mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
b2b1d94cdf
ignore_sysret() contains an unsuffixed SYSRET instruction. gas correctly interprets this as SYSRETL, but leaving it up to gas to guess when there is no register operand that implies a size is bad practice, and upstream gas is likely to warn about this in the future. Use SYSRETL explicitly. This does not change the assembled output. Signed-off-by: Jan Beulich <jbeulich@suse.com> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Andy Lutomirski <luto@kernel.org> Link: https://lkml.kernel.org/r/038a7c35-062b-a285-c6d2-653b56585844@suse.com
1746 lines
49 KiB
ArmAsm
1746 lines
49 KiB
ArmAsm
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/*
|
|
* linux/arch/x86_64/entry.S
|
|
*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
* Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
|
|
* Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
|
|
*
|
|
* entry.S contains the system-call and fault low-level handling routines.
|
|
*
|
|
* Some of this is documented in Documentation/x86/entry_64.rst
|
|
*
|
|
* A note on terminology:
|
|
* - iret frame: Architecture defined interrupt frame from SS to RIP
|
|
* at the top of the kernel process stack.
|
|
*
|
|
* Some macro usage:
|
|
* - SYM_FUNC_START/END:Define functions in the symbol table.
|
|
* - TRACE_IRQ_*: Trace hardirq state for lock debugging.
|
|
* - idtentry: Define exception entry points.
|
|
*/
|
|
#include <linux/linkage.h>
|
|
#include <asm/segment.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/errno.h>
|
|
#include <asm/asm-offsets.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/unistd.h>
|
|
#include <asm/thread_info.h>
|
|
#include <asm/hw_irq.h>
|
|
#include <asm/page_types.h>
|
|
#include <asm/irqflags.h>
|
|
#include <asm/paravirt.h>
|
|
#include <asm/percpu.h>
|
|
#include <asm/asm.h>
|
|
#include <asm/smap.h>
|
|
#include <asm/pgtable_types.h>
|
|
#include <asm/export.h>
|
|
#include <asm/frame.h>
|
|
#include <asm/nospec-branch.h>
|
|
#include <linux/err.h>
|
|
|
|
#include "calling.h"
|
|
|
|
.code64
|
|
.section .entry.text, "ax"
|
|
|
|
#ifdef CONFIG_PARAVIRT
|
|
SYM_CODE_START(native_usergs_sysret64)
|
|
UNWIND_HINT_EMPTY
|
|
swapgs
|
|
sysretq
|
|
SYM_CODE_END(native_usergs_sysret64)
|
|
#endif /* CONFIG_PARAVIRT */
|
|
|
|
.macro TRACE_IRQS_FLAGS flags:req
|
|
#ifdef CONFIG_TRACE_IRQFLAGS
|
|
btl $9, \flags /* interrupts off? */
|
|
jnc 1f
|
|
TRACE_IRQS_ON
|
|
1:
|
|
#endif
|
|
.endm
|
|
|
|
.macro TRACE_IRQS_IRETQ
|
|
TRACE_IRQS_FLAGS EFLAGS(%rsp)
|
|
.endm
|
|
|
|
/*
|
|
* When dynamic function tracer is enabled it will add a breakpoint
|
|
* to all locations that it is about to modify, sync CPUs, update
|
|
* all the code, sync CPUs, then remove the breakpoints. In this time
|
|
* if lockdep is enabled, it might jump back into the debug handler
|
|
* outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
|
|
*
|
|
* We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
|
|
* make sure the stack pointer does not get reset back to the top
|
|
* of the debug stack, and instead just reuses the current stack.
|
|
*/
|
|
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
|
|
|
|
.macro TRACE_IRQS_OFF_DEBUG
|
|
call debug_stack_set_zero
|
|
TRACE_IRQS_OFF
|
|
call debug_stack_reset
|
|
.endm
|
|
|
|
.macro TRACE_IRQS_ON_DEBUG
|
|
call debug_stack_set_zero
|
|
TRACE_IRQS_ON
|
|
call debug_stack_reset
|
|
.endm
|
|
|
|
.macro TRACE_IRQS_IRETQ_DEBUG
|
|
btl $9, EFLAGS(%rsp) /* interrupts off? */
|
|
jnc 1f
|
|
TRACE_IRQS_ON_DEBUG
|
|
1:
|
|
.endm
|
|
|
|
#else
|
|
# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
|
|
# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
|
|
# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
|
|
#endif
|
|
|
|
/*
|
|
* 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
|
|
*
|
|
* This is the only entry point used for 64-bit system calls. The
|
|
* hardware interface is reasonably well designed and the register to
|
|
* argument mapping Linux uses fits well with the registers that are
|
|
* available when SYSCALL is used.
