mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-18 08:16:26 +07:00
377ec83643
Mark switch cases where we are expecting to fall through. Fix the following warnings (Building: powerpc-ppa8548_defconfig powerpc): drivers/dma/fsldma.c: In function ‘fsl_dma_chan_probe’: drivers/dma/fsldma.c:1165:26: warning: this statement may fall through [-Wimplicit-fallthrough=] chan->toggle_ext_pause = fsl_chan_toggle_ext_pause; ~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ drivers/dma/fsldma.c:1166:2: note: here case FSL_DMA_IP_83XX: ^~~~ Reported-by: kbuild test robot <lkp@intel.com> Acked-by: Li Yang <leoyang.li@nxp.com> Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
1425 lines
35 KiB
C
1425 lines
35 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Freescale MPC85xx, MPC83xx DMA Engine support
|
|
*
|
|
* Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
|
|
*
|
|
* Author:
|
|
* Zhang Wei <wei.zhang@freescale.com>, Jul 2007
|
|
* Ebony Zhu <ebony.zhu@freescale.com>, May 2007
|
|
*
|
|
* Description:
|
|
* DMA engine driver for Freescale MPC8540 DMA controller, which is
|
|
* also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
|
|
* The support for MPC8349 DMA controller is also added.
|
|
*
|
|
* This driver instructs the DMA controller to issue the PCI Read Multiple
|
|
* command for PCI read operations, instead of using the default PCI Read Line
|
|
* command. Please be aware that this setting may result in read pre-fetching
|
|
* on some platforms.
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dmapool.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/of_platform.h>
|
|
#include <linux/fsldma.h>
|
|
#include "dmaengine.h"
|
|
#include "fsldma.h"
|
|
|
|
#define chan_dbg(chan, fmt, arg...) \
|
|
dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
|
|
#define chan_err(chan, fmt, arg...) \
|
|
dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
|
|
|
|
static const char msg_ld_oom[] = "No free memory for link descriptor";
|
|
|
|
/*
|
|
* Register Helpers
|
|
*/
|
|
|
|
static void set_sr(struct fsldma_chan *chan, u32 val)
|
|
{
|
|
FSL_DMA_OUT(chan, &chan->regs->sr, val, 32);
|
|
}
|
|
|
|
static u32 get_sr(struct fsldma_chan *chan)
|
|
{
|
|
return FSL_DMA_IN(chan, &chan->regs->sr, 32);
|
|
}
|
|
|
|
static void set_mr(struct fsldma_chan *chan, u32 val)
|
|
{
|
|
FSL_DMA_OUT(chan, &chan->regs->mr, val, 32);
|
|
}
|
|
|
|
static u32 get_mr(struct fsldma_chan *chan)
|
|
{
|
|
return FSL_DMA_IN(chan, &chan->regs->mr, 32);
|
|
}
|
|
|
|
static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
|
|
{
|
|
FSL_DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
|
|
}
|
|
|
|
static dma_addr_t get_cdar(struct fsldma_chan *chan)
|
|
{
|
|
return FSL_DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
|
|
}
|
|
|
|
static void set_bcr(struct fsldma_chan *chan, u32 val)
|
|
{
|
|
FSL_DMA_OUT(chan, &chan->regs->bcr, val, 32);
|
|
}
|
|
|
|
static u32 get_bcr(struct fsldma_chan *chan)
|
|
{
|
|
return FSL_DMA_IN(chan, &chan->regs->bcr, 32);
|
|
}
|
|
|
|
/*
|
|
* Descriptor Helpers
|
|
*/
|
|
|
|
static void set_desc_cnt(struct fsldma_chan *chan,
|
|
struct fsl_dma_ld_hw *hw, u32 count)
|
|
{
|
|
hw->count = CPU_TO_DMA(chan, count, 32);
|
|
}
|
|
|
|
static void set_desc_src(struct fsldma_chan *chan,
|
|
struct fsl_dma_ld_hw *hw, dma_addr_t src)
|
|
{
|
|
u64 snoop_bits;
|
|
|
|
snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
|
|
? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
|
|
hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
|
|
}
|
|
|
|
static void set_desc_dst(struct fsldma_chan *chan,
|
|
struct fsl_dma_ld_hw *hw, dma_addr_t dst)
|
|
{
|
|
u64 snoop_bits;
|
|
|
|
snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
|
|
? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
|
|
hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
|
|
}
|
|
|
|
static void set_desc_next(struct fsldma_chan *chan,
|
|
struct fsl_dma_ld_hw *hw, dma_addr_t next)
|
|
{
|
|
u64 snoop_bits;
|
|
|
|
snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
|
|
? FSL_DMA_SNEN : 0;
|
|
hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
|
|
}
|
|
|
|
static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
|
|
{
|
|
u64 snoop_bits;
|
|
|
|
snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
|
|
? FSL_DMA_SNEN : 0;
|
|
|
|
desc->hw.next_ln_addr = CPU_TO_DMA(chan,
|
|
DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
|
|
| snoop_bits, 64);
|
|
}
|
|
|
|
/*
|
|
* DMA Engine Hardware Control Helpers
|
|
*/
|
|
|
|
static void dma_init(struct fsldma_chan *chan)
|
|
{
|
|
/* Reset the channel */
|
|
set_mr(chan, 0);
|
|
|
|
switch (chan->feature & FSL_DMA_IP_MASK) {
|
|
case FSL_DMA_IP_85XX:
|
|
/* Set the channel to below modes:
|
|
* EIE - Error interrupt enable
|
|
* EOLNIE - End of links interrupt enable
|
|
* BWC - Bandwidth sharing among channels
|
|
*/
|
|
set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
|
|
| FSL_DMA_MR_EOLNIE);
|
|
break;
|
|
case FSL_DMA_IP_83XX:
|
|
/* Set the channel to below modes:
|
|
* EOTIE - End-of-transfer interrupt enable
|
|
* PRC_RM - PCI read multiple
|
|
*/
|
|
set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int dma_is_idle(struct fsldma_chan *chan)
|
|
{
|
|
u32 sr = get_sr(chan);
|
|
return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
|
|
}
|
|
|
|
/*
|
|
* Start the DMA controller
|
|
*
|
|
* Preconditions:
|
|
* - the CDAR register must point to the start descriptor
|
|
* - the MRn[CS] bit must be cleared
|
|
*/
|
|
static void dma_start(struct fsldma_chan *chan)
|
|
{
|
|
u32 mode;
|
|
|
|
mode = get_mr(chan);
|
|
|
|
if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
|
|
set_bcr(chan, 0);
|
|
mode |= FSL_DMA_MR_EMP_EN;
|
|
} else {
|
|
mode &= ~FSL_DMA_MR_EMP_EN;
|
|
}
|
|
|
|
if (chan->feature & FSL_DMA_CHAN_START_EXT) {
|
|
mode |= FSL_DMA_MR_EMS_EN;
|
|
} else {
|
|
mode &= ~FSL_DMA_MR_EMS_EN;
|
|
mode |= FSL_DMA_MR_CS;
|
|
}
|
|
|
|
set_mr(chan, mode);
|
|
}
|
|
|
|
static void dma_halt(struct fsldma_chan *chan)
|
|
{
|
|
u32 mode;
|
|
int i;
|
|
|
|
/* read the mode register */
|
|
mode = get_mr(chan);
|
|
|
|
/*
|
|
* The 85xx controller supports channel abort, which will stop
|
|
* the current transfer. On 83xx, this bit is the transfer error
|
|
* mask bit, which should not be changed.
