mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-13 02:16:58 +07:00
6393d6a102
Currently, ondemand calculates the target frequency proportional to load using the formula: Target frequency = C * load where C = policy->cpuinfo.max_freq / 100 Though, in many cases, the minimum available frequency is pretty high and the above calculation introduces a dead band from load 0 to 100 * policy->cpuinfo.min_freq / policy->cpuinfo.max_freq where the target frequency is always calculated to less than policy->cpuinfo.min_freq and the minimum frequency is selected. For example: on Intel i7-3770 @ 3.4GHz the policy->cpuinfo.min_freq = 1600000 and the policy->cpuinfo.max_freq = 3400000 (without turbo). Thus, the CPU starts to scale up at a load above 47. On quad core 1500MHz Krait the policy->cpuinfo.min_freq = 384000 and the policy->cpuinfo.max_freq = 1512000. Thus, the CPU starts to scale at load above 25. Change the calculation of target frequency to eliminate the above effect using the formula: Target frequency = A + B * load where A = policy->cpuinfo.min_freq and B = (policy->cpuinfo.max_freq - policy->cpuinfo->min_freq) / 100 This will map load values 0 to 100 linearly to cpuinfo.min_freq to cpuinfo.max_freq. Also, use the CPUFREQ_RELATION_C in __cpufreq_driver_target to select the closest frequency in frequency_table. This is necessary to avoid selection of minimum frequency only when load equals to 0. It will also help for selection of frequencies using a more 'fair' criterion. Tables below show the difference in selected frequency for specific values of load without and with this patch. On Intel i7-3770 @ 3.40GHz: Without With Load Target Selected Target Selected 0 0 1600000 1600000 1600000 5 170050 1600000 1690050 1700000 10 340100 1600000 1780100 1700000 15 510150 1600000 1870150 1900000 20 680200 1600000 1960200 2000000 25 850250 1600000 2050250 2100000 30 1020300 1600000 2140300 2100000 35 1190350 1600000 2230350 2200000 40 1360400 1600000 2320400 2400000 45 1530450 1600000 2410450 2400000 50 1700500 1900000 2500500 2500000 55 1870550 1900000 2590550 2600000 60 2040600 2100000 2680600 2600000 65 2210650 2400000 2770650 2800000 70 2380700 2400000 2860700 2800000 75 2550750 2600000 2950750 3000000 80 2720800 2800000 3040800 3000000 85 28908502900000
3130850 3100000 90 3060900 3100000 3220900 3300000 95 3230950 3300000 3310950 3300000 100 3401000 3401000 3401000 3401000 On ARM quad core 1500MHz Krait: Without With Load Target Selected Target Selected 0 0 384000 384000 384000 5 75600 384000 440400 486000 10 151200 384000 496800 486000 15 226800 384000 553200 594000 20 302400 384000 609600 594000 25 378000 384000 666000 702000 30 453600 486000 722400 702000 35 529200 594000 778800 810000 40 604800 702000 835200 810000 45 680400 702000 891600 918000 50 756000 810000 948000 918000 55 831600 918000 1004400 1026000 60 907200 918000 1060800 1026000 65 982800 1026000 1117200 1134000 70 1058400 1134000 1173600 1134000 75 1134000 1134000 1230000 1242000 80 1209600 1242000 1286400 1242000 85 12852001350000
13428001350000
90 1360800 1458000 13992001350000
95 1436400 1458000 1455600 1458000 100 1512000 1512000 1512000 1512000 Tested on Intel i7-3770 CPU @ 3.40GHz and on ARM quad core 1500MHz Krait (Android smartphone). Benchmarks on Intel i7 shows a performance improvement on low and medium work loads with lower power consumption. Specifics: Phoronix Linux Kernel Compilation 3.1: Time: -0.40%, energy: -0.07% Phoronix Apache: Time: -4.98%, energy: -2.35% Phoronix FFMPEG: Time: -6.29%, energy: -4.02% Also, running mp3 decoding (very low load) shows no differences with and without this patch. Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
632 lines
17 KiB
C
632 lines
17 KiB
C
/*
|
|
* drivers/cpufreq/cpufreq_ondemand.c
|
|
*
|
|
* Copyright (C) 2001 Russell King
|
|
* (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
|
|
* Jun Nakajima <jun.nakajima@intel.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/percpu-defs.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/tick.h>
|
|
#include "cpufreq_governor.h"
|
|
|
|
/* On-demand governor macros */
|
|
#define DEF_FREQUENCY_UP_THRESHOLD (80)
|
|
#define DEF_SAMPLING_DOWN_FACTOR (1)
|
|
#define MAX_SAMPLING_DOWN_FACTOR (100000)
|
|
#define MICRO_FREQUENCY_UP_THRESHOLD (95)
|
|
#define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
|
|
#define MIN_FREQUENCY_UP_THRESHOLD (11)
|
|
#define MAX_FREQUENCY_UP_THRESHOLD (100)
|
|
|
|
static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
|
|
|
|
static struct od_ops od_ops;
|
|
|
|
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
|
|
static struct cpufreq_governor cpufreq_gov_ondemand;
|
|
#endif
|
|
|
|
static unsigned int default_powersave_bias;
|
|
|
|
static void ondemand_powersave_bias_init_cpu(int cpu)
|
|
{
|
|
struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
|
|
|
|
dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
|
|
dbs_info->freq_lo = 0;
|
|
}
|
|
|
|
/*
|
|
* Not all CPUs want IO time to be accounted as busy; this depends on how
|
|
* efficient idling at a higher frequency/voltage is.
