mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-25 08:47:24 +07:00
baba6e572b
A few advantages: - Prepares us for the planned split of display uncore from GT uncore - Improves our engine-centric view of the world in the engine code and allows us to avoid jumping back to dev_priv. - Allows us to wrap accesses to engine register in nice macros that automatically pick the right mmio base. Signed-off-by: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com> Cc: Paulo Zanoni <paulo.r.zanoni@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Link: https://patchwork.freedesktop.org/patch/msgid/20190325214940.23632-10-daniele.ceraolospurio@intel.com
585 lines
17 KiB
C
585 lines
17 KiB
C
/* SPDX-License-Identifier: MIT */
|
|
#ifndef _INTEL_RINGBUFFER_H_
|
|
#define _INTEL_RINGBUFFER_H_
|
|
|
|
#include <drm/drm_util.h>
|
|
|
|
#include <linux/hashtable.h>
|
|
#include <linux/irq_work.h>
|
|
#include <linux/random.h>
|
|
#include <linux/seqlock.h>
|
|
|
|
#include "i915_gem_batch_pool.h"
|
|
#include "i915_pmu.h"
|
|
#include "i915_reg.h"
|
|
#include "i915_request.h"
|
|
#include "i915_selftest.h"
|
|
#include "i915_timeline.h"
|
|
#include "intel_engine_types.h"
|
|
#include "intel_gpu_commands.h"
|
|
#include "intel_workarounds.h"
|
|
|
|
struct drm_printer;
|
|
|
|
/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
|
|
* but keeps the logic simple. Indeed, the whole purpose of this macro is just
|
|
* to give some inclination as to some of the magic values used in the various
|
|
* workarounds!
|
|
*/
|
|
#define CACHELINE_BYTES 64
|
|
#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(u32))
|
|
|
|
/*
|
|
* The register defines to be used with the following macros need to accept a
|
|
* base param, e.g:
|
|
*
|
|
* REG_FOO(base) _MMIO((base) + <relative offset>)
|
|
* ENGINE_READ(engine, REG_FOO);
|
|
*
|
|
* register arrays are to be defined and accessed as follows:
|
|
*
|
|
* REG_BAR(base, i) _MMIO((base) + <relative offset> + (i) * <shift>)
|
|
* ENGINE_READ_IDX(engine, REG_BAR, i)
|
|
*/
|
|
|
|
#define __ENGINE_REG_OP(op__, engine__, ...) \
|
|
intel_uncore_##op__((engine__)->uncore, __VA_ARGS__)
|
|
|
|
#define __ENGINE_READ_OP(op__, engine__, reg__) \
|
|
__ENGINE_REG_OP(op__, (engine__), reg__((engine__)->mmio_base))
|
|
|
|
#define ENGINE_READ16(...) __ENGINE_READ_OP(read16, __VA_ARGS__)
|
|
#define ENGINE_READ(...) __ENGINE_READ_OP(read, __VA_ARGS__)
|
|
#define ENGINE_READ_FW(...) __ENGINE_READ_OP(read_fw, __VA_ARGS__)
|
|
#define ENGINE_POSTING_READ(...) __ENGINE_READ_OP(posting_read, __VA_ARGS__)
|
|
|
|
#define ENGINE_READ64(engine__, lower_reg__, upper_reg__) \
|
|
__ENGINE_REG_OP(read64_2x32, (engine__), \
|
|
lower_reg__((engine__)->mmio_base), \
|
|
upper_reg__((engine__)->mmio_base))
|
|
|
|
#define ENGINE_READ_IDX(engine__, reg__, idx__) \
|
|
__ENGINE_REG_OP(read, (engine__), reg__((engine__)->mmio_base, (idx__)))
|
|
|
|
#define __ENGINE_WRITE_OP(op__, engine__, reg__, val__) \
|
|
__ENGINE_REG_OP(op__, (engine__), reg__((engine__)->mmio_base), (val__))
|
|
|
|
#define ENGINE_WRITE16(...) __ENGINE_WRITE_OP(write16, __VA_ARGS__)
|
|
#define ENGINE_WRITE(...) __ENGINE_WRITE_OP(write, __VA_ARGS__)
|
|
#define ENGINE_WRITE_FW(...) __ENGINE_WRITE_OP(write_fw, __VA_ARGS__)
|
|
|
|
/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
|
|
