mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
0f52b3a00c
The commite7e8184747
("powerpc/64s: move machine check SLB flushing to mm/slb.c") introduced a bug in reloading bolted SLB entries. Unused bolted entries are stored with .esid=0 in the slb_shadow area, and that value is now used directly as the RB input to slbmte, which means the RB[52:63] index field is set to 0, which causes SLB entry 0 to be cleared. Fix this by storing the index bits in the unused bolted entries, which directs the slbmte to the right place. The SLB shadow area is also used by the hypervisor, but PAPR is okay with that, from LoPAPR v1.1, 14.11.1.3 SLB Shadow Buffer: Note: SLB is filled sequentially starting at index 0 from the shadow buffer ignoring the contents of RB field bits 52-63 Fixes:e7e8184747
("powerpc/64s: move machine check SLB flushing to mm/slb.c") Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Reviewed-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
503 lines
15 KiB
C
503 lines
15 KiB
C
/*
|
|
* PowerPC64 SLB support.
|
|
*
|
|
* Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
|
|
* Based on earlier code written by:
|
|
* Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
|
|
* Copyright (c) 2001 Dave Engebretsen
|
|
* Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
|
|
*
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <asm/pgtable.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/paca.h>
|
|
#include <asm/cputable.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/smp.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/context_tracking.h>
|
|
#include <linux/mm_types.h>
|
|
|
|
#include <asm/udbg.h>
|
|
#include <asm/code-patching.h>
|
|
|
|
enum slb_index {
|
|
LINEAR_INDEX = 0, /* Kernel linear map (0xc000000000000000) */
|
|
VMALLOC_INDEX = 1, /* Kernel virtual map (0xd000000000000000) */
|
|
KSTACK_INDEX = 2, /* Kernel stack map */
|
|
};
|
|
|
|
extern void slb_allocate(unsigned long ea);
|
|
|
|
#define slb_esid_mask(ssize) \
|
|
(((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
|
|
|
|
static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
|
|
enum slb_index index)
|
|
{
|
|
return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
|
|
}
|
|
|
|
static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
|
|
unsigned long flags)
|
|
{
|
|
return (get_kernel_vsid(ea, ssize) << slb_vsid_shift(ssize)) | flags |
|
|
((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
|
|
}
|
|
|
|
static inline void slb_shadow_update(unsigned long ea, int ssize,
|
|
unsigned long flags,
|
|
enum slb_index index)
|
|
{
|
|
struct slb_shadow *p = get_slb_shadow();
|
|
|
|
/*
|
|
* Clear the ESID first so the entry is not valid while we are
|
|
* updating it. No write barriers are needed here, provided
|
|
* we only update the current CPU's SLB shadow buffer.
|
|
*/
|
|
WRITE_ONCE(p->save_area[index].esid, 0);
|
|
WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags)));
|
|
WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index)));
|
|
}
|
|
|
|
static inline void slb_shadow_clear(enum slb_index index)
|
|
{
|
|
WRITE_ONCE(get_slb_shadow()->save_area[index].esid, cpu_to_be64(index));
|
|
}
|
|
|
|
static inline void create_shadowed_slbe(unsigned long ea, int ssize,
|
|
unsigned long flags,
|
|
enum slb_index index)
|
|
{
|
|
/*
|
|
* Updating the shadow buffer before writing the SLB ensures
|
|
* we don't get a stale entry here if we get preempted by PHYP
|
|
* between these two statements.
|
|
*/
|
|
slb_shadow_update(ea, ssize, flags, index);
|
|
|
|
asm volatile("slbmte %0,%1" :
|
|
: "r" (mk_vsid_data(ea, ssize, flags)),
|
|
"r" (mk_esid_data(ea, ssize, index))
|
|
: "memory" );
|
|
}
|
|
|
|
/*
|
|
* Insert bolted entries into SLB (which may not be empty, so don't clear
|
|
* slb_cache_ptr).