|
|
*
|
|
* SYSCALL instructions can be found inlined in libc implementations as
|
|
* well as some other programs and libraries. There are also a handful
|
|
* of SYSCALL instructions in the vDSO used, for example, as a
|
|
* clock_gettimeofday fallback.
|
|
*
|
|
* 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
|
|
* then loads new ss, cs, and rip from previously programmed MSRs.
|
|
* rflags gets masked by a value from another MSR (so CLD and CLAC
|
|
* are not needed). SYSCALL does not save anything on the stack
|
|
* and does not change rsp.
|
|
*
|
|
* Registers on entry:
|
|
* rax system call number
|
|
* rcx return address
|
|
* r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
|
|
* rdi arg0
|
|
* rsi arg1
|
|
* rdx arg2
|
|
* r10 arg3 (needs to be moved to rcx to conform to C ABI)
|
|
* r8 arg4
|
|
* r9 arg5
|
|
* (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
|
|
*
|
|
* Only called from user space.
|
|
*
|
|
* When user can change pt_regs->foo always force IRET. That is because
|
|
* it deals with uncanonical addresses better. SYSRET has trouble
|
|
* with them due to bugs in both AMD and Intel CPUs.
|
|
*/
|
|
|
|
SYM_CODE_START(entry_SYSCALL_64)
|
|
UNWIND_HINT_EMPTY
|
|
/*
|
|
* Interrupts are off on entry.
|
|
* We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
|
|
* it is too small to ever cause noticeable irq latency.
|
|
*/
|
|
|
|
swapgs
|
|
/* tss.sp2 is scratch space. */
|
|
movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
|
|
SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
|
|
movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
|
|
|
|
/* Construct struct pt_regs on stack */
|
|
pushq $__USER_DS /* pt_regs->ss */
|
|
pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */
|
|
pushq %r11 /* pt_regs->flags */
|
|
pushq $__USER_CS /* pt_regs->cs */
|
|
pushq %rcx /* pt_regs->ip */
|
|
SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
|
|
pushq %rax /* pt_regs->orig_ax */
|
|
|
|
PUSH_AND_CLEAR_REGS rax=$-ENOSYS
|
|
|
|
TRACE_IRQS_OFF
|
|
|
|
/* IRQs are off. */
|
|
movq %rax, %rdi
|
|
movq %rsp, %rsi
|
|
call do_syscall_64 /* returns with IRQs disabled */
|
|
|
|
TRACE_IRQS_IRETQ /* we're about to change IF */
|
|
|
|
/*
|
|
* Try to use SYSRET instead of IRET if we're returning to
|
|
* a completely clean 64-bit userspace context. If we're not,
|
|
* go to the slow exit path.
|
|
*/
|
|
movq RCX(%rsp), %rcx
|
|
movq RIP(%rsp), %r11
|
|
|
|
cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
|
|
jne swapgs_restore_regs_and_return_to_usermode
|
|
|
|
/*
|
|
* On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
|
|
* in kernel space. This essentially lets the user take over
|
|
* the kernel, since userspace controls RSP.
|
|
*
|
|
* If width of "canonical tail" ever becomes variable, this will need
|
|
* to be updated to remain correct on both old and new CPUs.
|
|
*
|
|
* Change top bits to match most significant bit (47th or 56th bit
|
|
* depending on paging mode) in the address.
|
|
*/
|
|
#ifdef CONFIG_X86_5LEVEL
|
|
ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
|
|
"shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
|
|
#else
|
|
shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
|
|
sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
|
|
#endif
|
|
|
|
/* If this changed %rcx, it was not canonical */
|
|
cmpq %rcx, %r11
|
|
jne swapgs_restore_regs_and_return_to_usermode
|
|
|
|
cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
|
|
jne swapgs_restore_regs_and_return_to_usermode
|
|
|
|
movq R11(%rsp), %r11
|
|
cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
|
|
jne swapgs_restore_regs_and_return_to_usermode
|
|
|
|
/*
|
|
* SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
|
|
* restore RF properly. If the slowpath sets it for whatever reason, we
|
|
* need to restore it correctly.
|
|
*
|
|
* SYSRET can restore TF, but unlike IRET, restoring TF results in a
|
|
* trap from userspace immediately after SYSRET. This would cause an
|
|
* infinite loop whenever #DB happens with register state that satisfies
|
|
* the opportunistic SYSRET conditions. For example, single-stepping
|
|
* this user code:
|
|
*
|
|
* movq $stuck_here, %rcx
|
|
* pushfq
|
|
* popq %r11
|
|
* stuck_here:
|
|
*
|
|
* would never get past 'stuck_here'.
