linux_dsm_epyc7002/arch/c6x/platforms/timer64.c
Nicolai Stange e1e5fc150d c6x/timer64: Set ->min_delta_ticks and ->max_delta_ticks
In preparation for making the clockevents core NTP correction aware,
all clockevent device drivers must set ->min_delta_ticks and
->max_delta_ticks rather than ->min_delta_ns and ->max_delta_ns: a
clockevent device's rate is going to change dynamically and thus, the
ratio of ns to ticks ceases to stay invariant.

Make the c6x arch's clockevent driver initialize these fields properly.

This patch alone doesn't introduce any change in functionality as the
clockevents core still looks exclusively at the (untouched) ->min_delta_ns
and ->max_delta_ns. As soon as this has changed, a followup patch will
purge the initialization of ->min_delta_ns and ->max_delta_ns from this
driver.

Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Stephen Boyd <sboyd@codeaurora.org>
Cc: Mark Salter <msalter@redhat.com>
Cc: Aurelien Jacquiot <a-jacquiot@ti.com>
Cc: linux-c6x-dev@linux-c6x.org
Signed-off-by: Nicolai Stange <nicstange@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
2017-04-14 13:11:18 -07:00

250 lines
6.1 KiB
C

/*
* Copyright (C) 2010, 2011 Texas Instruments Incorporated
* Contributed by: Mark Salter (msalter@redhat.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/clockchips.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <asm/soc.h>
#include <asm/dscr.h>
#include <asm/special_insns.h>
#include <asm/timer64.h>
struct timer_regs {
u32 reserved0;
u32 emumgt;
u32 reserved1;
u32 reserved2;
u32 cntlo;
u32 cnthi;
u32 prdlo;
u32 prdhi;
u32 tcr;
u32 tgcr;
u32 wdtcr;
};
static struct timer_regs __iomem *timer;
#define TCR_TSTATLO 0x001
#define TCR_INVOUTPLO 0x002
#define TCR_INVINPLO 0x004
#define TCR_CPLO 0x008
#define TCR_ENAMODELO_ONCE 0x040
#define TCR_ENAMODELO_CONT 0x080
#define TCR_ENAMODELO_MASK 0x0c0
#define TCR_PWIDLO_MASK 0x030
#define TCR_CLKSRCLO 0x100
#define TCR_TIENLO 0x200
#define TCR_TSTATHI (0x001 << 16)
#define TCR_INVOUTPHI (0x002 << 16)
#define TCR_CPHI (0x008 << 16)
#define TCR_PWIDHI_MASK (0x030 << 16)
#define TCR_ENAMODEHI_ONCE (0x040 << 16)
#define TCR_ENAMODEHI_CONT (0x080 << 16)
#define TCR_ENAMODEHI_MASK (0x0c0 << 16)
#define TGCR_TIMLORS 0x001
#define TGCR_TIMHIRS 0x002
#define TGCR_TIMMODE_UD32 0x004
#define TGCR_TIMMODE_WDT64 0x008
#define TGCR_TIMMODE_CD32 0x00c
#define TGCR_TIMMODE_MASK 0x00c
#define TGCR_PSCHI_MASK (0x00f << 8)
#define TGCR_TDDRHI_MASK (0x00f << 12)
/*
* Timer clocks are divided down from the CPU clock
* The divisor is in the EMUMGTCLKSPD register
*/
#define TIMER_DIVISOR \
((soc_readl(&timer->emumgt) & (0xf << 16)) >> 16)
#define TIMER64_RATE (c6x_core_freq / TIMER_DIVISOR)
#define TIMER64_MODE_DISABLED 0
#define TIMER64_MODE_ONE_SHOT TCR_ENAMODELO_ONCE
#define TIMER64_MODE_PERIODIC TCR_ENAMODELO_CONT
static int timer64_mode;
static int timer64_devstate_id = -1;
static void timer64_config(unsigned long period)
{
u32 tcr = soc_readl(&timer->tcr) & ~TCR_ENAMODELO_MASK;
soc_writel(tcr, &timer->tcr);
soc_writel(period - 1, &timer->prdlo);
soc_writel(0, &timer->cntlo);
tcr |= timer64_mode;
soc_writel(tcr, &timer->tcr);
}
static void timer64_enable(void)
{
u32 val;
if (timer64_devstate_id >= 0)
dscr_set_devstate(timer64_devstate_id, DSCR_DEVSTATE_ENABLED);
/* disable timer, reset count */
soc_writel(soc_readl(&timer->tcr) & ~TCR_ENAMODELO_MASK, &timer->tcr);
