mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-25 13:52:22 +07:00
0ee958e102
This patch introduces a new SMP implementation for systems implementing the MIPS Coherent Processing System architecture. The kernel will make use of the Coherence Manager, Cluster Power Controller & Global Interrupt Controller in order to detect, bring up & make use of other cores in the system. SMTC is not supported, so only a single TC per VPE in the system is used. That is, this option enables an SMVP style setup but across multiple cores. Signed-off-by: Paul Burton <paul.burton@imgtec.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/6362/ Patchwork: https://patchwork.linux-mips.org/patch/6611/ Patchwork: https://patchwork.linux-mips.org/patch/6651/ Patchwork: https://patchwork.linux-mips.org/patch/6652/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
336 lines
8.0 KiB
C
336 lines
8.0 KiB
C
/*
|
|
* Copyright (C) 2013 Imagination Technologies
|
|
* Author: Paul Burton <paul.burton@imgtec.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
* option) any later version.
|
|
*/
|
|
|
|
#include <linux/io.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/types.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/gic.h>
|
|
#include <asm/mips-cm.h>
|
|
#include <asm/mips-cpc.h>
|
|
#include <asm/mips_mt.h>
|
|
#include <asm/mipsregs.h>
|
|
#include <asm/smp-cps.h>
|
|
#include <asm/time.h>
|
|
#include <asm/uasm.h>
|
|
|
|
static DECLARE_BITMAP(core_power, NR_CPUS);
|
|
|
|
struct boot_config mips_cps_bootcfg;
|
|
|
|
static void init_core(void)
|
|
{
|
|
unsigned int nvpes, t;
|
|
u32 mvpconf0, vpeconf0, vpecontrol, tcstatus, tcbind, status;
|
|
|
|
if (!cpu_has_mipsmt)
|
|
return;
|
|
|
|
/* Enter VPE configuration state */
|
|
dvpe();
|
|
set_c0_mvpcontrol(MVPCONTROL_VPC);
|
|
|
|
/* Retrieve the count of VPEs in this core */
|
|
mvpconf0 = read_c0_mvpconf0();
|
|
nvpes = ((mvpconf0 & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
|
|
smp_num_siblings = nvpes;
|
|
|
|
for (t = 1; t < nvpes; t++) {
|
|
/* Use a 1:1 mapping of TC index to VPE index */
|
|
settc(t);
|
|
|
|
/* Bind 1 TC to this VPE */
|
|
tcbind = read_tc_c0_tcbind();
|
|
tcbind &= ~TCBIND_CURVPE;
|
|
tcbind |= t << TCBIND_CURVPE_SHIFT;
|
|
write_tc_c0_tcbind(tcbind);
|
|
|
|
/* Set exclusive TC, non-active, master */
|
|
vpeconf0 = read_vpe_c0_vpeconf0();
|
|
vpeconf0 &= ~(VPECONF0_XTC | VPECONF0_VPA);
|
|
vpeconf0 |= t << VPECONF0_XTC_SHIFT;
|
|
vpeconf0 |= VPECONF0_MVP;
|
|
write_vpe_c0_vpeconf0(vpeconf0);
|
|
|
|
/* Declare TC non-active, non-allocatable & interrupt exempt */
|
|
tcstatus = read_tc_c0_tcstatus();
|
|
tcstatus &= ~(TCSTATUS_A | TCSTATUS_DA);
|
|
tcstatus |= TCSTATUS_IXMT;
|
|
write_tc_c0_tcstatus(tcstatus);
|
|
|
|
/* Halt the TC */
|
|
write_tc_c0_tchalt(TCHALT_H);
|
|
|
|
/* Allow only 1 TC to execute */
|
|
vpecontrol = read_vpe_c0_vpecontrol();
|
|
vpecontrol &= ~VPECONTROL_TE;
|
|
write_vpe_c0_vpecontrol(vpecontrol);
|
|
|
|
/* Copy (most of) Status from VPE 0 */
|
|
status = read_c0_status();
|
|
status &= ~(ST0_IM | ST0_IE | ST0_KSU);
|
|
status |= ST0_CU0;
|
|
write_vpe_c0_status(status);
|
|
|
|
/* Copy Config from VPE 0 */
|
|
write_vpe_c0_config(read_c0_config());
|
|