|
|
*/
|
|
testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
|
|
jnz swapgs_restore_regs_and_return_to_usermode
|
|
|
|
/* nothing to check for RSP */
|
|
|
|
cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
|
|
jne swapgs_restore_regs_and_return_to_usermode
|
|
|
|
/*
|
|
* We win! This label is here just for ease of understanding
|
|
* perf profiles. Nothing jumps here.
|
|
*/
|
|
syscall_return_via_sysret:
|
|
/* rcx and r11 are already restored (see code above) */
|
|
UNWIND_HINT_EMPTY
|
|
POP_REGS pop_rdi=0 skip_r11rcx=1
|
|
|
|
/*
|
|
* Now all regs are restored except RSP and RDI.
|
|
* Save old stack pointer and switch to trampoline stack.
|
|
*/
|
|
movq %rsp, %rdi
|
|
movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
|
|
|
|
pushq RSP-RDI(%rdi) /* RSP */
|
|
pushq (%rdi) /* RDI */
|
|
|
|
/*
|
|
* We are on the trampoline stack. All regs except RDI are live.
|
|
* We can do future final exit work right here.
|
|
*/
|
|
STACKLEAK_ERASE_NOCLOBBER
|
|
|
|
SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
|
|
|
|
popq %rdi
|
|
popq %rsp
|
|
USERGS_SYSRET64
|
|
SYM_CODE_END(entry_SYSCALL_64)
|
|
|
|
/*
|
|
* %rdi: prev task
|
|
* %rsi: next task
|
|
*/
|
|
SYM_CODE_START(__switch_to_asm)
|
|
UNWIND_HINT_FUNC
|
|
/*
|
|
* Save callee-saved registers
|
|
* This must match the order in inactive_task_frame
|
|
*/
|
|
pushq %rbp
|
|
pushq %rbx
|
|
pushq %r12
|
|
pushq %r13
|
|
pushq %r14
|
|
pushq %r15
|
|
|
|
/* switch stack */
|
|
movq %rsp, TASK_threadsp(%rdi)
|
|
movq TASK_threadsp(%rsi), %rsp
|
|
|
|
#ifdef CONFIG_STACKPROTECTOR
|
|
movq TASK_stack_canary(%rsi), %rbx
|
|
movq %rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset
|
|
#endif
|
|
|
|
#ifdef CONFIG_RETPOLINE
|
|
/*
|
|
* When switching from a shallower to a deeper call stack
|
|
* the RSB may either underflow or use entries populated
|
|
* with userspace addresses. On CPUs where those concerns
|
|
* exist, overwrite the RSB with entries which capture
|
|
* speculative execution to prevent attack.
|
|
*/
|
|
FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
|
|
#endif
|
|
|
|
/* restore callee-saved registers */
|
|
popq %r15
|
|
popq %r14
|
|
popq %r13
|
|
popq %r12
|
|
popq %rbx
|
|
popq %rbp
|
|
|
|
jmp __switch_to
|
|
SYM_CODE_END(__switch_to_asm)
|
|
|
|
/*
|
|
* A newly forked process directly context switches into this address.
|
|
*
|
|
* rax: prev task we switched from
|
|
* rbx: kernel thread func (NULL for user thread)
|
|
* r12: kernel thread arg
|
|
*/
|
|
SYM_CODE_START(ret_from_fork)
|
|
UNWIND_HINT_EMPTY
|
|
movq %rax, %rdi
|
|
call schedule_tail /* rdi: 'prev' task parameter */
|
|
|
|
testq %rbx, %rbx /* from kernel_thread? */
|
|
jnz 1f /* kernel threads are uncommon */
|
|
|
|
2:
|
|
UNWIND_HINT_REGS
|
|
movq %rsp, %rdi
|
|
call syscall_return_slowpath /* returns with IRQs disabled */
|
|
TRACE_IRQS_ON /* user mode is traced as IRQS on */
|
|
jmp swapgs_restore_regs_and_return_to_usermode
|
|
|
|
1:
|
|
/* kernel thread */
|
|
UNWIND_HINT_EMPTY
|
|
movq %r12, %rdi
|
|
CALL_NOSPEC %rbx
|
|
/*
|
|
* A kernel thread is allowed to return here after successfully
|
|
* calling do_execve(). Exit to userspace to complete the execve()
|
|
* syscall.