soc_writel(0, &timer->prdlo);
/* use internal clock and 1 cycle pulse width */
val = soc_readl(&timer->tcr);
soc_writel(val & ~(TCR_CLKSRCLO | TCR_PWIDLO_MASK), &timer->tcr);
/* dual 32-bit unchained mode */
val = soc_readl(&timer->tgcr) & ~TGCR_TIMMODE_MASK;
soc_writel(val, &timer->tgcr);
soc_writel(val | (TGCR_TIMLORS | TGCR_TIMMODE_UD32), &timer->tgcr);
}
static void timer64_disable(void)
{
/* disable timer, reset count */
soc_writel(soc_readl(&timer->tcr) & ~TCR_ENAMODELO_MASK, &timer->tcr);
soc_writel(0, &timer->prdlo);
if (timer64_devstate_id >= 0)
dscr_set_devstate(timer64_devstate_id, DSCR_DEVSTATE_DISABLED);
}
static int next_event(unsigned long delta,
struct clock_event_device *evt)
{
timer64_config(delta);
return 0;
}
static int set_periodic(struct clock_event_device *evt)
{
timer64_enable();
timer64_mode = TIMER64_MODE_PERIODIC;
timer64_config(TIMER64_RATE / HZ);
return 0;
}
static int set_oneshot(struct clock_event_device *evt)
{
timer64_enable();
timer64_mode = TIMER64_MODE_ONE_SHOT;
return 0;
}
static int shutdown(struct clock_event_device *evt)
{
timer64_mode = TIMER64_MODE_DISABLED;
timer64_disable();
return 0;
}
static struct clock_event_device t64_clockevent_device = {
.name = "TIMER64_EVT32_TIMER",
.features = CLOCK_EVT_FEAT_ONESHOT |
CLOCK_EVT_FEAT_PERIODIC,
.rating = 200,
.set_state_shutdown = shutdown,
.set_state_periodic = set_periodic,
.set_state_oneshot = set_oneshot,
.set_next_event = next_event,
};
static irqreturn_t timer_interrupt(int irq, void *dev_id)
{
struct clock_event_device *cd = &t64_clockevent_device;
cd->event_handler(cd);
return IRQ_HANDLED;
}
static struct irqaction timer_iact = {
.name = "timer",
.flags = IRQF_TIMER,
.handler = timer_interrupt,
.dev_id = &t64_clockevent_device,
};
void __init timer64_init(void)
{
struct clock_event_device *cd = &t64_clockevent_device;
struct device_node *np, *first = NULL;
u32 val;
int err, found = 0;
for_each_compatible_node(np, NULL, "ti,c64x+timer64") {
err = of_property_read_u32(np, "ti,core-mask", &val);
if (!err) {
if (val & (1 << get_coreid())) {
found = 1;
break;
}
} else if (!first)
first = np;
}
if (!found) {
/* try first one with no core-mask */
if (first)
np = of_node_get(first);
else {
pr_debug("Cannot find ti,c64x+timer64 timer.\n");
return;
}
}
timer = of_iomap(np, 0);
if (!timer) {
pr_debug("%s: Cannot map timer registers.\n", np->full_name);
goto out;
}
pr_debug("%s: Timer registers=%p.\n", np->full_name, timer);
cd->irq = irq_of_parse_and_map(np, 0);
if (cd->irq == NO_IRQ) {
pr_debug("%s: Cannot find interrupt.\n", np->full_name);
iounmap(timer);
goto out;
}
/* If there is a device state control, save the ID. */
err = of_property_read_u32(np, "ti,dscr-dev-enable", &val);
if (!err) {
timer64_devstate_id = val;
/*
* It is necessary to enable the timer block here because
* the TIMER_DIVISOR macro needs to read a timer register
* to get the divisor.
*/
dscr_set_devstate(timer64_devstate_id, DSCR_DEVSTATE_ENABLED);
}
pr_debug("%s: Timer irq=%d.\n", np->full_name, cd->irq);
clockevents_calc_mult_shift(cd, c6x_core_freq / TIMER_DIVISOR, 5);
cd->max_delta_ns = clockevent_delta2ns(0x7fffffff, cd);
cd->max_delta_ticks = 0x7fffffff;
cd->min_delta_ns = clockevent_delta2ns(250, cd);
cd->min_delta_ticks = 250;
cd->cpumask = cpumask_of(smp_processor_id());
clockevents_register_device(cd);
setup_irq(cd->irq, &timer_iact);
out:
of_node_put(np);
return;
}