|
|
*/
|
|
if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
|
|
mode |= FSL_DMA_MR_CA;
|
|
set_mr(chan, mode);
|
|
|
|
mode &= ~FSL_DMA_MR_CA;
|
|
}
|
|
|
|
/* stop the DMA controller */
|
|
mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
|
|
set_mr(chan, mode);
|
|
|
|
/* wait for the DMA controller to become idle */
|
|
for (i = 0; i < 100; i++) {
|
|
if (dma_is_idle(chan))
|
|
return;
|
|
|
|
udelay(10);
|
|
}
|
|
|
|
if (!dma_is_idle(chan))
|
|
chan_err(chan, "DMA halt timeout!\n");
|
|
}
|
|
|
|
/**
|
|
* fsl_chan_set_src_loop_size - Set source address hold transfer size
|
|
* @chan : Freescale DMA channel
|
|
* @size : Address loop size, 0 for disable loop
|
|
*
|
|
* The set source address hold transfer size. The source
|
|
* address hold or loop transfer size is when the DMA transfer
|
|
* data from source address (SA), if the loop size is 4, the DMA will
|
|
* read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
|
|
* SA + 1 ... and so on.
|
|
*/
|
|
static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
|
|
{
|
|
u32 mode;
|
|
|
|
mode = get_mr(chan);
|
|
|
|
switch (size) {
|
|
case 0:
|
|
mode &= ~FSL_DMA_MR_SAHE;
|
|
break;
|
|
case 1:
|
|
case 2:
|
|
case 4:
|
|
case 8:
|
|
mode &= ~FSL_DMA_MR_SAHTS_MASK;
|
|
mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
|
|
break;
|
|
}
|
|
|
|
set_mr(chan, mode);
|
|
}
|
|
|
|
/**
|
|
* fsl_chan_set_dst_loop_size - Set destination address hold transfer size
|
|
* @chan : Freescale DMA channel
|
|
* @size : Address loop size, 0 for disable loop
|
|
*
|
|
* The set destination address hold transfer size. The destination
|
|
* address hold or loop transfer size is when the DMA transfer
|
|
* data to destination address (TA), if the loop size is 4, the DMA will
|
|
* write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
|
|
* TA + 1 ... and so on.
|
|
*/
|
|
static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
|
|
{
|
|
u32 mode;
|
|
|
|
mode = get_mr(chan);
|
|
|
|
switch (size) {
|
|
case 0:
|
|
mode &= ~FSL_DMA_MR_DAHE;
|
|
break;
|
|
case 1:
|
|
case 2:
|
|
case 4:
|
|
case 8:
|
|
mode &= ~FSL_DMA_MR_DAHTS_MASK;
|
|
mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
|
|
break;
|
|
}
|
|
|
|
set_mr(chan, mode);
|
|
}
|
|
|
|
/**
|
|
* fsl_chan_set_request_count - Set DMA Request Count for external control
|
|
* @chan : Freescale DMA channel
|
|
* @size : Number of bytes to transfer in a single request
|
|
*
|
|
* The Freescale DMA channel can be controlled by the external signal DREQ#.
|
|
* The DMA request count is how many bytes are allowed to transfer before
|
|
* pausing the channel, after which a new assertion of DREQ# resumes channel
|
|
* operation.
|
|
*
|
|
* A size of 0 disables external pause control. The maximum size is 1024.
|
|
*/
|
|
static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
|
|
{
|
|
u32 mode;
|
|
|
|
BUG_ON(size > 1024);
|
|
|
|
mode = get_mr(chan);
|
|
mode &= ~FSL_DMA_MR_BWC_MASK;
|
|
mode |= (__ilog2(size) << 24) & FSL_DMA_MR_BWC_MASK;
|
|
|
|
set_mr(chan, mode);
|
|
}
|
|
|
|
/**
|
|
* fsl_chan_toggle_ext_pause - Toggle channel external pause status
|
|
* @chan : Freescale DMA channel
|
|
* @enable : 0 is disabled, 1 is enabled.
|
|
*
|
|
* The Freescale DMA channel can be controlled by the external signal DREQ#.
|
|
* The DMA Request Count feature should be used in addition to this feature
|
|
* to set the number of bytes to transfer before pausing the channel.
|
|
*/
|
|
static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
|
|
{
|
|
if (enable)
|
|
chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
|
|
else
|
|
chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
|
|
}
|
|
|
|
/**
|
|
* fsl_chan_toggle_ext_start - Toggle channel external start status
|
|
* @chan : Freescale DMA channel
|
|
* @enable : 0 is disabled, 1 is enabled.