* do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
|
|
*/
|
|
enum intel_engine_hangcheck_action {
|
|
ENGINE_IDLE = 0,
|
|
ENGINE_WAIT,
|
|
ENGINE_ACTIVE_SEQNO,
|
|
ENGINE_ACTIVE_HEAD,
|
|
ENGINE_ACTIVE_SUBUNITS,
|
|
ENGINE_WAIT_KICK,
|
|
ENGINE_DEAD,
|
|
};
|
|
|
|
static inline const char *
|
|
hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
|
|
{
|
|
switch (a) {
|
|
case ENGINE_IDLE:
|
|
return "idle";
|
|
case ENGINE_WAIT:
|
|
return "wait";
|
|
case ENGINE_ACTIVE_SEQNO:
|
|
return "active seqno";
|
|
case ENGINE_ACTIVE_HEAD:
|
|
return "active head";
|
|
case ENGINE_ACTIVE_SUBUNITS:
|
|
return "active subunits";
|
|
case ENGINE_WAIT_KICK:
|
|
return "wait kick";
|
|
case ENGINE_DEAD:
|
|
return "dead";
|
|
}
|
|
|
|
return "unknown";
|
|
}
|
|
|
|
void intel_engines_set_scheduler_caps(struct drm_i915_private *i915);
|
|
|
|
static inline bool __execlists_need_preempt(int prio, int last)
|
|
{
|
|
/*
|
|
* Allow preemption of low -> normal -> high, but we do
|
|
* not allow low priority tasks to preempt other low priority
|
|
* tasks under the impression that latency for low priority
|
|
* tasks does not matter (as much as background throughput),
|
|
* so kiss.
|
|
*
|
|
* More naturally we would write
|
|
* prio >= max(0, last);
|
|
* except that we wish to prevent triggering preemption at the same
|
|
* priority level: the task that is running should remain running
|
|
* to preserve FIFO ordering of dependencies.
|
|
*/
|
|
return prio > max(I915_PRIORITY_NORMAL - 1, last);
|
|
}
|
|
|
|
static inline void
|
|
execlists_set_active(struct intel_engine_execlists *execlists,
|
|
unsigned int bit)
|
|
{
|
|
__set_bit(bit, (unsigned long *)&execlists->active);
|
|
}
|
|
|
|
static inline bool
|
|
execlists_set_active_once(struct intel_engine_execlists *execlists,
|
|
unsigned int bit)
|
|
{
|
|
return !__test_and_set_bit(bit, (unsigned long *)&execlists->active);
|
|
}
|
|
|
|
static inline void
|
|
execlists_clear_active(struct intel_engine_execlists *execlists,
|
|
unsigned int bit)
|
|
{
|
|
__clear_bit(bit, (unsigned long *)&execlists->active);
|
|
}
|
|
|
|
static inline void
|
|
execlists_clear_all_active(struct intel_engine_execlists *execlists)
|
|
{
|
|
execlists->active = 0;
|
|
}
|
|
|
|
static inline bool
|
|
execlists_is_active(const struct intel_engine_execlists *execlists,
|
|
unsigned int bit)
|
|
{
|
|
return test_bit(bit, (unsigned long *)&execlists->active);
|
|
}
|
|
|
|
void execlists_user_begin(struct intel_engine_execlists *execlists,
|
|
const struct execlist_port *port);
|
|
void execlists_user_end(struct intel_engine_execlists *execlists);
|
|
|
|
void
|
|
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists);
|
|
|
|
void
|
|
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists);
|
|
|
|
static inline unsigned int
|
|
execlists_num_ports(const struct intel_engine_execlists * const execlists)
|
|
{
|
|
return execlists->port_mask + 1;
|
|
}
|
|
|
|
static inline struct execlist_port *
|
|
execlists_port_complete(struct intel_engine_execlists * const execlists,
|
|
struct execlist_port * const port)
|
|
{
|
|
const unsigned int m = execlists->port_mask;
|
|
|
|
GEM_BUG_ON(port_index(port, execlists) != 0);
|
|
GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
|
|
|
|
memmove(port, port + 1, m * sizeof(struct execlist_port));
|
|