|
|
* Pavel Machek says this is not so for various generations of AMD and old
|
|
* Intel systems.
|
|
* Mike Chan (android.com) claims this is also not true for ARM.
|
|
* Because of this, whitelist specific known (series) of CPUs by default, and
|
|
* leave all others up to the user.
|
|
*/
|
|
static int should_io_be_busy(void)
|
|
{
|
|
#if defined(CONFIG_X86)
|
|
/*
|
|
* For Intel, Core 2 (model 15) and later have an efficient idle.
|
|
*/
|
|
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
|
|
boot_cpu_data.x86 == 6 &&
|
|
boot_cpu_data.x86_model >= 15)
|
|
return 1;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Find right freq to be set now with powersave_bias on.
|
|
* Returns the freq_hi to be used right now and will set freq_hi_jiffies,
|
|
* freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
|
|
*/
|
|
static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
|
|
unsigned int freq_next, unsigned int relation)
|
|
{
|
|
unsigned int freq_req, freq_reduc, freq_avg;
|
|
unsigned int freq_hi, freq_lo;
|
|
unsigned int index = 0;
|
|
unsigned int jiffies_total, jiffies_hi, jiffies_lo;
|
|
struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
|
|
policy->cpu);
|
|
struct dbs_data *dbs_data = policy->governor_data;
|
|
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
|
|
|
|
if (!dbs_info->freq_table) {
|
|
dbs_info->freq_lo = 0;
|
|
dbs_info->freq_lo_jiffies = 0;
|
|
return freq_next;
|
|
}
|
|
|
|
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
|
|
relation, &index);
|
|
freq_req = dbs_info->freq_table[index].frequency;
|
|
freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
|
|
freq_avg = freq_req - freq_reduc;
|
|
|
|
/* Find freq bounds for freq_avg in freq_table */
|
|
index = 0;
|
|
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
|
|
CPUFREQ_RELATION_H, &index);
|
|
freq_lo = dbs_info->freq_table[index].frequency;
|
|
index = 0;
|
|
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
|
|
CPUFREQ_RELATION_L, &index);
|
|
freq_hi = dbs_info->freq_table[index].frequency;
|
|
|
|
/* Find out how long we have to be in hi and lo freqs */
|
|
if (freq_hi == freq_lo) {
|
|
dbs_info->freq_lo = 0;
|
|
dbs_info->freq_lo_jiffies = 0;
|
|
return freq_lo;
|
|
}
|
|
jiffies_total = usecs_to_jiffies(od_tuners->sampling_rate);
|
|
jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
|
|
jiffies_hi += ((freq_hi - freq_lo) / 2);
|
|
jiffies_hi /= (freq_hi - freq_lo);
|
|
jiffies_lo = jiffies_total - jiffies_hi;
|
|
dbs_info->freq_lo = freq_lo;
|
|
dbs_info->freq_lo_jiffies = jiffies_lo;
|
|
dbs_info->freq_hi_jiffies = jiffies_hi;
|
|
return freq_hi;
|
|
}
|
|
|
|
static void ondemand_powersave_bias_init(void)
|
|
{
|
|
int i;
|
|
for_each_online_cpu(i) {
|
|
ondemand_powersave_bias_init_cpu(i);
|
|
}
|
|
}
|
|
|
|
static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
|
|
{
|
|
struct dbs_data *dbs_data = policy->governor_data;
|
|
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
|
|
|
|
if (od_tuners->powersave_bias)
|
|
freq = od_ops.powersave_bias_target(policy, freq,
|
|
CPUFREQ_RELATION_H);
|
|
else if (policy->cur == policy->max)
|
|
return;
|
|
|
|
__cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
|
|
CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
|
|
}
|
|
|
|
/*
|
|
* Every sampling_rate, we check, if current idle time is less than 20%
|
|
* (default), then we try to increase frequency. Else, we adjust the frequency
|
|
* proportional to load.