|
|
*
|
|
* If enable the external start, the channel can be started by an
|
|
* external DMA start pin. So the dma_start() does not start the
|
|
* transfer immediately. The DMA channel will wait for the
|
|
* control pin asserted.
|
|
*/
|
|
static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
|
|
{
|
|
if (enable)
|
|
chan->feature |= FSL_DMA_CHAN_START_EXT;
|
|
else
|
|
chan->feature &= ~FSL_DMA_CHAN_START_EXT;
|
|
}
|
|
|
|
int fsl_dma_external_start(struct dma_chan *dchan, int enable)
|
|
{
|
|
struct fsldma_chan *chan;
|
|
|
|
if (!dchan)
|
|
return -EINVAL;
|
|
|
|
chan = to_fsl_chan(dchan);
|
|
|
|
fsl_chan_toggle_ext_start(chan, enable);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(fsl_dma_external_start);
|
|
|
|
static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
|
|
{
|
|
struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
|
|
|
|
if (list_empty(&chan->ld_pending))
|
|
goto out_splice;
|
|
|
|
/*
|
|
* Add the hardware descriptor to the chain of hardware descriptors
|
|
* that already exists in memory.
|
|
*
|
|
* This will un-set the EOL bit of the existing transaction, and the
|
|
* last link in this transaction will become the EOL descriptor.
|
|
*/
|
|
set_desc_next(chan, &tail->hw, desc->async_tx.phys);
|
|
|
|
/*
|
|
* Add the software descriptor and all children to the list
|
|
* of pending transactions
|
|
*/
|
|
out_splice:
|
|
list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
|
|
}
|
|
|
|
static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
|
|
{
|
|
struct fsldma_chan *chan = to_fsl_chan(tx->chan);
|
|
struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
|
|
struct fsl_desc_sw *child;
|
|
dma_cookie_t cookie = -EINVAL;
|
|
|
|
spin_lock_bh(&chan->desc_lock);
|
|
|
|
#ifdef CONFIG_PM
|
|
if (unlikely(chan->pm_state != RUNNING)) {
|
|
chan_dbg(chan, "cannot submit due to suspend\n");
|
|
spin_unlock_bh(&chan->desc_lock);
|
|
return -1;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* assign cookies to all of the software descriptors
|
|
* that make up this transaction
|
|
*/
|
|
list_for_each_entry(child, &desc->tx_list, node) {
|
|
cookie = dma_cookie_assign(&child->async_tx);
|
|
}
|
|
|
|
/* put this transaction onto the tail of the pending queue */
|
|
append_ld_queue(chan, desc);
|
|
|
|
spin_unlock_bh(&chan->desc_lock);
|
|
|
|
return cookie;
|
|
}
|
|
|
|
/**
|
|
* fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
|
|
* @chan : Freescale DMA channel
|
|
* @desc: descriptor to be freed
|
|
*/
|
|
static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
|
|
struct fsl_desc_sw *desc)
|
|
{
|
|
list_del(&desc->node);
|
|
chan_dbg(chan, "LD %p free\n", desc);
|
|
dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
|
|
}
|
|
|
|
/**
|
|
* fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
|
|
* @chan : Freescale DMA channel
|
|
*
|
|
* Return - The descriptor allocated. NULL for failed.
|
|
*/
|
|
static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
|
|
{
|
|
struct fsl_desc_sw *desc;
|
|
dma_addr_t pdesc;
|
|
|
|
desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
|
|
if (!desc) {
|
|
chan_dbg(chan, "out of memory for link descriptor\n");
|
|
return NULL;
|
|
}
|
|
|
|
INIT_LIST_HEAD(&desc->tx_list);
|
|
dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
|
|
desc->async_tx.tx_submit = fsl_dma_tx_submit;
|
|
desc->async_tx.phys = pdesc;
|
|
|
|
chan_dbg(chan, "LD %p allocated\n", desc);
|
|
|
|
return desc;
|
|
}
|
|
|
|
/**
|
|
* fsldma_clean_completed_descriptor - free all descriptors which
|
|
* has been completed and acked
|
|
* @chan: Freescale DMA channel
|
|
*
|
|
* This function is used on all completed and acked descriptors.
|
|
* All descriptors should only be freed in this function.
|
|
*/
|
|
static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan)
|
|
{
|
|
struct fsl_desc_sw *desc, *_desc;
|
|
|
|
/* Run the callback for each descriptor, in order */
|
|
list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node)
|
|
if (async_tx_test_ack(&desc->async_tx))
|
|
fsl_dma_free_descriptor(chan, desc);
|
|
}
|
|
|
|
/**
|
|
* fsldma_run_tx_complete_actions - cleanup a single link descriptor
|
|
* @chan: Freescale DMA channel
|
|
* @desc: descriptor to cleanup and free
|
|
* @cookie: Freescale DMA transaction identifier
|
|
*
|
|
* This function is used on a descriptor which has been executed by the DMA
|
|
* controller. It will run any callbacks, submit any dependencies.
|
|
*/
|
|
static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan,
|
|
struct fsl_desc_sw *desc, dma_cookie_t cookie)
|
|
{
|
|
struct dma_async_tx_descriptor *txd = &desc->async_tx;
|
|
dma_cookie_t ret = cookie;
|
|
|
|
BUG_ON(txd->cookie < 0);
|
|
|
|
if (txd->cookie > 0) {
|
|
ret = txd->cookie;
|
|
|
|
dma_descriptor_unmap(txd);
|
|
/* Run the link descriptor callback function */
|
|
dmaengine_desc_get_callback_invoke(txd, NULL);
|
|
}
|
|
|
|
/* Run any dependencies */
|
|
dma_run_dependencies(txd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* fsldma_clean_running_descriptor - move the completed descriptor from
|
|
* ld_running to ld_completed
|
|
* @chan: Freescale DMA channel
|
|
* @desc: the descriptor which is completed
|
|
*
|
|
* Free the descriptor directly if acked by async_tx api, or move it to
|
|
* queue ld_completed.