memset(port + m, 0, sizeof(struct execlist_port));
|
|
|
|
return port;
|
|
}
|
|
|
|
static inline u32
|
|
intel_read_status_page(const struct intel_engine_cs *engine, int reg)
|
|
{
|
|
/* Ensure that the compiler doesn't optimize away the load. */
|
|
return READ_ONCE(engine->status_page.addr[reg]);
|
|
}
|
|
|
|
static inline void
|
|
intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
|
|
{
|
|
/* Writing into the status page should be done sparingly. Since
|
|
* we do when we are uncertain of the device state, we take a bit
|
|
* of extra paranoia to try and ensure that the HWS takes the value
|
|
* we give and that it doesn't end up trapped inside the CPU!
|
|
*/
|
|
if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
|
|
mb();
|
|
clflush(&engine->status_page.addr[reg]);
|
|
engine->status_page.addr[reg] = value;
|
|
clflush(&engine->status_page.addr[reg]);
|
|
mb();
|
|
} else {
|
|
WRITE_ONCE(engine->status_page.addr[reg], value);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Reads a dword out of the status page, which is written to from the command
|
|
* queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
|
|
* MI_STORE_DATA_IMM.
|
|
*
|
|
* The following dwords have a reserved meaning:
|
|
* 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
|
|
* 0x04: ring 0 head pointer
|
|
* 0x05: ring 1 head pointer (915-class)
|
|
* 0x06: ring 2 head pointer (915-class)
|
|
* 0x10-0x1b: Context status DWords (GM45)
|
|
* 0x1f: Last written status offset. (GM45)
|
|
* 0x20-0x2f: Reserved (Gen6+)
|
|
*
|
|
* The area from dword 0x30 to 0x3ff is available for driver usage.
|
|
*/
|
|
#define I915_GEM_HWS_PREEMPT 0x32
|
|
#define I915_GEM_HWS_PREEMPT_ADDR (I915_GEM_HWS_PREEMPT * sizeof(u32))
|
|
#define I915_GEM_HWS_HANGCHECK 0x34
|
|
#define I915_GEM_HWS_HANGCHECK_ADDR (I915_GEM_HWS_HANGCHECK * sizeof(u32))
|
|
#define I915_GEM_HWS_SEQNO 0x40
|
|
#define I915_GEM_HWS_SEQNO_ADDR (I915_GEM_HWS_SEQNO * sizeof(u32))
|
|
#define I915_GEM_HWS_SCRATCH 0x80
|
|
#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH * sizeof(u32))
|
|
|
|
#define I915_HWS_CSB_BUF0_INDEX 0x10
|
|
#define I915_HWS_CSB_WRITE_INDEX 0x1f
|
|
#define CNL_HWS_CSB_WRITE_INDEX 0x2f
|
|
|
|
struct intel_ring *
|
|
intel_engine_create_ring(struct intel_engine_cs *engine,
|
|
struct i915_timeline *timeline,
|
|
int size);
|
|
int intel_ring_pin(struct intel_ring *ring);
|
|
void intel_ring_reset(struct intel_ring *ring, u32 tail);
|
|
unsigned int intel_ring_update_space(struct intel_ring *ring);
|
|
void intel_ring_unpin(struct intel_ring *ring);
|
|
void intel_ring_free(struct kref *ref);
|
|
|
|
static inline struct intel_ring *intel_ring_get(struct intel_ring *ring)
|
|
{
|
|
kref_get(&ring->ref);
|
|
return ring;
|
|
}
|
|
|
|
static inline void intel_ring_put(struct intel_ring *ring)
|
|
{
|
|
kref_put(&ring->ref, intel_ring_free);
|
|
}
|
|
|
|
void intel_engine_stop(struct intel_engine_cs *engine);
|
|
void intel_engine_cleanup(struct intel_engine_cs *engine);
|
|
|
|
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
|
|
|
|
int __must_check intel_ring_cacheline_align(struct i915_request *rq);
|
|
|
|
u32 __must_check *intel_ring_begin(struct i915_request *rq, unsigned int n);
|
|
|
|
static inline void intel_ring_advance(struct i915_request *rq, u32 *cs)
|
|
{
|
|
/* Dummy function.