|
|
*/
|
|
static void od_check_cpu(int cpu, unsigned int load)
|
|
{
|
|
struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
|
|
struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
|
|
struct dbs_data *dbs_data = policy->governor_data;
|
|
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
|
|
|
|
dbs_info->freq_lo = 0;
|
|
|
|
/* Check for frequency increase */
|
|
if (load > od_tuners->up_threshold) {
|
|
/* If switching to max speed, apply sampling_down_factor */
|
|
if (policy->cur < policy->max)
|
|
dbs_info->rate_mult =
|
|
od_tuners->sampling_down_factor;
|
|
dbs_freq_increase(policy, policy->max);
|
|
} else {
|
|
/* Calculate the next frequency proportional to load */
|
|
unsigned int freq_next, min_f, max_f;
|
|
|
|
min_f = policy->cpuinfo.min_freq;
|
|
max_f = policy->cpuinfo.max_freq;
|
|
freq_next = min_f + load * (max_f - min_f) / 100;
|
|
|
|
/* No longer fully busy, reset rate_mult */
|
|
dbs_info->rate_mult = 1;
|
|
|
|
if (!od_tuners->powersave_bias) {
|
|
__cpufreq_driver_target(policy, freq_next,
|
|
CPUFREQ_RELATION_C);
|
|
return;
|
|
}
|
|
|
|
freq_next = od_ops.powersave_bias_target(policy, freq_next,
|
|
CPUFREQ_RELATION_L);
|
|
__cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_C);
|
|
}
|
|
}
|
|
|
|
static void od_dbs_timer(struct work_struct *work)
|
|
{
|
|
struct od_cpu_dbs_info_s *dbs_info =
|
|
container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work);
|
|
unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
|
|
struct od_cpu_dbs_info_s *core_dbs_info = &per_cpu(od_cpu_dbs_info,
|
|
cpu);
|
|
struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
|
|
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
|
|
int delay = 0, sample_type = core_dbs_info->sample_type;
|
|
bool modify_all = true;
|
|
|
|
mutex_lock(&core_dbs_info->cdbs.timer_mutex);
|
|
if (!need_load_eval(&core_dbs_info->cdbs, od_tuners->sampling_rate)) {
|
|
modify_all = false;
|
|
goto max_delay;
|
|
}
|
|
|
|
/* Common NORMAL_SAMPLE setup */
|
|
core_dbs_info->sample_type = OD_NORMAL_SAMPLE;
|
|
if (sample_type == OD_SUB_SAMPLE) {
|
|
delay = core_dbs_info->freq_lo_jiffies;
|
|
__cpufreq_driver_target(core_dbs_info->cdbs.cur_policy,
|
|
core_dbs_info->freq_lo, CPUFREQ_RELATION_H);
|
|
} else {
|
|
dbs_check_cpu(dbs_data, cpu);
|
|
if (core_dbs_info->freq_lo) {
|
|
/* Setup timer for SUB_SAMPLE */
|
|
core_dbs_info->sample_type = OD_SUB_SAMPLE;
|
|
delay = core_dbs_info->freq_hi_jiffies;
|
|
}
|
|
}
|
|
|
|
max_delay:
|
|
if (!delay)
|
|
delay = delay_for_sampling_rate(od_tuners->sampling_rate
|
|
* core_dbs_info->rate_mult);
|
|
|
|
gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
|
|
mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
|
|
}
|
|
|
|
/************************** sysfs interface ************************/
|
|
static struct common_dbs_data od_dbs_cdata;
|
|
|
|
/**
|
|
* update_sampling_rate - update sampling rate effective immediately if needed.