|
|
*/
|
|
static void fsldma_clean_running_descriptor(struct fsldma_chan *chan,
|
|
struct fsl_desc_sw *desc)
|
|
{
|
|
/* Remove from the list of transactions */
|
|
list_del(&desc->node);
|
|
|
|
/*
|
|
* the client is allowed to attach dependent operations
|
|
* until 'ack' is set
|
|
*/
|
|
if (!async_tx_test_ack(&desc->async_tx)) {
|
|
/*
|
|
* Move this descriptor to the list of descriptors which is
|
|
* completed, but still awaiting the 'ack' bit to be set.
|
|
*/
|
|
list_add_tail(&desc->node, &chan->ld_completed);
|
|
return;
|
|
}
|
|
|
|
dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
|
|
}
|
|
|
|
/**
|
|
* fsl_chan_xfer_ld_queue - transfer any pending transactions
|
|
* @chan : Freescale DMA channel
|
|
*
|
|
* HARDWARE STATE: idle
|
|
* LOCKING: must hold chan->desc_lock
|
|
*/
|
|
static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
|
|
{
|
|
struct fsl_desc_sw *desc;
|
|
|
|
/*
|
|
* If the list of pending descriptors is empty, then we
|
|
* don't need to do any work at all
|
|
*/
|
|
if (list_empty(&chan->ld_pending)) {
|
|
chan_dbg(chan, "no pending LDs\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The DMA controller is not idle, which means that the interrupt
|
|
* handler will start any queued transactions when it runs after
|
|
* this transaction finishes
|
|
*/
|
|
if (!chan->idle) {
|
|
chan_dbg(chan, "DMA controller still busy\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If there are some link descriptors which have not been
|
|
* transferred, we need to start the controller
|
|
*/
|
|
|
|
/*
|
|
* Move all elements from the queue of pending transactions
|
|
* onto the list of running transactions
|
|
*/
|
|
chan_dbg(chan, "idle, starting controller\n");
|
|
desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
|
|
list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
|
|
|
|
/*
|
|
* The 85xx DMA controller doesn't clear the channel start bit
|
|
* automatically at the end of a transfer. Therefore we must clear
|
|
* it in software before starting the transfer.
|
|
*/
|
|
if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
|
|
u32 mode;
|
|
|
|
mode = get_mr(chan);
|
|
mode &= ~FSL_DMA_MR_CS;
|
|
set_mr(chan, mode);
|
|
}
|
|
|
|
/*
|
|
* Program the descriptor's address into the DMA controller,
|
|
* then start the DMA transaction
|
|
*/
|
|
set_cdar(chan, desc->async_tx.phys);
|
|
get_cdar(chan);
|
|
|
|
dma_start(chan);
|
|
chan->idle = false;
|
|
}
|
|
|
|
/**
|
|
* fsldma_cleanup_descriptors - cleanup link descriptors which are completed
|
|
* and move them to ld_completed to free until flag 'ack' is set
|
|
* @chan: Freescale DMA channel
|
|
*
|
|
* This function is used on descriptors which have been executed by the DMA
|
|
* controller. It will run any callbacks, submit any dependencies, then
|
|
* free these descriptors if flag 'ack' is set.
|
|
*/
|
|
static void fsldma_cleanup_descriptors(struct fsldma_chan *chan)
|
|
{
|
|
struct fsl_desc_sw *desc, *_desc;
|
|
dma_cookie_t cookie = 0;
|
|
dma_addr_t curr_phys = get_cdar(chan);
|
|
int seen_current = 0;
|
|
|
|
fsldma_clean_completed_descriptor(chan);
|
|
|
|
/* Run the callback for each descriptor, in order */
|
|
list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
|
|
/*
|
|
* do not advance past the current descriptor loaded into the
|
|
* hardware channel, subsequent descriptors are either in
|
|
* process or have not been submitted
|
|
*/
|
|
if (seen_current)
|
|
break;
|
|
|
|
/*
|
|
* stop the search if we reach the current descriptor and the
|
|
* channel is busy
|
|
*/
|
|
if (desc->async_tx.phys == curr_phys) {
|
|
seen_current = 1;
|
|
if (!dma_is_idle(chan))
|
|
break;
|
|
}
|
|
|
|
cookie = fsldma_run_tx_complete_actions(chan, desc, cookie);
|
|
|
|
fsldma_clean_running_descriptor(chan, desc);
|
|
}
|
|
|
|
/*
|
|
* Start any pending transactions automatically
|
|
*
|
|
* In the ideal case, we keep the DMA controller busy while we go
|
|
* ahead and free the descriptors below.
|
|
*/
|
|
fsl_chan_xfer_ld_queue(chan);
|
|
|
|
if (cookie > 0)
|
|
chan->common.completed_cookie = cookie;
|
|
}
|
|
|
|
/**
|
|
* fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
|
|
* @chan : Freescale DMA channel
|
|
*
|
|
* This function will create a dma pool for descriptor allocation.
|
|
*
|
|
* Return - The number of descriptors allocated.
|
|
*/
|
|
static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
|
|
{
|
|
struct fsldma_chan *chan = to_fsl_chan(dchan);
|
|
|
|
/* Has this channel already been allocated? */
|
|
if (chan->desc_pool)
|
|
return 1;
|
|
|
|
/*
|
|
* We need the descriptor to be aligned to 32bytes
|
|
* for meeting FSL DMA specification requirement.