|
|
*
|
|
* This serves as a placeholder in the code so that the reader
|
|
* can compare against the preceding intel_ring_begin() and
|
|
* check that the number of dwords emitted matches the space
|
|
* reserved for the command packet (i.e. the value passed to
|
|
* intel_ring_begin()).
|
|
*/
|
|
GEM_BUG_ON((rq->ring->vaddr + rq->ring->emit) != cs);
|
|
}
|
|
|
|
static inline u32 intel_ring_wrap(const struct intel_ring *ring, u32 pos)
|
|
{
|
|
return pos & (ring->size - 1);
|
|
}
|
|
|
|
static inline bool
|
|
intel_ring_offset_valid(const struct intel_ring *ring,
|
|
unsigned int pos)
|
|
{
|
|
if (pos & -ring->size) /* must be strictly within the ring */
|
|
return false;
|
|
|
|
if (!IS_ALIGNED(pos, 8)) /* must be qword aligned */
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline u32 intel_ring_offset(const struct i915_request *rq, void *addr)
|
|
{
|
|
/* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
|
|
u32 offset = addr - rq->ring->vaddr;
|
|
GEM_BUG_ON(offset > rq->ring->size);
|
|
return intel_ring_wrap(rq->ring, offset);
|
|
}
|
|
|
|
static inline void
|
|
assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
|
|
{
|
|
GEM_BUG_ON(!intel_ring_offset_valid(ring, tail));
|
|
|
|
/*
|
|
* "Ring Buffer Use"
|
|
* Gen2 BSpec "1. Programming Environment" / 1.4.4.6
|
|
* Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5
|
|
* Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5
|
|
* "If the Ring Buffer Head Pointer and the Tail Pointer are on the
|
|
* same cacheline, the Head Pointer must not be greater than the Tail
|
|
* Pointer."
|
|
*
|
|
* We use ring->head as the last known location of the actual RING_HEAD,
|
|
* it may have advanced but in the worst case it is equally the same
|
|
* as ring->head and so we should never program RING_TAIL to advance
|
|
* into the same cacheline as ring->head.
|
|
*/
|
|
#define cacheline(a) round_down(a, CACHELINE_BYTES)
|
|
GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) &&
|
|
tail < ring->head);
|
|
#undef cacheline
|
|
}
|
|
|
|
static inline unsigned int
|
|
intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
|
|
{
|
|
/* Whilst writes to the tail are strictly order, there is no
|
|
* serialisation between readers and the writers. The tail may be
|
|
* read by i915_request_retire() just as it is being updated
|
|
* by execlists, as although the breadcrumb is complete, the context
|
|
* switch hasn't been seen.
|
|
*/
|
|
assert_ring_tail_valid(ring, tail);
|
|
ring->tail = tail;
|
|
return tail;
|
|
}
|
|
|
|
static inline unsigned int
|
|
__intel_ring_space(unsigned int head, unsigned int tail, unsigned int size)
|
|
{
|
|
/*
|
|
* "If the Ring Buffer Head Pointer and the Tail Pointer are on the
|
|
* same cacheline, the Head Pointer must not be greater than the Tail
|
|
* Pointer."