|
|
*/
|
|
movq $0, RAX(%rsp)
|
|
jmp 2b
|
|
SYM_CODE_END(ret_from_fork)
|
|
|
|
/*
|
|
* Build the entry stubs with some assembler magic.
|
|
* We pack 1 stub into every 8-byte block.
|
|
*/
|
|
.align 8
|
|
SYM_CODE_START(irq_entries_start)
|
|
vector=FIRST_EXTERNAL_VECTOR
|
|
.rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
|
|
UNWIND_HINT_IRET_REGS
|
|
pushq $(~vector+0x80) /* Note: always in signed byte range */
|
|
jmp common_interrupt
|
|
.align 8
|
|
vector=vector+1
|
|
.endr
|
|
SYM_CODE_END(irq_entries_start)
|
|
|
|
.align 8
|
|
SYM_CODE_START(spurious_entries_start)
|
|
vector=FIRST_SYSTEM_VECTOR
|
|
.rept (NR_VECTORS - FIRST_SYSTEM_VECTOR)
|
|
UNWIND_HINT_IRET_REGS
|
|
pushq $(~vector+0x80) /* Note: always in signed byte range */
|
|
jmp common_spurious
|
|
.align 8
|
|
vector=vector+1
|
|
.endr
|
|
SYM_CODE_END(spurious_entries_start)
|
|
|
|
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
|
|
#ifdef CONFIG_DEBUG_ENTRY
|
|
pushq %rax
|
|
SAVE_FLAGS(CLBR_RAX)
|
|
testl $X86_EFLAGS_IF, %eax
|
|
jz .Lokay_\@
|
|
ud2
|
|
.Lokay_\@:
|
|
popq %rax
|
|
#endif
|
|
.endm
|
|
|
|
/*
|
|
* Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
|
|
* flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
|
|
* Requires kernel GSBASE.
|
|
*
|
|
* The invariant is that, if irq_count != -1, then the IRQ stack is in use.
|
|
*/
|
|
.macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
|
|
DEBUG_ENTRY_ASSERT_IRQS_OFF
|
|
|
|
.if \save_ret
|
|
/*
|
|
* If save_ret is set, the original stack contains one additional
|
|
* entry -- the return address. Therefore, move the address one
|
|
* entry below %rsp to \old_rsp.
|
|
*/
|
|
leaq 8(%rsp), \old_rsp
|
|
.else
|
|
movq %rsp, \old_rsp
|
|
.endif
|
|
|
|
.if \regs
|
|
UNWIND_HINT_REGS base=\old_rsp
|
|
.endif
|
|
|
|
incl PER_CPU_VAR(irq_count)
|
|
jnz .Lirq_stack_push_old_rsp_\@
|
|
|
|
/*
|
|
* Right now, if we just incremented irq_count to zero, we've
|
|
* claimed the IRQ stack but we haven't switched to it yet.
|
|
*
|
|
* If anything is added that can interrupt us here without using IST,
|
|
* it must be *extremely* careful to limit its stack usage. This
|
|
* could include kprobes and a hypothetical future IST-less #DB
|
|
* handler.
|
|
*
|
|
* The OOPS unwinder relies on the word at the top of the IRQ
|
|
* stack linking back to the previous RSP for the entire time we're
|
|
* on the IRQ stack. For this to work reliably, we need to write
|
|
* it before we actually move ourselves to the IRQ stack.
|
|
*/
|
|
|
|
movq \old_rsp, PER_CPU_VAR(irq_stack_backing_store + IRQ_STACK_SIZE - 8)
|
|
movq PER_CPU_VAR(hardirq_stack_ptr), %rsp
|
|
|
|
#ifdef CONFIG_DEBUG_ENTRY
|
|
/*
|
|
* If the first movq above becomes wrong due to IRQ stack layout
|
|
* changes, the only way we'll notice is if we try to unwind right
|
|
* here. Assert that we set up the stack right to catch this type
|
|
* of bug quickly.
|
|
*/
|
|
cmpq -8(%rsp), \old_rsp
|
|
je .Lirq_stack_okay\@
|
|
ud2
|
|
.Lirq_stack_okay\@:
|
|
#endif
|
|
|
|
.Lirq_stack_push_old_rsp_\@:
|
|
pushq \old_rsp
|
|
|
|
.if \regs
|
|
UNWIND_HINT_REGS indirect=1
|
|
.endif
|
|
|
|
.if \save_ret
|
|
/*
|
|
* Push the return address to the stack. This return address can
|
|
* be found at the "real" original RSP, which was offset by 8 at
|
|
* the beginning of this macro.
