines
3.9 KiB
C
155 lines
3.9 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _ASM_X86_MPSPEC_H
|
|
#define _ASM_X86_MPSPEC_H
|
|
|
|
|
|
#include <asm/mpspec_def.h>
|
|
#include <asm/x86_init.h>
|
|
#include <asm/apicdef.h>
|
|
|
|
extern int pic_mode;
|
|
|
|
#ifdef CONFIG_X86_32
|
|
|
|
/*
|
|
* Summit or generic (i.e. installer) kernels need lots of bus entries.
|
|
* Maximum 256 PCI busses, plus 1 ISA bus in each of 4 cabinets.
|
|
*/
|
|
#if CONFIG_BASE_SMALL == 0
|
|
# define MAX_MP_BUSSES 260
|
|
#else
|
|
# define MAX_MP_BUSSES 32
|
|
#endif
|
|
|
|
#define MAX_IRQ_SOURCES 256
|
|
|
|
extern unsigned int def_to_bigsmp;
|
|
|
|
#else /* CONFIG_X86_64: */
|
|
|
|
#define MAX_MP_BUSSES 256
|
|
/* Each PCI slot may be a combo card with its own bus. 4 IRQ pins per slot. */
|
|
#define MAX_IRQ_SOURCES (MAX_MP_BUSSES * 4)
|
|
|
|
#endif /* CONFIG_X86_64 */
|
|
|
|
#ifdef CONFIG_EISA
|
|
extern int mp_bus_id_to_type[MAX_MP_BUSSES];
|
|
#endif
|
|
|
|
extern DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
|
|
|
|
extern unsigned int boot_cpu_physical_apicid;
|
|
extern u8 boot_cpu_apic_version;
|
|
extern unsigned long mp_lapic_addr;
|
|
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
extern int smp_found_config;
|
|
#else
|
|
# define smp_found_config 0
|
|
#endif
|
|
|
|
static inline void get_smp_config(void)
|
|
{
|
|
x86_init.mpparse.get_smp_config(0);
|
|
}
|
|
|
|
static inline void early_get_smp_config(void)
|
|
{
|
|
x86_init.mpparse.get_smp_config(1);
|
|
}
|
|
|
|
static inline void find_smp_config(void)
|
|
{
|
|
x86_init.mpparse.find_smp_config();
|
|
}
|
|
|
|
#ifdef CONFIG_X86_MPPARSE
|
|
extern void e820__memblock_alloc_reserved_mpc_new(void);
|
|
extern int enable_update_mptable;
|
|
extern int default_mpc_apic_id(struct mpc_cpu *m);
|
|
extern void default_smp_read_mpc_oem(struct mpc_table *mpc);
|
|
# ifdef CONFIG_X86_IO_APIC
|
|
extern void default_mpc_oem_bus_info(struct mpc_bus *m, char *str);
|
|
# else
|
|
# define default_mpc_oem_bus_info NULL
|
|
# endif
|
|
extern void default_find_smp_config(void);
|
|
extern void default_get_smp_config(unsigned int early);
|
|
#else
|
|
static inline void e820__memblock_alloc_reserved_mpc_new(void) { }
|
|
#define enable_update_mptable 0
|
|
#define default_mpc_apic_id NULL
|
|
#define default_smp_read_mpc_oem NULL
|
|
#define default_mpc_oem_bus_info NULL
|
|
#define default_find_smp_config x86_init_noop
|
|
#define default_get_smp_config x86_init_uint_noop
|
|
#endif
|
|
|
|
int generic_processor_info(int apicid, int version);
|
|
|
|
#define PHYSID_ARRAY_SIZE BITS_TO_LONGS(MAX_LOCAL_APIC)
|
|
|
|
struct physid_mask {
|
|
unsigned long mask[PHYSID_ARRAY_SIZE];
|
|
};
|
|
|
|
typedef struct physid_mask physid_mask_t;
|
|
|
|
#define physid_set(physid, map) set_bit(physid, (map).mask)
|
|
#define physid_clear(physid, map) clear_bit(physid, (map).mask)
|
|
#define physid_isset(physid, map) test_bit(physid, (map).mask)
|
|
#define physid_test_and_set(physid, map) \
|
|
test_and_set_bit(physid, (map).mask)
|
|
|
|
#define physids_and(dst, src1, src2) \
|
|
bitmap_and((dst).mask, (src1).mask, (src2).mask, MAX_LOCAL_APIC)
|
|
|
|
#define physids_or(dst, src1, src2) \
|
|
bitmap_or((dst).mask, (src1).mask, (src2).mask, MAX_LOCAL_APIC)
|
|
|
|
#define physids_clear(map) \
|
|
bitmap_zero((map).mask, MAX_LOCAL_APIC)
|
|
|
|
#define physids_complement(dst, src) \
|
|
bitmap_complement((dst).mask, (src).mask, MAX_LOCAL_APIC)
|
|
|
|
#define physids_empty(map) \
|
|
bitmap_empty((map).mask, MAX_LOCAL_APIC)
|
|
|
|
#define physids_equal(map1, map2) \
|
|
bitmap_equal((map1).mask, (map2).mask, MAX_LOCAL_APIC)
|
|
|
|
#define physids_weight(map) \
|
|
bitmap_weight((map).mask, MAX_LOCAL_APIC)
|
|
|
|
#define physids_shift_right(d, s, n) \
|
|
bitmap_shift_right((d).mask, (s).mask, n, MAX_LOCAL_APIC)
|
|
|
|
#define physids_shift_left(d, s, n) \
|
|
bitmap_shift_left((d).mask, (s).mask, n, MAX_LOCAL_APIC)
|
|
|
|
static inline unsigned long physids_coerce(physid_mask_t *map)
|
|
{
|
|
return map->mask[0];
|
|
}
|
|
|
|
static inline void physids_promote(unsigned long physids, physid_mask_t *map)
|
|
{
|
|
physids_clear(*map);
|
|
map->mask[0] = physids;
|
|
}
|
|
|
|
static inline void physid_set_mask_of_physid(int physid, physid_mask_t *map)
|
|
{
|
|
physids_clear(*map);
|
|
physid_set(physid, *map);
|
|
}
|
|
|
|
#define PHYSID_MASK_ALL { {[0 ... PHYSID_ARRAY_SIZE-1] = ~0UL} }
|
|
#define PHYSID_MASK_NONE { {[0 ... PHYSID_ARRAY_SIZE-1] = 0UL} }
|
|
|
|
extern physid_mask_t phys_cpu_present_map;
|
|
|
|
#endif /* _ASM_X86_MPSPEC_H */
|