|
|
*/
|
|
chan->desc_pool = dma_pool_create(chan->name, chan->dev,
|
|
sizeof(struct fsl_desc_sw),
|
|
__alignof__(struct fsl_desc_sw), 0);
|
|
if (!chan->desc_pool) {
|
|
chan_err(chan, "unable to allocate descriptor pool\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* there is at least one descriptor free to be allocated */
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* fsldma_free_desc_list - Free all descriptors in a queue
|
|
* @chan: Freescae DMA channel
|
|
* @list: the list to free
|
|
*
|
|
* LOCKING: must hold chan->desc_lock
|
|
*/
|
|
static void fsldma_free_desc_list(struct fsldma_chan *chan,
|
|
struct list_head *list)
|
|
{
|
|
struct fsl_desc_sw *desc, *_desc;
|
|
|
|
list_for_each_entry_safe(desc, _desc, list, node)
|
|
fsl_dma_free_descriptor(chan, desc);
|
|
}
|
|
|
|
static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
|
|
struct list_head *list)
|
|
{
|
|
struct fsl_desc_sw *desc, *_desc;
|
|
|
|
list_for_each_entry_safe_reverse(desc, _desc, list, node)
|
|
fsl_dma_free_descriptor(chan, desc);
|
|
}
|
|
|
|
/**
|
|
* fsl_dma_free_chan_resources - Free all resources of the channel.
|
|
* @chan : Freescale DMA channel
|
|
*/
|
|
static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
|
|
{
|
|
struct fsldma_chan *chan = to_fsl_chan(dchan);
|
|
|
|
chan_dbg(chan, "free all channel resources\n");
|
|
spin_lock_bh(&chan->desc_lock);
|
|
fsldma_cleanup_descriptors(chan);
|
|
fsldma_free_desc_list(chan, &chan->ld_pending);
|
|
fsldma_free_desc_list(chan, &chan->ld_running);
|
|
fsldma_free_desc_list(chan, &chan->ld_completed);
|
|
spin_unlock_bh(&chan->desc_lock);
|
|
|
|
dma_pool_destroy(chan->desc_pool);
|
|
chan->desc_pool = NULL;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
fsl_dma_prep_memcpy(struct dma_chan *dchan,
|
|
dma_addr_t dma_dst, dma_addr_t dma_src,
|
|
size_t len, unsigned long flags)
|
|
{
|
|
struct fsldma_chan *chan;
|
|
struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
|
|
size_t copy;
|
|
|
|
if (!dchan)
|
|
return NULL;
|
|
|
|
if (!len)
|
|
return NULL;
|
|
|
|
chan = to_fsl_chan(dchan);
|
|
|
|
do {
|
|
|
|
/* Allocate the link descriptor from DMA pool */
|
|
new = fsl_dma_alloc_descriptor(chan);
|
|
if (!new) {
|
|
chan_err(chan, "%s\n", msg_ld_oom);
|
|
goto fail;
|
|
}
|
|
|
|
copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
|
|
|
|
set_desc_cnt(chan, &new->hw, copy);
|
|
set_desc_src(chan, &new->hw, dma_src);
|
|
set_desc_dst(chan, &new->hw, dma_dst);
|
|
|
|
if (!first)
|
|
first = new;
|
|
else
|
|
set_desc_next(chan, &prev->hw, new->async_tx.phys);
|
|
|
|
new->async_tx.cookie = 0;
|
|
async_tx_ack(&new->async_tx);
|
|
|
|
prev = new;
|
|
len -= copy;
|
|
dma_src += copy;
|
|
dma_dst += copy;
|
|
|
|
/* Insert the link descriptor to the LD ring */
|
|
list_add_tail(&new->node, &first->tx_list);
|
|
} while (len);
|
|
|
|
new->async_tx.flags = flags; /* client is in control of this ack */
|
|
new->async_tx.cookie = -EBUSY;
|
|
|
|
/* Set End-of-link to the last link descriptor of new list */
|
|
set_ld_eol(chan, new);
|
|
|
|
return &first->async_tx;
|
|
|
|
fail:
|
|
if (!first)
|
|
return NULL;
|
|
|
|
fsldma_free_desc_list_reverse(chan, &first->tx_list);
|
|
return NULL;
|
|
}
|
|
|
|
static int fsl_dma_device_terminate_all(struct dma_chan *dchan)
|
|
{
|
|
struct fsldma_chan *chan;
|
|
|
|
if (!dchan)
|
|
return -EINVAL;
|
|
|
|
chan = to_fsl_chan(dchan);
|
|
|
|
spin_lock_bh(&chan->desc_lock);
|
|
|
|
/* Halt the DMA engine */
|
|
dma_halt(chan);
|
|
|
|
/* Remove and free all of the descriptors in the LD queue */
|
|
fsldma_free_desc_list(chan, &chan->ld_pending);
|
|
fsldma_free_desc_list(chan, &chan->ld_running);
|
|
fsldma_free_desc_list(chan, &chan->ld_completed);
|
|
chan->idle = true;
|
|
|
|
spin_unlock_bh(&chan->desc_lock);
|
|
return 0;
|
|
}
|
|
|
|
static int fsl_dma_device_config(struct dma_chan *dchan,
|
|
struct dma_slave_config *config)
|
|
{
|
|
struct fsldma_chan *chan;
|
|
int size;
|
|
|
|
if (!dchan)
|
|
return -EINVAL;
|
|
|
|
chan = to_fsl_chan(dchan);
|
|
|
|
/* make sure the channel supports setting burst size */
|
|
if (!chan->set_request_count)
|
|
return -ENXIO;
|
|
|
|
/* we set the controller burst size depending on direction */
|
|
if (config->direction == DMA_MEM_TO_DEV)
|
|
size = config->dst_addr_width * config->dst_maxburst;
|
|
else
|
|
size = config->src_addr_width * config->src_maxburst;
|
|
|
|
chan->set_request_count(chan, size);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* fsl_dma_memcpy_issue_pending - Issue the DMA start command
|
|
* @chan : Freescale DMA channel
|
|
*/
|
|
static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
|
|
{
|
|
struct fsldma_chan *chan = to_fsl_chan(dchan);
|
|
|
|
spin_lock_bh(&chan->desc_lock);
|
|
fsl_chan_xfer_ld_queue(chan);
|
|
spin_unlock_bh(&chan->desc_lock);
|
|
}
|
|
|
|
/**
|
|
* fsl_tx_status - Determine the DMA status
|
|
* @chan : Freescale DMA channel
|
|
*/
|
|
static enum dma_status fsl_tx_status(struct dma_chan *dchan,
|
|
dma_cookie_t cookie,
|
|
struct dma_tx_state *txstate)