|
|
* @new_rate: new sampling rate
|
|
*
|
|
* If new rate is smaller than the old, simply updating
|
|
* dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
|
|
* original sampling_rate was 1 second and the requested new sampling rate is 10
|
|
* ms because the user needs immediate reaction from ondemand governor, but not
|
|
* sure if higher frequency will be required or not, then, the governor may
|
|
* change the sampling rate too late; up to 1 second later. Thus, if we are
|
|
* reducing the sampling rate, we need to make the new value effective
|
|
* immediately.
|
|
*/
|
|
static void update_sampling_rate(struct dbs_data *dbs_data,
|
|
unsigned int new_rate)
|
|
{
|
|
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
|
|
int cpu;
|
|
|
|
od_tuners->sampling_rate = new_rate = max(new_rate,
|
|
dbs_data->min_sampling_rate);
|
|
|
|
for_each_online_cpu(cpu) {
|
|
struct cpufreq_policy *policy;
|
|
struct od_cpu_dbs_info_s *dbs_info;
|
|
unsigned long next_sampling, appointed_at;
|
|
|
|
policy = cpufreq_cpu_get(cpu);
|
|
if (!policy)
|
|
continue;
|
|
if (policy->governor != &cpufreq_gov_ondemand) {
|
|
cpufreq_cpu_put(policy);
|
|
continue;
|
|
}
|
|
dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
|
|
cpufreq_cpu_put(policy);
|
|
|
|
mutex_lock(&dbs_info->cdbs.timer_mutex);
|
|
|
|
if (!delayed_work_pending(&dbs_info->cdbs.work)) {
|
|
mutex_unlock(&dbs_info->cdbs.timer_mutex);
|
|
continue;
|
|
}
|
|
|
|
next_sampling = jiffies + usecs_to_jiffies(new_rate);
|
|
appointed_at = dbs_info->cdbs.work.timer.expires;
|
|
|
|
if (time_before(next_sampling, appointed_at)) {
|
|
|
|
mutex_unlock(&dbs_info->cdbs.timer_mutex);
|
|
cancel_delayed_work_sync(&dbs_info->cdbs.work);
|
|
mutex_lock(&dbs_info->cdbs.timer_mutex);
|
|
|
|
gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy,
|
|
usecs_to_jiffies(new_rate), true);
|
|
|
|
}
|
|
mutex_unlock(&dbs_info->cdbs.timer_mutex);
|
|
}
|
|
}
|
|
|
|
static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
|
|
size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
ret = sscanf(buf, "%u", &input);
|
|
if (ret != 1)
|
|
return -EINVAL;
|
|
|
|
update_sampling_rate(dbs_data, input);
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf,
|
|
size_t count)
|
|
{
|
|
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
|
|
unsigned int input;
|
|
int ret;
|
|
unsigned int j;
|
|
|
|
ret = sscanf(buf, "%u", &input);
|
|
if (ret != 1)
|
|
return -EINVAL;
|
|
od_tuners->io_is_busy = !!input;
|
|
|
|
/* we need to re-evaluate prev_cpu_idle */
|
|
for_each_online_cpu(j) {
|
|
struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
|
|
j);
|
|
dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
|
|
&dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
|
|
size_t count)
|
|
{
|
|
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
|
|
unsigned int input;
|
|
int ret;
|
|
ret = sscanf(buf, "%u", &input);
|
|
|
|
if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
|
|
input < MIN_FREQUENCY_UP_THRESHOLD) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
od_tuners->up_threshold = input;
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
|
|
unsigned int input, j;
|
|
int ret;
|
|
ret = sscanf(buf, "%u", &input);
|
|
|
|
if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
|
|
return -EINVAL;
|
|
od_tuners->sampling_down_factor = input;
|
|
|
|
/* Reset down sampling multiplier in case it was active */
|
|
for_each_online_cpu(j) {
|
|
struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