|
|
*/
|
|
pushq -8(\old_rsp)
|
|
.endif
|
|
.endm
|
|
|
|
/*
|
|
* Undoes ENTER_IRQ_STACK.
|
|
*/
|
|
.macro LEAVE_IRQ_STACK regs=1
|
|
DEBUG_ENTRY_ASSERT_IRQS_OFF
|
|
/* We need to be off the IRQ stack before decrementing irq_count. */
|
|
popq %rsp
|
|
|
|
.if \regs
|
|
UNWIND_HINT_REGS
|
|
.endif
|
|
|
|
/*
|
|
* As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
|
|
* the irq stack but we're not on it.
|
|
*/
|
|
|
|
decl PER_CPU_VAR(irq_count)
|
|
.endm
|
|
|
|
/*
|
|
* Interrupt entry helper function.
|
|
*
|
|
* Entry runs with interrupts off. Stack layout at entry:
|
|
* +----------------------------------------------------+
|
|
* | regs->ss |
|
|
* | regs->rsp |
|
|
* | regs->eflags |
|
|
* | regs->cs |
|
|
* | regs->ip |
|
|
* +----------------------------------------------------+
|
|
* | regs->orig_ax = ~(interrupt number) |
|
|
* +----------------------------------------------------+
|
|
* | return address |
|
|
* +----------------------------------------------------+
|
|
*/
|
|
SYM_CODE_START(interrupt_entry)
|
|
UNWIND_HINT_FUNC
|
|
ASM_CLAC
|
|
cld
|
|
|
|
testb $3, CS-ORIG_RAX+8(%rsp)
|
|
jz 1f
|
|
SWAPGS
|
|
FENCE_SWAPGS_USER_ENTRY
|
|
/*
|
|
* Switch to the thread stack. The IRET frame and orig_ax are
|
|
* on the stack, as well as the return address. RDI..R12 are
|
|
* not (yet) on the stack and space has not (yet) been
|
|
* allocated for them.
|
|
*/
|
|
pushq %rdi
|
|
|
|
/* Need to switch before accessing the thread stack. */
|
|
SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
|
|
movq %rsp, %rdi
|
|
movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
|
|
|
|
/*
|
|
* We have RDI, return address, and orig_ax on the stack on
|
|
* top of the IRET frame. That means offset=24
|
|
*/
|
|
UNWIND_HINT_IRET_REGS base=%rdi offset=24
|
|
|
|
pushq 7*8(%rdi) /* regs->ss */
|
|
pushq 6*8(%rdi) /* regs->rsp */
|
|
pushq 5*8(%rdi) /* regs->eflags */
|
|
pushq 4*8(%rdi) /* regs->cs */
|
|
pushq 3*8(%rdi) /* regs->ip */
|
|
pushq 2*8(%rdi) /* regs->orig_ax */
|
|
pushq 8(%rdi) /* return address */
|
|
UNWIND_HINT_FUNC
|
|
|
|
movq (%rdi), %rdi
|
|
jmp 2f
|
|
1:
|
|
FENCE_SWAPGS_KERNEL_ENTRY
|
|
2:
|
|
PUSH_AND_CLEAR_REGS save_ret=1
|
|
ENCODE_FRAME_POINTER 8
|
|
|
|
testb $3, CS+8(%rsp)
|
|
jz 1f
|
|
|
|
/*
|
|
* IRQ from user mode.
|
|
*
|
|
* We need to tell lockdep that IRQs are off. We can't do this until
|
|
* we fix gsbase, and we should do it before enter_from_user_mode
|
|
* (which can take locks). Since TRACE_IRQS_OFF is idempotent,
|
|
* the simplest way to handle it is to just call it twice if
|
|
* we enter from user mode. There's no reason to optimize this since
|
|
* TRACE_IRQS_OFF is a no-op if lockdep is off.
|
|
*/
|
|
TRACE_IRQS_OFF
|
|
|
|
CALL_enter_from_user_mode
|
|
|
|
1:
|
|
ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
|
|
/* We entered an interrupt context - irqs are off: */
|
|
TRACE_IRQS_OFF
|
|
|
|
ret
|
|
SYM_CODE_END(interrupt_entry)
|
|
_ASM_NOKPROBE(interrupt_entry)
|
|
|
|
|
|
/* Interrupt entry/exit. */
|
|
|
|
/*
|
|
* The interrupt stubs push (~vector+0x80) onto the stack and
|
|
* then jump to common_spurious/interrupt.