|
|
*/
|
|
GEM_BUG_ON(!is_power_of_2(size));
|
|
return (head - tail - CACHELINE_BYTES) & (size - 1);
|
|
}
|
|
|
|
int intel_engine_setup_common(struct intel_engine_cs *engine);
|
|
int intel_engine_init_common(struct intel_engine_cs *engine);
|
|
void intel_engine_cleanup_common(struct intel_engine_cs *engine);
|
|
|
|
int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
|
|
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
|
|
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
|
|
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
|
|
|
|
int intel_engine_stop_cs(struct intel_engine_cs *engine);
|
|
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine);
|
|
|
|
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask);
|
|
|
|
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine);
|
|
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine);
|
|
|
|
void intel_engine_get_instdone(struct intel_engine_cs *engine,
|
|
struct intel_instdone *instdone);
|
|
|
|
void intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
|
|
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
|
|
|
|
void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine);
|
|
void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine);
|
|
|
|
bool intel_engine_signal_breadcrumbs(struct intel_engine_cs *engine);
|
|
void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
|
|
|
|
static inline void
|
|
intel_engine_queue_breadcrumbs(struct intel_engine_cs *engine)
|
|
{
|
|
irq_work_queue(&engine->breadcrumbs.irq_work);
|
|
}
|
|
|
|
bool intel_engine_breadcrumbs_irq(struct intel_engine_cs *engine);
|
|
|
|
void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
|
|
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
|
|
|
|
void intel_engine_print_breadcrumbs(struct intel_engine_cs *engine,
|
|
struct drm_printer *p);
|
|
|
|
static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
|
|
{
|
|
memset(batch, 0, 6 * sizeof(u32));
|
|
|
|
batch[0] = GFX_OP_PIPE_CONTROL(6);
|
|
batch[1] = flags;
|
|
batch[2] = offset;
|
|
|
|
return batch + 6;
|
|
}
|
|
|
|
static inline u32 *
|
|
gen8_emit_ggtt_write_rcs(u32 *cs, u32 value, u32 gtt_offset, u32 flags)
|
|
{
|
|
/* We're using qword write, offset should be aligned to 8 bytes. */
|
|
GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));
|
|
|
|
/* w/a for post sync ops following a GPGPU operation we
|
|
* need a prior CS_STALL, which is emitted by the flush
|
|
* following the batch.
|
|
*/
|
|
*cs++ = GFX_OP_PIPE_CONTROL(6);
|
|
*cs++ = flags | PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_GLOBAL_GTT_IVB;
|
|
*cs++ = gtt_offset;
|
|
*cs++ = 0;
|
|
*cs++ = value;
|
|
/* We're thrashing one dword of HWS. */
|
|
*cs++ = 0;
|
|
|
|
return cs;
|
|
}
|
|
|
|
static inline u32 *
|
|
gen8_emit_ggtt_write(u32 *cs, u32 value, u32 gtt_offset, u32 flags)
|
|
{
|
|
/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
|
|
GEM_BUG_ON(gtt_offset & (1 << 5));
|
|
/* Offset should be aligned to 8 bytes for both (QW/DW) write types */
|
|
GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));
|
|
|
|
*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW | flags;
|
|
*cs++ = gtt_offset | MI_FLUSH_DW_USE_GTT;
|
|
*cs++ = 0;
|
|
*cs++ = value;
|
|
|
|
return cs;
|
|
}
|
|
|
|
static inline void intel_engine_reset(struct intel_engine_cs *engine,
|
|
bool stalled)
|
|
{
|
|
if (engine->reset.reset)
|
|
engine->reset.reset(engine, stalled);
|
|
}
|
|
|
|
void intel_engines_sanitize(struct drm_i915_private *i915, bool force);