|
|
j);
|
|
dbs_info->rate_mult = 1;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
|
|
unsigned int input;
|
|
int ret;
|
|
|
|
unsigned int j;
|
|
|
|
ret = sscanf(buf, "%u", &input);
|
|
if (ret != 1)
|
|
return -EINVAL;
|
|
|
|
if (input > 1)
|
|
input = 1;
|
|
|
|
if (input == od_tuners->ignore_nice_load) { /* nothing to do */
|
|
return count;
|
|
}
|
|
od_tuners->ignore_nice_load = input;
|
|
|
|
/* we need to re-evaluate prev_cpu_idle */
|
|
for_each_online_cpu(j) {
|
|
struct od_cpu_dbs_info_s *dbs_info;
|
|
dbs_info = &per_cpu(od_cpu_dbs_info, j);
|
|
dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
|
|
&dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
|
|
if (od_tuners->ignore_nice_load)
|
|
dbs_info->cdbs.prev_cpu_nice =
|
|
kcpustat_cpu(j).cpustat[CPUTIME_NICE];
|
|
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
|
|
size_t count)
|
|
{
|
|
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
|
|
unsigned int input;
|
|
int ret;
|
|
ret = sscanf(buf, "%u", &input);
|
|
|
|
if (ret != 1)
|
|
return -EINVAL;
|
|
|
|
if (input > 1000)
|
|
input = 1000;
|
|
|
|
od_tuners->powersave_bias = input;
|
|
ondemand_powersave_bias_init();
|
|
return count;
|
|
}
|
|
|
|
show_store_one(od, sampling_rate);
|
|
show_store_one(od, io_is_busy);
|
|
show_store_one(od, up_threshold);
|
|
show_store_one(od, sampling_down_factor);
|
|
show_store_one(od, ignore_nice_load);
|
|
show_store_one(od, powersave_bias);
|
|
declare_show_sampling_rate_min(od);
|
|
|
|
gov_sys_pol_attr_rw(sampling_rate);
|
|
gov_sys_pol_attr_rw(io_is_busy);
|
|
gov_sys_pol_attr_rw(up_threshold);
|
|
gov_sys_pol_attr_rw(sampling_down_factor);
|
|
gov_sys_pol_attr_rw(ignore_nice_load);
|
|
gov_sys_pol_attr_rw(powersave_bias);
|
|
gov_sys_pol_attr_ro(sampling_rate_min);
|
|
|
|
static struct attribute *dbs_attributes_gov_sys[] = {
|
|
&sampling_rate_min_gov_sys.attr,
|
|
&sampling_rate_gov_sys.attr,
|
|
&up_threshold_gov_sys.attr,
|
|
&sampling_down_factor_gov_sys.attr,
|
|
&ignore_nice_load_gov_sys.attr,
|
|
&powersave_bias_gov_sys.attr,
|
|
&io_is_busy_gov_sys.attr,
|
|
NULL
|
|
};
|
|
|
|
static struct attribute_group od_attr_group_gov_sys = {
|
|
.attrs = dbs_attributes_gov_sys,
|
|
.name = "ondemand",
|
|
};
|
|
|
|
static struct attribute *dbs_attributes_gov_pol[] = {
|
|
&sampling_rate_min_gov_pol.attr,
|
|
&sampling_rate_gov_pol.attr,
|
|
&up_threshold_gov_pol.attr,
|
|
&sampling_down_factor_gov_pol.attr,
|
|
&ignore_nice_load_gov_pol.attr,
|
|
&powersave_bias_gov_pol.attr,
|
|
&io_is_busy_gov_pol.attr,
|
|
NULL
|
|
};
|
|
|
|
static struct attribute_group od_attr_group_gov_pol = {
|
|
.attrs = dbs_attributes_gov_pol,
|
|
.name = "ondemand",
|
|
};
|
|
|
|
/************************** sysfs end ************************/
|
|
|
|
static int od_init(struct dbs_data *dbs_data)
|
|
{
|
|
struct od_dbs_tuners *tuners;
|
|
u64 idle_time;
|
|
int cpu;
|
|
|
|
tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
|
|
if (!tuners) {
|
|
pr_err("%s: kzalloc failed\n", __func__);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
cpu = get_cpu();
|
|
idle_time = get_cpu_idle_time_us(cpu, NULL);
|
|
put_cpu();
|
|
if (idle_time != -1ULL) {
|
|
/* Idle micro accounting is supported. Use finer thresholds */
|
|
tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
|
|
/*
|
|
* In nohz/micro accounting case we set the minimum frequency
|
|
* not depending on HZ, but fixed (very low). The deferred
|
|
* timer might skip some samples if idle/sleeping as needed.