|
|
*/
|
|
SYM_CODE_START_LOCAL(common_spurious)
|
|
addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
|
|
call interrupt_entry
|
|
UNWIND_HINT_REGS indirect=1
|
|
call smp_spurious_interrupt /* rdi points to pt_regs */
|
|
jmp ret_from_intr
|
|
SYM_CODE_END(common_spurious)
|
|
_ASM_NOKPROBE(common_spurious)
|
|
|
|
/* common_interrupt is a hotpath. Align it */
|
|
.p2align CONFIG_X86_L1_CACHE_SHIFT
|
|
SYM_CODE_START_LOCAL(common_interrupt)
|
|
addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
|
|
call interrupt_entry
|
|
UNWIND_HINT_REGS indirect=1
|
|
call do_IRQ /* rdi points to pt_regs */
|
|
/* 0(%rsp): old RSP */
|
|
ret_from_intr:
|
|
DISABLE_INTERRUPTS(CLBR_ANY)
|
|
TRACE_IRQS_OFF
|
|
|
|
LEAVE_IRQ_STACK
|
|
|
|
testb $3, CS(%rsp)
|
|
jz retint_kernel
|
|
|
|
/* Interrupt came from user space */
|
|
.Lretint_user:
|
|
mov %rsp,%rdi
|
|
call prepare_exit_to_usermode
|
|
TRACE_IRQS_IRETQ
|
|
|
|
SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
|
|
#ifdef CONFIG_DEBUG_ENTRY
|
|
/* Assert that pt_regs indicates user mode. */
|
|
testb $3, CS(%rsp)
|
|
jnz 1f
|
|
ud2
|
|
1:
|
|
#endif
|
|
POP_REGS pop_rdi=0
|
|
|
|
/*
|
|
* The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
|
|
* Save old stack pointer and switch to trampoline stack.
|
|
*/
|
|
movq %rsp, %rdi
|
|
movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
|
|
|
|
/* Copy the IRET frame to the trampoline stack. */
|
|
pushq 6*8(%rdi) /* SS */
|
|
pushq 5*8(%rdi) /* RSP */
|
|
pushq 4*8(%rdi) /* EFLAGS */
|
|
pushq 3*8(%rdi) /* CS */
|
|
pushq 2*8(%rdi) /* RIP */
|
|
|
|
/* Push user RDI on the trampoline stack. */
|
|
pushq (%rdi)
|
|
|
|
/*
|
|
* We are on the trampoline stack. All regs except RDI are live.
|
|
* We can do future final exit work right here.
|
|
*/
|
|
STACKLEAK_ERASE_NOCLOBBER
|
|
|
|
SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
|
|
|
|
/* Restore RDI. */
|
|
popq %rdi
|
|
SWAPGS
|
|
INTERRUPT_RETURN
|
|
|
|
|
|
/* Returning to kernel space */
|
|
retint_kernel:
|
|
#ifdef CONFIG_PREEMPTION
|
|
/* Interrupts are off */
|
|
/* Check if we need preemption */
|
|
btl $9, EFLAGS(%rsp) /* were interrupts off? */
|
|
jnc 1f
|
|
cmpl $0, PER_CPU_VAR(__preempt_count)
|
|
jnz 1f
|
|
call preempt_schedule_irq
|
|
1:
|
|
#endif
|
|
/*
|
|
* The iretq could re-enable interrupts:
|
|
*/
|
|
TRACE_IRQS_IRETQ
|
|
|
|
SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
|
|
#ifdef CONFIG_DEBUG_ENTRY
|
|
/* Assert that pt_regs indicates kernel mode. */
|
|
testb $3, CS(%rsp)
|
|
jz 1f
|
|
ud2
|
|
1:
|
|
#endif
|
|
POP_REGS
|
|
addq $8, %rsp /* skip regs->orig_ax */
|
|
/*
|
|
* ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
|
|
* when returning from IPI handler.
|
|
*/
|
|
INTERRUPT_RETURN
|
|
|
|
SYM_INNER_LABEL_ALIGN(native_iret, SYM_L_GLOBAL)
|
|
UNWIND_HINT_IRET_REGS
|
|
/*
|
|
* Are we returning to a stack segment from the LDT? Note: in
|
|
* 64-bit mode SS:RSP on the exception stack is always valid.
|
|
*/
|
|
#ifdef CONFIG_X86_ESPFIX64
|
|
testb $4, (SS-RIP)(%rsp)
|
|
jnz native_irq_return_ldt
|
|
#endif
|
|
|
|
SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
|
|
/*
|
|
* This may fault. Non-paranoid faults on return to userspace are
|
|
* handled by fixup_bad_iret. These include #SS, #GP, and #NP.