|
|
*/
|
|
void __slb_restore_bolted_realmode(void)
|
|
{
|
|
struct slb_shadow *p = get_slb_shadow();
|
|
enum slb_index index;
|
|
|
|
/* No isync needed because realmode. */
|
|
for (index = 0; index < SLB_NUM_BOLTED; index++) {
|
|
asm volatile("slbmte %0,%1" :
|
|
: "r" (be64_to_cpu(p->save_area[index].vsid)),
|
|
"r" (be64_to_cpu(p->save_area[index].esid)));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Insert the bolted entries into an empty SLB.
|
|
* This is not the same as rebolt because the bolted segments are not
|
|
* changed, just loaded from the shadow area.
|
|
*/
|
|
void slb_restore_bolted_realmode(void)
|
|
{
|
|
__slb_restore_bolted_realmode();
|
|
get_paca()->slb_cache_ptr = 0;
|
|
}
|
|
|
|
/*
|
|
* This flushes all SLB entries including 0, so it must be realmode.
|
|
*/
|
|
void slb_flush_all_realmode(void)
|
|
{
|
|
/*
|
|
* This flushes all SLB entries including 0, so it must be realmode.
|
|
*/
|
|
asm volatile("slbmte %0,%0; slbia" : : "r" (0));
|
|
}
|
|
|
|
static void __slb_flush_and_rebolt(void)
|
|
{
|
|
/* If you change this make sure you change SLB_NUM_BOLTED
|
|
* and PR KVM appropriately too. */
|
|
unsigned long linear_llp, vmalloc_llp, lflags, vflags;
|
|
unsigned long ksp_esid_data, ksp_vsid_data;
|
|
|
|
linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
|
|
vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
|
|
lflags = SLB_VSID_KERNEL | linear_llp;
|
|
vflags = SLB_VSID_KERNEL | vmalloc_llp;
|
|
|
|
ksp_esid_data = mk_esid_data(get_paca()->kstack, mmu_kernel_ssize, KSTACK_INDEX);
|
|
if ((ksp_esid_data & ~0xfffffffUL) <= PAGE_OFFSET) {
|
|
ksp_esid_data &= ~SLB_ESID_V;
|
|
ksp_vsid_data = 0;
|
|
slb_shadow_clear(KSTACK_INDEX);
|
|
} else {
|
|
/* Update stack entry; others don't change */
|
|
slb_shadow_update(get_paca()->kstack, mmu_kernel_ssize, lflags, KSTACK_INDEX);
|
|
ksp_vsid_data =
|
|
be64_to_cpu(get_slb_shadow()->save_area[KSTACK_INDEX].vsid);
|
|
}
|
|
|
|
/* We need to do this all in asm, so we're sure we don't touch
|
|
* the stack between the slbia and rebolting it. */
|
|
asm volatile("isync\n"
|
|
"slbia\n"
|
|
/* Slot 1 - first VMALLOC segment */
|
|
"slbmte %0,%1\n"
|
|
/* Slot 2 - kernel stack */
|
|
"slbmte %2,%3\n"
|
|
"isync"
|
|
:: "r"(mk_vsid_data(VMALLOC_START, mmu_kernel_ssize, vflags)),
|
|
"r"(mk_esid_data(VMALLOC_START, mmu_kernel_ssize, VMALLOC_INDEX)),
|
|
"r"(ksp_vsid_data),
|
|
"r"(ksp_esid_data)
|
|
: "memory");
|
|
}
|
|
|
|
void slb_flush_and_rebolt(void)
|
|
{
|
|
|
|
WARN_ON(!irqs_disabled());
|
|
|
|
/*
|
|
* We can't take a PMU exception in the following code, so hard
|
|
* disable interrupts.
|
|
*/
|
|
hard_irq_disable();
|
|
|
|
__slb_flush_and_rebolt();
|
|
get_paca()->slb_cache_ptr = 0;
|
|
}
|
|
|
|
void slb_vmalloc_update(void)
|
|
{
|
|
unsigned long vflags;
|
|
|
|
vflags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmalloc_psize].sllp;
|
|
slb_shadow_update(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX);
|
|
slb_flush_and_rebolt();
|
|
}
|
|
|
|
/* Helper function to compare esids. There are four cases to handle.
|
|
* 1. The system is not 1T segment size capable. Use the GET_ESID compare.
|
|
* 2. The system is 1T capable, both addresses are < 1T, use the GET_ESID compare.