|
|
|
|
bool intel_engine_is_idle(struct intel_engine_cs *engine);
|
|
bool intel_engines_are_idle(struct drm_i915_private *dev_priv);
|
|
|
|
void intel_engine_lost_context(struct intel_engine_cs *engine);
|
|
|
|
void intel_engines_park(struct drm_i915_private *i915);
|
|
void intel_engines_unpark(struct drm_i915_private *i915);
|
|
|
|
void intel_engines_reset_default_submission(struct drm_i915_private *i915);
|
|
unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915);
|
|
|
|
bool intel_engine_can_store_dword(struct intel_engine_cs *engine);
|
|
|
|
__printf(3, 4)
|
|
void intel_engine_dump(struct intel_engine_cs *engine,
|
|
struct drm_printer *m,
|
|
const char *header, ...);
|
|
|
|
struct intel_engine_cs *
|
|
intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance);
|
|
|
|
static inline void intel_engine_context_in(struct intel_engine_cs *engine)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (READ_ONCE(engine->stats.enabled) == 0)
|
|
return;
|
|
|
|
write_seqlock_irqsave(&engine->stats.lock, flags);
|
|
|
|
if (engine->stats.enabled > 0) {
|
|
if (engine->stats.active++ == 0)
|
|
engine->stats.start = ktime_get();
|
|
GEM_BUG_ON(engine->stats.active == 0);
|
|
}
|
|
|
|
write_sequnlock_irqrestore(&engine->stats.lock, flags);
|
|
}
|
|
|
|
static inline void intel_engine_context_out(struct intel_engine_cs *engine)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (READ_ONCE(engine->stats.enabled) == 0)
|
|
return;
|
|
|
|
write_seqlock_irqsave(&engine->stats.lock, flags);
|
|
|
|
if (engine->stats.enabled > 0) {
|
|
ktime_t last;
|
|
|
|
if (engine->stats.active && --engine->stats.active == 0) {
|
|
/*
|
|
* Decrement the active context count and in case GPU
|
|
* is now idle add up to the running total.
|
|
*/
|
|
last = ktime_sub(ktime_get(), engine->stats.start);
|
|
|
|
engine->stats.total = ktime_add(engine->stats.total,
|
|
last);
|
|
} else if (engine->stats.active == 0) {
|
|
/*
|
|
* After turning on engine stats, context out might be
|
|
* the first event in which case we account from the
|
|
* time stats gathering was turned on.
|
|
*/
|
|
last = ktime_sub(ktime_get(), engine->stats.enabled_at);
|
|
|
|
engine->stats.total = ktime_add(engine->stats.total,
|
|
last);
|
|
}
|
|
}
|
|
|
|
write_sequnlock_irqrestore(&engine->stats.lock, flags);
|
|
}
|
|
|
|
int intel_enable_engine_stats(struct intel_engine_cs *engine);
|
|
void intel_disable_engine_stats(struct intel_engine_cs *engine);
|
|
|
|
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine);
|
|
|
|
struct i915_request *
|
|
intel_engine_find_active_request(struct intel_engine_cs *engine);
|
|
|
|
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
|
|
|
|
static inline bool inject_preempt_hang(struct intel_engine_execlists *execlists)
|
|
{
|
|
if (!execlists->preempt_hang.inject_hang)
|
|
return false;
|
|
|
|
complete(&execlists->preempt_hang.completion);
|
|
return true;
|
|
}
|
|
|
|
#else
|
|
|
|
static inline bool inject_preempt_hang(struct intel_engine_execlists *execlists)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
#endif
|
|
|
|
static inline u32
|
|
intel_engine_next_hangcheck_seqno(struct intel_engine_cs *engine)
|
|
{
|
|
return engine->hangcheck.next_seqno =
|
|
next_pseudo_random32(engine->hangcheck.next_seqno);
|
|
}
|
|
|
|
static inline u32
|
|
intel_engine_get_hangcheck_seqno(struct intel_engine_cs *engine)
|
|
{
|
|
return intel_read_status_page(engine, I915_GEM_HWS_HANGCHECK);
|
|
}
|
|
|
|
#endif /* _INTEL_RINGBUFFER_H_ */
|