|
|
* Double-faults due to espfix64 are handled in do_double_fault.
|
|
* Other faults here are fatal.
|
|
*/
|
|
iretq
|
|
|
|
#ifdef CONFIG_X86_ESPFIX64
|
|
native_irq_return_ldt:
|
|
/*
|
|
* We are running with user GSBASE. All GPRs contain their user
|
|
* values. We have a percpu ESPFIX stack that is eight slots
|
|
* long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
|
|
* of the ESPFIX stack.
|
|
*
|
|
* We clobber RAX and RDI in this code. We stash RDI on the
|
|
* normal stack and RAX on the ESPFIX stack.
|
|
*
|
|
* The ESPFIX stack layout we set up looks like this:
|
|
*
|
|
* --- top of ESPFIX stack ---
|
|
* SS
|
|
* RSP
|
|
* RFLAGS
|
|
* CS
|
|
* RIP <-- RSP points here when we're done
|
|
* RAX <-- espfix_waddr points here
|
|
* --- bottom of ESPFIX stack ---
|
|
*/
|
|
|
|
pushq %rdi /* Stash user RDI */
|
|
SWAPGS /* to kernel GS */
|
|
SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */
|
|
|
|
movq PER_CPU_VAR(espfix_waddr), %rdi
|
|
movq %rax, (0*8)(%rdi) /* user RAX */
|
|
movq (1*8)(%rsp), %rax /* user RIP */
|
|
movq %rax, (1*8)(%rdi)
|
|
movq (2*8)(%rsp), %rax /* user CS */
|
|
movq %rax, (2*8)(%rdi)
|
|
movq (3*8)(%rsp), %rax /* user RFLAGS */
|
|
movq %rax, (3*8)(%rdi)
|
|
movq (5*8)(%rsp), %rax /* user SS */
|
|
movq %rax, (5*8)(%rdi)
|
|
movq (4*8)(%rsp), %rax /* user RSP */
|
|
movq %rax, (4*8)(%rdi)
|
|
/* Now RAX == RSP. */
|
|
|
|
andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
|
|
|
|
/*
|
|
* espfix_stack[31:16] == 0. The page tables are set up such that
|
|
* (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
|
|
* espfix_waddr for any X. That is, there are 65536 RO aliases of
|
|
* the same page. Set up RSP so that RSP[31:16] contains the
|
|
* respective 16 bits of the /userspace/ RSP and RSP nonetheless
|
|
* still points to an RO alias of the ESPFIX stack.
|
|
*/
|
|
orq PER_CPU_VAR(espfix_stack), %rax
|
|
|
|
SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
|
|
SWAPGS /* to user GS */
|
|
popq %rdi /* Restore user RDI */
|
|
|
|
movq %rax, %rsp
|
|
UNWIND_HINT_IRET_REGS offset=8
|
|
|
|
/*
|
|
* At this point, we cannot write to the stack any more, but we can
|
|
* still read.
|
|
*/
|
|
popq %rax /* Restore user RAX */
|
|
|
|
/*
|
|
* RSP now points to an ordinary IRET frame, except that the page
|
|
* is read-only and RSP[31:16] are preloaded with the userspace
|
|
* values. We can now IRET back to userspace.
|
|
*/
|
|
jmp native_irq_return_iret
|
|
#endif
|
|
SYM_CODE_END(common_interrupt)
|
|
_ASM_NOKPROBE(common_interrupt)
|
|
|
|
/*
|
|
* APIC interrupts.
|
|
*/
|
|
.macro apicinterrupt3 num sym do_sym
|
|
SYM_CODE_START(\sym)
|
|
UNWIND_HINT_IRET_REGS
|
|
pushq $~(\num)
|
|
.Lcommon_\sym:
|
|
call interrupt_entry
|
|
UNWIND_HINT_REGS indirect=1
|
|
call \do_sym /* rdi points to pt_regs */
|
|
jmp ret_from_intr
|
|
SYM_CODE_END(\sym)
|
|
_ASM_NOKPROBE(\sym)
|
|
.endm
|
|
|
|
/* Make sure APIC interrupt handlers end up in the irqentry section: */
|
|
#define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
|
|
#define POP_SECTION_IRQENTRY .popsection
|
|
|
|
.macro apicinterrupt num sym do_sym
|
|
PUSH_SECTION_IRQENTRY
|
|
apicinterrupt3 \num \sym \do_sym
|
|
POP_SECTION_IRQENTRY
|
|
.endm
|
|
|
|
#ifdef CONFIG_SMP
|
|
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
|
|
apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_UV
|
|
apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
|
|
#endif
|
|
|
|
apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
|
|
apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
|
|
|
|
#ifdef CONFIG_HAVE_KVM
|
|
apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
|
|
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
|
|
apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_MCE_THRESHOLD
|
|
apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_MCE_AMD
|
|
apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_THERMAL_VECTOR
|
|
apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
|
|
apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
|
|
apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
|
|
#endif
|
|
|
|
apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
|
|
apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
|
|
|
|
#ifdef CONFIG_IRQ_WORK
|
|
apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
|
|
#endif
|
|
|
|
/*
|
|
* Exception entry points.