|
|
* 3. The system is 1T capable, only one of the two addresses is > 1T. This is not a match.
|
|
* 4. The system is 1T capable, both addresses are > 1T, use the GET_ESID_1T macro to compare.
|
|
*/
|
|
static inline int esids_match(unsigned long addr1, unsigned long addr2)
|
|
{
|
|
int esid_1t_count;
|
|
|
|
/* System is not 1T segment size capable. */
|
|
if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
|
|
return (GET_ESID(addr1) == GET_ESID(addr2));
|
|
|
|
esid_1t_count = (((addr1 >> SID_SHIFT_1T) != 0) +
|
|
((addr2 >> SID_SHIFT_1T) != 0));
|
|
|
|
/* both addresses are < 1T */
|
|
if (esid_1t_count == 0)
|
|
return (GET_ESID(addr1) == GET_ESID(addr2));
|
|
|
|
/* One address < 1T, the other > 1T. Not a match */
|
|
if (esid_1t_count == 1)
|
|
return 0;
|
|
|
|
/* Both addresses are > 1T. */
|
|
return (GET_ESID_1T(addr1) == GET_ESID_1T(addr2));
|
|
}
|
|
|
|
/* Flush all user entries from the segment table of the current processor. */
|
|
void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
|
|
{
|
|
unsigned long offset;
|
|
unsigned long slbie_data = 0;
|
|
unsigned long pc = KSTK_EIP(tsk);
|
|
unsigned long stack = KSTK_ESP(tsk);
|
|
unsigned long exec_base;
|
|
|
|
/*
|
|
* We need interrupts hard-disabled here, not just soft-disabled,
|
|
* so that a PMU interrupt can't occur, which might try to access
|
|
* user memory (to get a stack trace) and possible cause an SLB miss
|
|
* which would update the slb_cache/slb_cache_ptr fields in the PACA.
|
|
*/
|
|
hard_irq_disable();
|
|
offset = get_paca()->slb_cache_ptr;
|
|
if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
|
|
offset <= SLB_CACHE_ENTRIES) {
|
|
int i;
|
|
asm volatile("isync" : : : "memory");
|
|
for (i = 0; i < offset; i++) {
|
|
slbie_data = (unsigned long)get_paca()->slb_cache[i]
|
|
<< SID_SHIFT; /* EA */
|
|
slbie_data |= user_segment_size(slbie_data)
|
|
<< SLBIE_SSIZE_SHIFT;
|
|
slbie_data |= SLBIE_C; /* C set for user addresses */
|
|
asm volatile("slbie %0" : : "r" (slbie_data));
|
|
}
|
|
asm volatile("isync" : : : "memory");
|
|
} else {
|
|
__slb_flush_and_rebolt();
|
|
}
|
|
|
|
/* Workaround POWER5 < DD2.1 issue */
|
|
if (offset == 1 || offset > SLB_CACHE_ENTRIES)
|
|
asm volatile("slbie %0" : : "r" (slbie_data));
|
|
|
|
get_paca()->slb_cache_ptr = 0;
|
|
copy_mm_to_paca(mm);
|
|
|
|
/*
|
|
* preload some userspace segments into the SLB.
|
|
* Almost all 32 and 64bit PowerPC executables are linked at
|
|
* 0x10000000 so it makes sense to preload this segment.
|
|
*/
|
|
exec_base = 0x10000000;
|
|
|
|
if (is_kernel_addr(pc) || is_kernel_addr(stack) ||
|
|
is_kernel_addr(exec_base))
|
|
return;
|
|
|
|
slb_allocate(pc);
|
|
|
|
if (!esids_match(pc, stack))
|
|
slb_allocate(stack);
|
|
|
|
if (!esids_match(pc, exec_base) &&
|
|
!esids_match(stack, exec_base))
|
|
slb_allocate(exec_base);
|
|
}
|
|
|
|
static inline void patch_slb_encoding(unsigned int *insn_addr,
|
|
unsigned int immed)
|
|
{
|
|
|
|
/*
|
|
* This function patches either an li or a cmpldi instruction with
|
|
* a new immediate value. This relies on the fact that both li
|
|
* (which is actually addi) and cmpldi both take a 16-bit immediate
|
|
* value, and it is situated in the same location in the instruction,
|
|
* ie. bits 16-31 (Big endian bit order) or the lower 16 bits.