|
|
{
|
|
struct fsldma_chan *chan = to_fsl_chan(dchan);
|
|
enum dma_status ret;
|
|
|
|
ret = dma_cookie_status(dchan, cookie, txstate);
|
|
if (ret == DMA_COMPLETE)
|
|
return ret;
|
|
|
|
spin_lock_bh(&chan->desc_lock);
|
|
fsldma_cleanup_descriptors(chan);
|
|
spin_unlock_bh(&chan->desc_lock);
|
|
|
|
return dma_cookie_status(dchan, cookie, txstate);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------*/
|
|
/* Interrupt Handling */
|
|
/*----------------------------------------------------------------------------*/
|
|
|
|
static irqreturn_t fsldma_chan_irq(int irq, void *data)
|
|
{
|
|
struct fsldma_chan *chan = data;
|
|
u32 stat;
|
|
|
|
/* save and clear the status register */
|
|
stat = get_sr(chan);
|
|
set_sr(chan, stat);
|
|
chan_dbg(chan, "irq: stat = 0x%x\n", stat);
|
|
|
|
/* check that this was really our device */
|
|
stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
|
|
if (!stat)
|
|
return IRQ_NONE;
|
|
|
|
if (stat & FSL_DMA_SR_TE)
|
|
chan_err(chan, "Transfer Error!\n");
|
|
|
|
/*
|
|
* Programming Error
|
|
* The DMA_INTERRUPT async_tx is a NULL transfer, which will
|
|
* trigger a PE interrupt.
|
|
*/
|
|
if (stat & FSL_DMA_SR_PE) {
|
|
chan_dbg(chan, "irq: Programming Error INT\n");
|
|
stat &= ~FSL_DMA_SR_PE;
|
|
if (get_bcr(chan) != 0)
|
|
chan_err(chan, "Programming Error!\n");
|
|
}
|
|
|
|
/*
|
|
* For MPC8349, EOCDI event need to update cookie
|
|
* and start the next transfer if it exist.
|
|
*/
|
|
if (stat & FSL_DMA_SR_EOCDI) {
|
|
chan_dbg(chan, "irq: End-of-Chain link INT\n");
|
|
stat &= ~FSL_DMA_SR_EOCDI;
|
|
}
|
|
|
|
/*
|
|
* If it current transfer is the end-of-transfer,
|
|
* we should clear the Channel Start bit for
|
|
* prepare next transfer.
|
|
*/
|
|
if (stat & FSL_DMA_SR_EOLNI) {
|
|
chan_dbg(chan, "irq: End-of-link INT\n");
|
|
stat &= ~FSL_DMA_SR_EOLNI;
|
|
}
|
|
|
|
/* check that the DMA controller is really idle */
|
|
if (!dma_is_idle(chan))
|
|
chan_err(chan, "irq: controller not idle!\n");
|
|
|
|
/* check that we handled all of the bits */
|
|
if (stat)
|
|
chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
|
|
|
|
/*
|
|
* Schedule the tasklet to handle all cleanup of the current
|
|
* transaction. It will start a new transaction if there is
|
|
* one pending.
|
|
*/
|
|
tasklet_schedule(&chan->tasklet);
|
|
chan_dbg(chan, "irq: Exit\n");
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void dma_do_tasklet(unsigned long data)
|
|
{
|
|
struct fsldma_chan *chan = (struct fsldma_chan *)data;
|
|
|
|
chan_dbg(chan, "tasklet entry\n");
|
|
|
|
spin_lock(&chan->desc_lock);
|
|
|
|
/* the hardware is now idle and ready for more */
|
|
chan->idle = true;
|
|
|
|
/* Run all cleanup for descriptors which have been completed */
|
|
fsldma_cleanup_descriptors(chan);
|
|
|
|
spin_unlock(&chan->desc_lock);
|
|
|
|
chan_dbg(chan, "tasklet exit\n");
|
|
}
|
|
|
|
static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
|
|
{
|
|
struct fsldma_device *fdev = data;
|
|
struct fsldma_chan *chan;
|
|
unsigned int handled = 0;
|
|
u32 gsr, mask;
|
|
int i;
|
|
|
|
gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
|
|
: in_le32(fdev->regs);
|
|
mask = 0xff000000;
|
|
dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
|
|
|
|
for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
|
|
chan = fdev->chan[i];
|
|
if (!chan)
|
|
continue;
|
|
|
|
if (gsr & mask) {
|
|
dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
|
|
fsldma_chan_irq(irq, chan);
|
|
handled++;
|
|
}
|
|
|
|
gsr &= ~mask;
|
|
mask >>= 8;
|
|
}
|
|
|
|
return IRQ_RETVAL(handled);
|
|
}
|
|
|
|
static void fsldma_free_irqs(struct fsldma_device *fdev)
|
|
{
|
|
struct fsldma_chan *chan;
|
|
int i;
|
|
|
|
if (fdev->irq) {
|
|
dev_dbg(fdev->dev, "free per-controller IRQ\n");
|
|
free_irq(fdev->irq, fdev);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
|
|
chan = fdev->chan[i];
|
|
if (chan && chan->irq) {
|
|
chan_dbg(chan, "free per-channel IRQ\n");
|
|
free_irq(chan->irq, chan);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int fsldma_request_irqs(struct fsldma_device *fdev)
|
|
{
|
|
struct fsldma_chan *chan;
|
|
int ret;
|
|
int i;
|
|
|
|
/* if we have a per-controller IRQ, use that */
|
|
if (fdev->irq) {
|
|
dev_dbg(fdev->dev, "request per-controller IRQ\n");
|
|
ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
|
|
"fsldma-controller", fdev);
|
|
return ret;
|
|
}
|
|
|
|
/* no per-controller IRQ, use the per-channel IRQs */
|
|
for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
|
|
chan = fdev->chan[i];
|
|
if (!chan)
|
|
continue;
|
|
|
|
if (!chan->irq) {
|
|
chan_err(chan, "interrupts property missing in device tree\n");
|
|
ret = -ENODEV;
|
|
goto out_unwind;
|
|
}
|
|
|
|
chan_dbg(chan, "request per-channel IRQ\n");
|
|
ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
|
|
"fsldma-chan", chan);
|
|
if (ret) {
|
|
chan_err(chan, "unable to request per-channel IRQ\n");
|
|
goto out_unwind;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_unwind:
|
|
for (/* none */; i >= 0; i--) {
|
|