write_vpe_c0_config7(read_c0_config7());
|
|
|
|
/* Ensure no software interrupts are pending */
|
|
write_vpe_c0_cause(0);
|
|
|
|
/* Sync Count */
|
|
write_vpe_c0_count(read_c0_count());
|
|
}
|
|
|
|
/* Leave VPE configuration state */
|
|
clear_c0_mvpcontrol(MVPCONTROL_VPC);
|
|
}
|
|
|
|
static void __init cps_smp_setup(void)
|
|
{
|
|
unsigned int ncores, nvpes, core_vpes;
|
|
int c, v;
|
|
u32 core_cfg, *entry_code;
|
|
|
|
/* Detect & record VPE topology */
|
|
ncores = mips_cm_numcores();
|
|
pr_info("VPE topology ");
|
|
for (c = nvpes = 0; c < ncores; c++) {
|
|
if (cpu_has_mipsmt && config_enabled(CONFIG_MIPS_MT_SMP)) {
|
|
write_gcr_cl_other(c << CM_GCR_Cx_OTHER_CORENUM_SHF);
|
|
core_cfg = read_gcr_co_config();
|
|
core_vpes = ((core_cfg & CM_GCR_Cx_CONFIG_PVPE_MSK) >>
|
|
CM_GCR_Cx_CONFIG_PVPE_SHF) + 1;
|
|
} else {
|
|
core_vpes = 1;
|
|
}
|
|
|
|
pr_cont("%c%u", c ? ',' : '{', core_vpes);
|
|
|
|
for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
|
|
cpu_data[nvpes + v].core = c;
|
|
#ifdef CONFIG_MIPS_MT_SMP
|
|
cpu_data[nvpes + v].vpe_id = v;
|
|
#endif
|
|
}
|
|
|
|
nvpes += core_vpes;
|
|
}
|
|
pr_cont("} total %u\n", nvpes);
|
|
|
|
/* Indicate present CPUs (CPU being synonymous with VPE) */
|
|
for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
|
|
set_cpu_possible(v, true);
|
|
set_cpu_present(v, true);
|
|
__cpu_number_map[v] = v;
|
|
__cpu_logical_map[v] = v;
|
|
}
|
|
|
|
/* Core 0 is powered up (we're running on it) */
|
|
bitmap_set(core_power, 0, 1);
|
|
|
|
/* Disable MT - we only want to run 1 TC per VPE */
|
|
if (cpu_has_mipsmt)
|
|
dmt();
|
|
|
|
/* Initialise core 0 */
|
|
init_core();
|
|
|
|
/* Patch the start of mips_cps_core_entry to provide the CM base */
|
|
entry_code = (u32 *)&mips_cps_core_entry;
|
|
UASM_i_LA(&entry_code, 3, (long)mips_cm_base);
|
|
|
|
/* Make core 0 coherent with everything */
|
|
write_gcr_cl_coherence(0xff);
|
|
}
|
|
|
|
static void __init cps_prepare_cpus(unsigned int max_cpus)
|
|
{
|
|
mips_mt_set_cpuoptions();
|
|
}
|
|
|
|
static void boot_core(struct boot_config *cfg)
|
|
{
|
|
u32 access;
|
|
|
|
/* Select the appropriate core */
|
|
write_gcr_cl_other(cfg->core << CM_GCR_Cx_OTHER_CORENUM_SHF);
|
|
|
|
/* Set its reset vector */
|
|
write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
|
|
|
|
/* Ensure its coherency is disabled */
|
|
write_gcr_co_coherence(0);
|
|
|
|
/* Ensure the core can access the GCRs */
|
|
access = read_gcr_access();
|
|
access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + cfg->core);
|
|
write_gcr_access(access);
|
|
|
|
/* Copy cfg */
|
|
mips_cps_bootcfg = *cfg;
|
|
|
|
if (mips_cpc_present()) {
|
|
/* Select the appropriate core */
|
|
write_cpc_cl_other(cfg->core << CPC_Cx_OTHER_CORENUM_SHF);
|
|
|
|
/* Reset the core */
|
|
write_cpc_co_cmd(CPC_Cx_CMD_RESET);
|
|
} else {
|
|
/* Take the core out of reset */
|
|
write_gcr_co_reset_release(0);
|
|
}
|
|
|
|
/* The core is now powered up */
|
|
bitmap_set(core_power, cfg->core, 1);
|
|
}
|
|
|
|
static void boot_vpe(void *info)
|
|
{
|
|
struct boot_config *cfg = info;
|
|
u32 tcstatus, vpeconf0;
|
|
|
|
/* Enter VPE configuration state */
|
|
dvpe();
|
|
set_c0_mvpcontrol(MVPCONTROL_VPC);
|
|
|
|
settc(cfg->vpe);
|
|
|