|
|
* The signedness of the immediate operand differs between the two
|
|
* instructions however this code is only ever patching a small value,
|
|
* much less than 1 << 15, so we can get away with it.
|
|
* To patch the value we read the existing instruction, clear the
|
|
* immediate value, and or in our new value, then write the instruction
|
|
* back.
|
|
*/
|
|
unsigned int insn = (*insn_addr & 0xffff0000) | immed;
|
|
patch_instruction(insn_addr, insn);
|
|
}
|
|
|
|
extern u32 slb_miss_kernel_load_linear[];
|
|
extern u32 slb_miss_kernel_load_io[];
|
|
extern u32 slb_compare_rr_to_size[];
|
|
extern u32 slb_miss_kernel_load_vmemmap[];
|
|
|
|
void slb_set_size(u16 size)
|
|
{
|
|
if (mmu_slb_size == size)
|
|
return;
|
|
|
|
mmu_slb_size = size;
|
|
patch_slb_encoding(slb_compare_rr_to_size, mmu_slb_size);
|
|
}
|
|
|
|
void slb_initialize(void)
|
|
{
|
|
unsigned long linear_llp, vmalloc_llp, io_llp;
|
|
unsigned long lflags, vflags;
|
|
static int slb_encoding_inited;
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
unsigned long vmemmap_llp;
|
|
#endif
|
|
|
|
/* Prepare our SLB miss handler based on our page size */
|
|
linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
|
|
io_llp = mmu_psize_defs[mmu_io_psize].sllp;
|
|
vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
|
|
get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
|
|
#endif
|
|
if (!slb_encoding_inited) {
|
|
slb_encoding_inited = 1;
|
|
patch_slb_encoding(slb_miss_kernel_load_linear,
|
|
SLB_VSID_KERNEL | linear_llp);
|
|
patch_slb_encoding(slb_miss_kernel_load_io,
|
|
SLB_VSID_KERNEL | io_llp);
|
|
patch_slb_encoding(slb_compare_rr_to_size,
|
|
mmu_slb_size);
|
|
|
|
pr_devel("SLB: linear LLP = %04lx\n", linear_llp);
|
|
pr_devel("SLB: io LLP = %04lx\n", io_llp);
|
|
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
patch_slb_encoding(slb_miss_kernel_load_vmemmap,
|
|
SLB_VSID_KERNEL | vmemmap_llp);
|
|
pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
|
|
#endif
|
|
}
|
|
|
|
get_paca()->stab_rr = SLB_NUM_BOLTED;
|
|
|
|
lflags = SLB_VSID_KERNEL | linear_llp;
|
|
vflags = SLB_VSID_KERNEL | vmalloc_llp;
|
|
|
|
/* Invalidate the entire SLB (even entry 0) & all the ERATS */
|
|
asm volatile("isync":::"memory");
|
|
asm volatile("slbmte %0,%0"::"r" (0) : "memory");
|
|
asm volatile("isync; slbia; isync":::"memory");
|
|
create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);
|
|
create_shadowed_slbe(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX);
|
|
|
|
/* For the boot cpu, we're running on the stack in init_thread_union,
|
|
* which is in the first segment of the linear mapping, and also
|
|
* get_paca()->kstack hasn't been initialized yet.
|
|
* For secondary cpus, we need to bolt the kernel stack entry now.
|
|
*/
|
|
slb_shadow_clear(KSTACK_INDEX);
|
|
if (raw_smp_processor_id() != boot_cpuid &&
|
|
(get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
|
|
create_shadowed_slbe(get_paca()->kstack,
|
|
mmu_kernel_ssize, lflags, KSTACK_INDEX);
|
|
|
|
asm volatile("isync":::"memory");
|
|
}
|
|
|
|
static void insert_slb_entry(unsigned long vsid, unsigned long ea,
|
|
int bpsize, int ssize)
|
|
{
|
|
unsigned long flags, vsid_data, esid_data;
|
|
enum slb_index index;
|
|
int slb_cache_index;
|
|
|
|
/*
|
|
* We are irq disabled, hence should be safe to access PACA.