chan = fdev->chan[i];
|
|
if (!chan)
|
|
continue;
|
|
|
|
if (!chan->irq)
|
|
continue;
|
|
|
|
free_irq(chan->irq, chan);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------*/
|
|
/* OpenFirmware Subsystem */
|
|
/*----------------------------------------------------------------------------*/
|
|
|
|
static int fsl_dma_chan_probe(struct fsldma_device *fdev,
|
|
struct device_node *node, u32 feature, const char *compatible)
|
|
{
|
|
struct fsldma_chan *chan;
|
|
struct resource res;
|
|
int err;
|
|
|
|
/* alloc channel */
|
|
chan = kzalloc(sizeof(*chan), GFP_KERNEL);
|
|
if (!chan) {
|
|
err = -ENOMEM;
|
|
goto out_return;
|
|
}
|
|
|
|
/* ioremap registers for use */
|
|
chan->regs = of_iomap(node, 0);
|
|
if (!chan->regs) {
|
|
dev_err(fdev->dev, "unable to ioremap registers\n");
|
|
err = -ENOMEM;
|
|
goto out_free_chan;
|
|
}
|
|
|
|
err = of_address_to_resource(node, 0, &res);
|
|
if (err) {
|
|
dev_err(fdev->dev, "unable to find 'reg' property\n");
|
|
goto out_iounmap_regs;
|
|
}
|
|
|
|
chan->feature = feature;
|
|
if (!fdev->feature)
|
|
fdev->feature = chan->feature;
|
|
|
|
/*
|
|
* If the DMA device's feature is different than the feature
|
|
* of its channels, report the bug
|
|
*/
|
|
WARN_ON(fdev->feature != chan->feature);
|
|
|
|
chan->dev = fdev->dev;
|
|
chan->id = (res.start & 0xfff) < 0x300 ?
|
|
((res.start - 0x100) & 0xfff) >> 7 :
|
|
((res.start - 0x200) & 0xfff) >> 7;
|
|
if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
|
|
dev_err(fdev->dev, "too many channels for device\n");
|
|
err = -EINVAL;
|
|
goto out_iounmap_regs;
|
|
}
|
|
|
|
fdev->chan[chan->id] = chan;
|
|
tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
|
|
snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
|
|
|
|
/* Initialize the channel */
|
|
dma_init(chan);
|
|
|
|
/* Clear cdar registers */
|
|
set_cdar(chan, 0);
|
|
|
|
switch (chan->feature & FSL_DMA_IP_MASK) {
|
|
case FSL_DMA_IP_85XX:
|
|
chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
|
|
/* Fall through */
|
|
case FSL_DMA_IP_83XX:
|
|
chan->toggle_ext_start = fsl_chan_toggle_ext_start;
|
|
chan->set_src_loop_size = fsl_chan_set_src_loop_size;
|
|
chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
|
|
chan->set_request_count = fsl_chan_set_request_count;
|
|
}
|
|
|
|
spin_lock_init(&chan->desc_lock);
|
|
INIT_LIST_HEAD(&chan->ld_pending);
|
|
INIT_LIST_HEAD(&chan->ld_running);
|
|
INIT_LIST_HEAD(&chan->ld_completed);
|
|
chan->idle = true;
|
|
#ifdef CONFIG_PM
|
|
chan->pm_state = RUNNING;
|
|
#endif
|
|
|
|
chan->common.device = &fdev->common;
|
|
dma_cookie_init(&chan->common);
|
|
|
|
/* find the IRQ line, if it exists in the device tree */
|
|
chan->irq = irq_of_parse_and_map(node, 0);
|
|
|
|
/* Add the channel to DMA device channel list */
|
|
list_add_tail(&chan->common.device_node, &fdev->common.channels);
|
|
|
|
dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
|
|
chan->irq ? chan->irq : fdev->irq);
|
|
|
|
return 0;
|
|
|
|
out_iounmap_regs:
|
|
iounmap(chan->regs);
|
|
out_free_chan:
|
|
kfree(chan);
|
|
out_return:
|
|
return err;
|
|
}
|
|
|
|
static void fsl_dma_chan_remove(struct fsldma_chan *chan)
|
|
{
|
|
irq_dispose_mapping(chan->irq);
|
|
list_del(&chan->common.device_node);
|
|
iounmap(chan->regs);
|
|
kfree(chan);
|
|
}
|
|
|
|
static int fsldma_of_probe(struct platform_device *op)
|
|
{
|
|
struct fsldma_device *fdev;
|
|
struct device_node *child;
|
|
int err;
|
|
|
|
fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
|
|
if (!fdev) {
|
|
err = -ENOMEM;
|
|
goto out_return;
|
|
}
|
|
|
|
fdev->dev = &op->dev;
|
|
INIT_LIST_HEAD(&fdev->common.channels);
|
|
|
|
/* ioremap the registers for use */
|
|
fdev->regs = of_iomap(op->dev.of_node, 0);
|
|
if (!fdev->regs) {
|
|
dev_err(&op->dev, "unable to ioremap registers\n");
|
|
err = -ENOMEM;
|
|
goto out_free;
|
|
}
|
|
|
|
/* map the channel IRQ if it exists, but don't hookup the handler yet */
|
|
fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
|
|
|
|
dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
|
|
dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
|
|
fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
|
|
fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
|
|
fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
|
|
fdev->common.device_tx_status = fsl_tx_status;
|
|
fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
|
|
fdev->common.device_config = fsl_dma_device_config;
|
|
fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
|
|
fdev->common.dev = &op->dev;
|
|
|
|
fdev->common.src_addr_widths = FSL_DMA_BUSWIDTHS;
|
|
fdev->common.dst_addr_widths = FSL_DMA_BUSWIDTHS;
|
|
fdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
|
|
fdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
|
|
|
|
dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
|
|
|
|
platform_set_drvdata(op, fdev);
|
|
|
|
/*
|
|
* We cannot use of_platform_bus_probe() because there is no
|
|
* of_platform_bus_remove(). Instead, we manually instantiate every DMA
|
|
* channel object.