|
|
*/
|
|
dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
|
|
} else {
|
|
tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
|
|
|
|
/* For correct statistics, we need 10 ticks for each measure */
|
|
dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
|
|
jiffies_to_usecs(10);
|
|
}
|
|
|
|
tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
|
|
tuners->ignore_nice_load = 0;
|
|
tuners->powersave_bias = default_powersave_bias;
|
|
tuners->io_is_busy = should_io_be_busy();
|
|
|
|
dbs_data->tuners = tuners;
|
|
mutex_init(&dbs_data->mutex);
|
|
return 0;
|
|
}
|
|
|
|
static void od_exit(struct dbs_data *dbs_data)
|
|
{
|
|
kfree(dbs_data->tuners);
|
|
}
|
|
|
|
define_get_cpu_dbs_routines(od_cpu_dbs_info);
|
|
|
|
static struct od_ops od_ops = {
|
|
.powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
|
|
.powersave_bias_target = generic_powersave_bias_target,
|
|
.freq_increase = dbs_freq_increase,
|
|
};
|
|
|
|
static struct common_dbs_data od_dbs_cdata = {
|
|
.governor = GOV_ONDEMAND,
|
|
.attr_group_gov_sys = &od_attr_group_gov_sys,
|
|
.attr_group_gov_pol = &od_attr_group_gov_pol,
|
|
.get_cpu_cdbs = get_cpu_cdbs,
|
|
.get_cpu_dbs_info_s = get_cpu_dbs_info_s,
|
|
.gov_dbs_timer = od_dbs_timer,
|
|
.gov_check_cpu = od_check_cpu,
|
|
.gov_ops = &od_ops,
|
|
.init = od_init,
|
|
.exit = od_exit,
|
|
};
|
|
|
|
static void od_set_powersave_bias(unsigned int powersave_bias)
|
|
{
|
|
struct cpufreq_policy *policy;
|
|
struct dbs_data *dbs_data;
|
|
struct od_dbs_tuners *od_tuners;
|
|
unsigned int cpu;
|
|
cpumask_t done;
|
|
|
|
default_powersave_bias = powersave_bias;
|
|
cpumask_clear(&done);
|
|
|
|
get_online_cpus();
|
|
for_each_online_cpu(cpu) {
|
|
if (cpumask_test_cpu(cpu, &done))
|
|
continue;
|
|
|
|
policy = per_cpu(od_cpu_dbs_info, cpu).cdbs.cur_policy;
|
|
if (!policy)
|
|
continue;
|
|
|
|
cpumask_or(&done, &done, policy->cpus);
|
|
|
|
if (policy->governor != &cpufreq_gov_ondemand)
|
|
continue;
|
|
|
|
dbs_data = policy->governor_data;
|
|
od_tuners = dbs_data->tuners;
|
|
od_tuners->powersave_bias = default_powersave_bias;
|
|
}
|
|
put_online_cpus();
|
|
}
|
|
|
|
void od_register_powersave_bias_handler(unsigned int (*f)
|
|
(struct cpufreq_policy *, unsigned int, unsigned int),
|
|
unsigned int powersave_bias)
|
|
{
|
|
od_ops.powersave_bias_target = f;
|
|
od_set_powersave_bias(powersave_bias);
|
|
}
|
|
EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
|
|
|
|
void od_unregister_powersave_bias_handler(void)
|
|
{
|
|
od_ops.powersave_bias_target = generic_powersave_bias_target;
|
|
od_set_powersave_bias(0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
|
|
|
|
static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
|
|
unsigned int event)
|
|
{
|
|
return cpufreq_governor_dbs(policy, &od_dbs_cdata, event);
|
|
}
|
|
|
|
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
|
|
static
|
|
#endif
|
|
struct cpufreq_governor cpufreq_gov_ondemand = {
|
|
.name = "ondemand",
|
|
.governor = od_cpufreq_governor_dbs,
|
|
.max_transition_latency = TRANSITION_LATENCY_LIMIT,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static int __init cpufreq_gov_dbs_init(void)
|
|
{
|
|
return cpufreq_register_governor(&cpufreq_gov_ondemand);
|
|
}
|
|
|
|
static void __exit cpufreq_gov_dbs_exit(void)
|
|
{
|
|
cpufreq_unregister_governor(&cpufreq_gov_ondemand);
|
|
}
|
|
|
|
MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
|
|
MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
|
|
MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
|
|
"Low Latency Frequency Transition capable processors");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
|
|
fs_initcall(cpufreq_gov_dbs_init);
|
|
#else
|
|
module_init(cpufreq_gov_dbs_init);
|
|
#endif
|
|
module_exit(cpufreq_gov_dbs_exit);
|