|
|
*/
|
|
VM_WARN_ON(!irqs_disabled());
|
|
|
|
/*
|
|
* We can't take a PMU exception in the following code, so hard
|
|
* disable interrupts.
|
|
*/
|
|
hard_irq_disable();
|
|
|
|
index = get_paca()->stab_rr;
|
|
|
|
/*
|
|
* simple round-robin replacement of slb starting at SLB_NUM_BOLTED.
|
|
*/
|
|
if (index < (mmu_slb_size - 1))
|
|
index++;
|
|
else
|
|
index = SLB_NUM_BOLTED;
|
|
|
|
get_paca()->stab_rr = index;
|
|
|
|
flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp;
|
|
vsid_data = (vsid << slb_vsid_shift(ssize)) | flags |
|
|
((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
|
|
esid_data = mk_esid_data(ea, ssize, index);
|
|
|
|
/*
|
|
* No need for an isync before or after this slbmte. The exception
|
|
* we enter with and the rfid we exit with are context synchronizing.
|
|
* Also we only handle user segments here.
|
|
*/
|
|
asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data)
|
|
: "memory");
|
|
|
|
/*
|
|
* Now update slb cache entries
|
|
*/
|
|
slb_cache_index = get_paca()->slb_cache_ptr;
|
|
if (slb_cache_index < SLB_CACHE_ENTRIES) {
|
|
/*
|
|
* We have space in slb cache for optimized switch_slb().
|
|
* Top 36 bits from esid_data as per ISA
|
|
*/
|
|
get_paca()->slb_cache[slb_cache_index++] = esid_data >> 28;
|
|
get_paca()->slb_cache_ptr++;
|
|
} else {
|
|
/*
|
|
* Our cache is full and the current cache content strictly
|
|
* doesn't indicate the active SLB conents. Bump the ptr
|
|
* so that switch_slb() will ignore the cache.
|
|
*/
|
|
get_paca()->slb_cache_ptr = SLB_CACHE_ENTRIES + 1;
|
|
}
|
|
}
|
|
|
|
static void handle_multi_context_slb_miss(int context_id, unsigned long ea)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
unsigned long vsid;
|
|
int bpsize;
|
|
|
|
/*
|
|
* We are always above 1TB, hence use high user segment size.
|
|
*/
|
|
vsid = get_vsid(context_id, ea, mmu_highuser_ssize);
|
|
bpsize = get_slice_psize(mm, ea);
|
|
insert_slb_entry(vsid, ea, bpsize, mmu_highuser_ssize);
|
|
}
|
|
|
|
void slb_miss_large_addr(struct pt_regs *regs)
|
|
{
|
|
enum ctx_state prev_state = exception_enter();
|
|
unsigned long ea = regs->dar;
|
|
int context;
|
|
|
|
if (REGION_ID(ea) != USER_REGION_ID)
|
|
goto slb_bad_addr;
|
|
|
|
/*
|
|
* Are we beyound what the page table layout supports ?
|
|
*/
|
|
if ((ea & ~REGION_MASK) >= H_PGTABLE_RANGE)
|
|
goto slb_bad_addr;
|
|
|
|
/* Lower address should have been handled by asm code */
|
|
if (ea < (1UL << MAX_EA_BITS_PER_CONTEXT))
|
|
goto slb_bad_addr;
|
|
|
|
/*
|
|
* consider this as bad access if we take a SLB miss
|
|
* on an address above addr limit.
|
|
*/
|
|
if (ea >= current->mm->context.slb_addr_limit)
|
|
goto slb_bad_addr;
|
|
|
|
context = get_ea_context(¤t->mm->context, ea);
|
|
if (!context)
|
|
goto slb_bad_addr;
|
|
|
|
handle_multi_context_slb_miss(context, ea);
|
|
exception_exit(prev_state);
|
|
return;
|
|
|
|
slb_bad_addr:
|
|
if (user_mode(regs))
|
|
_exception(SIGSEGV, regs, SEGV_BNDERR, ea);
|
|
else
|
|
bad_page_fault(regs, ea, SIGSEGV);
|
|
exception_exit(prev_state);
|
|
}
|