|
/* Set the TC restart PC */
|
|
write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
|
|
|
|
/* Activate the TC, allow interrupts */
|
|
tcstatus = read_tc_c0_tcstatus();
|
|
tcstatus &= ~TCSTATUS_IXMT;
|
|
tcstatus |= TCSTATUS_A;
|
|
write_tc_c0_tcstatus(tcstatus);
|
|
|
|
/* Clear the TC halt bit */
|
|
write_tc_c0_tchalt(0);
|
|
|
|
/* Activate the VPE */
|
|
vpeconf0 = read_vpe_c0_vpeconf0();
|
|
vpeconf0 |= VPECONF0_VPA;
|
|
write_vpe_c0_vpeconf0(vpeconf0);
|
|
|
|
/* Set the stack & global pointer registers */
|
|
write_tc_gpr_sp(cfg->sp);
|
|
write_tc_gpr_gp(cfg->gp);
|
|
|
|
/* Leave VPE configuration state */
|
|
clear_c0_mvpcontrol(MVPCONTROL_VPC);
|
|
|
|
/* Enable other VPEs to execute */
|
|
evpe(EVPE_ENABLE);
|
|
}
|
|
|
|
static void cps_boot_secondary(int cpu, struct task_struct *idle)
|
|
{
|
|
struct boot_config cfg;
|
|
unsigned int remote;
|
|
int err;
|
|
|
|
cfg.core = cpu_data[cpu].core;
|
|
cfg.vpe = cpu_vpe_id(&cpu_data[cpu]);
|
|
cfg.pc = (unsigned long)&smp_bootstrap;
|
|
cfg.sp = __KSTK_TOS(idle);
|
|
cfg.gp = (unsigned long)task_thread_info(idle);
|
|
|
|
if (!test_bit(cfg.core, core_power)) {
|
|
/* Boot a VPE on a powered down core */
|
|
boot_core(&cfg);
|
|
return;
|
|
}
|
|
|
|
if (cfg.core != current_cpu_data.core) {
|
|
/* Boot a VPE on another powered up core */
|
|
for (remote = 0; remote < NR_CPUS; remote++) {
|
|
if (cpu_data[remote].core != cfg.core)
|
|
continue;
|
|
if (cpu_online(remote))
|
|
break;
|
|
}
|
|
BUG_ON(remote >= NR_CPUS);
|
|
|
|
err = smp_call_function_single(remote, boot_vpe, &cfg, 1);
|
|
if (err)
|
|
panic("Failed to call remote CPU\n");
|
|
return;
|
|
}
|
|
|
|
BUG_ON(!cpu_has_mipsmt);
|
|
|
|
/* Boot a VPE on this core */
|
|
boot_vpe(&cfg);
|
|
}
|
|
|
|
static void cps_init_secondary(void)
|
|
{
|
|
/* Disable MT - we only want to run 1 TC per VPE */
|
|
if (cpu_has_mipsmt)
|
|
dmt();
|
|
|
|
/* TODO: revisit this assumption once hotplug is implemented */
|
|
if (cpu_vpe_id(¤t_cpu_data) == 0)
|
|
init_core();
|
|
|
|
change_c0_status(ST0_IM, STATUSF_IP3 | STATUSF_IP4 |
|
|
STATUSF_IP6 | STATUSF_IP7);
|
|
}
|
|
|
|
static void cps_smp_finish(void)
|
|
{
|
|
write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
|
|
|
|
#ifdef CONFIG_MIPS_MT_FPAFF
|
|
/* If we have an FPU, enroll ourselves in the FPU-full mask */
|
|
if (cpu_has_fpu)
|
|
cpu_set(smp_processor_id(), mt_fpu_cpumask);
|
|
#endif /* CONFIG_MIPS_MT_FPAFF */
|
|
|
|
local_irq_enable();
|
|
}
|
|
|
|
static void cps_cpus_done(void)
|
|
{
|
|
}
|
|
|
|
static struct plat_smp_ops cps_smp_ops = {
|
|
.smp_setup = cps_smp_setup,
|
|
.prepare_cpus = cps_prepare_cpus,
|
|
.boot_secondary = cps_boot_secondary,
|
|
.init_secondary = cps_init_secondary,
|
|
.smp_finish = cps_smp_finish,
|
|
.send_ipi_single = gic_send_ipi_single,
|
|
.send_ipi_mask = gic_send_ipi_mask,
|
|
.cpus_done = cps_cpus_done,
|
|
};
|
|
|
|
int register_cps_smp_ops(void)
|
|
{
|
|
if (!mips_cm_present()) {
|
|
pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* check we have a GIC - we need one for IPIs */
|
|
if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) {
|
|
pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
register_smp_ops(&cps_smp_ops);
|
|
return 0;
|
|
}
|