|
|
*/
|
|
for_each_child_of_node(op->dev.of_node, child) {
|
|
if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
|
|
fsl_dma_chan_probe(fdev, child,
|
|
FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
|
|
"fsl,eloplus-dma-channel");
|
|
}
|
|
|
|
if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
|
|
fsl_dma_chan_probe(fdev, child,
|
|
FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
|
|
"fsl,elo-dma-channel");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Hookup the IRQ handler(s)
|
|
*
|
|
* If we have a per-controller interrupt, we prefer that to the
|
|
* per-channel interrupts to reduce the number of shared interrupt
|
|
* handlers on the same IRQ line
|
|
*/
|
|
err = fsldma_request_irqs(fdev);
|
|
if (err) {
|
|
dev_err(fdev->dev, "unable to request IRQs\n");
|
|
goto out_free_fdev;
|
|
}
|
|
|
|
dma_async_device_register(&fdev->common);
|
|
return 0;
|
|
|
|
out_free_fdev:
|
|
irq_dispose_mapping(fdev->irq);
|
|
iounmap(fdev->regs);
|
|
out_free:
|
|
kfree(fdev);
|
|
out_return:
|
|
return err;
|
|
}
|
|
|
|
static int fsldma_of_remove(struct platform_device *op)
|
|
{
|
|
struct fsldma_device *fdev;
|
|
unsigned int i;
|
|
|
|
fdev = platform_get_drvdata(op);
|
|
dma_async_device_unregister(&fdev->common);
|
|
|
|
fsldma_free_irqs(fdev);
|
|
|
|
for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
|
|
if (fdev->chan[i])
|
|
fsl_dma_chan_remove(fdev->chan[i]);
|
|
}
|
|
|
|
iounmap(fdev->regs);
|
|
kfree(fdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static int fsldma_suspend_late(struct device *dev)
|
|
{
|
|
struct fsldma_device *fdev = dev_get_drvdata(dev);
|
|
struct fsldma_chan *chan;
|
|
int i;
|
|
|
|
for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
|
|
chan = fdev->chan[i];
|
|
if (!chan)
|
|
continue;
|
|
|
|
spin_lock_bh(&chan->desc_lock);
|
|
if (unlikely(!chan->idle))
|
|
goto out;
|
|
chan->regs_save.mr = get_mr(chan);
|
|
chan->pm_state = SUSPENDED;
|
|
spin_unlock_bh(&chan->desc_lock);
|
|
}
|
|
return 0;
|
|
|
|
out:
|
|
for (; i >= 0; i--) {
|
|
chan = fdev->chan[i];
|
|
if (!chan)
|
|
continue;
|
|
chan->pm_state = RUNNING;
|
|
spin_unlock_bh(&chan->desc_lock);
|
|
}
|
|
return -EBUSY;
|
|
}
|
|
|
|
static int fsldma_resume_early(struct device *dev)
|
|
{
|
|
struct fsldma_device *fdev = dev_get_drvdata(dev);
|
|
struct fsldma_chan *chan;
|
|
u32 mode;
|
|
int i;
|
|
|
|
for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
|
|
chan = fdev->chan[i];
|
|
if (!chan)
|
|
continue;
|
|
|
|
spin_lock_bh(&chan->desc_lock);
|
|
mode = chan->regs_save.mr
|
|
& ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA;
|
|
set_mr(chan, mode);
|
|
chan->pm_state = RUNNING;
|
|
spin_unlock_bh(&chan->desc_lock);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct dev_pm_ops fsldma_pm_ops = {
|
|
.suspend_late = fsldma_suspend_late,
|
|
.resume_early = fsldma_resume_early,
|
|
};
|
|
#endif
|
|
|
|
static const struct of_device_id fsldma_of_ids[] = {
|
|
{ .compatible = "fsl,elo3-dma", },
|
|
{ .compatible = "fsl,eloplus-dma", },
|
|
{ .compatible = "fsl,elo-dma", },
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(of, fsldma_of_ids);
|
|
|
|
static struct platform_driver fsldma_of_driver = {
|
|
.driver = {
|
|
.name = "fsl-elo-dma",
|
|
.of_match_table = fsldma_of_ids,
|
|
#ifdef CONFIG_PM
|
|
.pm = &fsldma_pm_ops,
|
|
#endif
|
|
},
|
|
.probe = fsldma_of_probe,
|
|
.remove = fsldma_of_remove,
|
|
};
|
|
|
|
/*----------------------------------------------------------------------------*/
|
|
/* Module Init / Exit */
|
|
/*----------------------------------------------------------------------------*/
|
|
|
|
static __init int fsldma_init(void)
|
|
{
|
|
pr_info("Freescale Elo series DMA driver\n");
|
|
return platform_driver_register(&fsldma_of_driver);
|
|
}
|
|
|
|
static void __exit fsldma_exit(void)
|
|
{
|
|
platform_driver_unregister(&fsldma_of_driver);
|
|
}
|
|
|
|
subsys_initcall(fsldma_init);
|
|
module_exit(fsldma_exit);
|
|
|
|
MODULE_DESCRIPTION("Freescale Elo series DMA driver");
|
|
MODULE_LICENSE("GPL");
|