|
|
*/
|
|
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + (x) * 8)
|
|
|
|
.macro idtentry_part do_sym, has_error_code:req, read_cr2:req, paranoid:req, shift_ist=-1, ist_offset=0
|
|
|
|
.if \paranoid
|
|
call paranoid_entry
|
|
/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
|
|
.else
|
|
call error_entry
|
|
.endif
|
|
UNWIND_HINT_REGS
|
|
|
|
.if \read_cr2
|
|
/*
|
|
* Store CR2 early so subsequent faults cannot clobber it. Use R12 as
|
|
* intermediate storage as RDX can be clobbered in enter_from_user_mode().
|
|
* GET_CR2_INTO can clobber RAX.
|
|
*/
|
|
GET_CR2_INTO(%r12);
|
|
.endif
|
|
|
|
.if \shift_ist != -1
|
|
TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
|
|
.else
|
|
TRACE_IRQS_OFF
|
|
.endif
|
|
|
|
.if \paranoid == 0
|
|
testb $3, CS(%rsp)
|
|
jz .Lfrom_kernel_no_context_tracking_\@
|
|
CALL_enter_from_user_mode
|
|
.Lfrom_kernel_no_context_tracking_\@:
|
|
.endif
|
|
|
|
movq %rsp, %rdi /* pt_regs pointer */
|
|
|
|
.if \has_error_code
|
|
movq ORIG_RAX(%rsp), %rsi /* get error code */
|
|
movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
|
|
.else
|
|
xorl %esi, %esi /* no error code */
|
|
.endif
|
|
|
|
.if \shift_ist != -1
|
|
subq $\ist_offset, CPU_TSS_IST(\shift_ist)
|
|
.endif
|
|
|
|
.if \read_cr2
|
|
movq %r12, %rdx /* Move CR2 into 3rd argument */
|
|
.endif
|
|
|
|
call \do_sym
|
|
|
|
.if \shift_ist != -1
|
|
addq $\ist_offset, CPU_TSS_IST(\shift_ist)
|
|
.endif
|
|
|
|
.if \paranoid
|
|
/* this procedure expect "no swapgs" flag in ebx */
|
|
jmp paranoid_exit
|
|
.else
|
|
jmp error_exit
|
|
.endif
|
|
|
|
.endm
|
|
|
|
/**
|
|
* idtentry - Generate an IDT entry stub
|
|
* @sym: Name of the generated entry point
|
|
* @do_sym: C function to be called
|
|
* @has_error_code: True if this IDT vector has an error code on the stack
|
|
* @paranoid: non-zero means that this vector may be invoked from
|
|
* kernel mode with user GSBASE and/or user CR3.
|
|
* 2 is special -- see below.
|
|
* @shift_ist: Set to an IST index if entries from kernel mode should
|
|
* decrement the IST stack so that nested entries get a
|
|
* fresh stack. (This is for #DB, which has a nasty habit
|
|
* of recursing.)
|
|
* @create_gap: create a 6-word stack gap when coming from kernel mode.
|
|
* @read_cr2: load CR2 into the 3rd argument; done before calling any C code
|
|
*
|
|
* idtentry generates an IDT stub that sets up a usable kernel context,
|
|
* creates struct pt_regs, and calls @do_sym. The stub has the following
|
|
* special behaviors:
|
|
*
|
|
* On an entry from user mode, the stub switches from the trampoline or
|
|
* IST stack to the normal thread stack. On an exit to user mode, the
|
|
* normal exit-to-usermode path is invoked.
|
|
*
|
|
* On an exit to kernel mode, if @paranoid == 0, we check for preemption,
|
|
* whereas we omit the preemption check if @paranoid != 0. This is purely
|
|
* because the implementation is simpler this way. The kernel only needs
|
|
* to check for asynchronous kernel preemption when IRQ handlers return.
|
|
*
|
|
* If @paranoid == 0, then the stub will handle IRET faults by pretending
|
|
* that the fault came from user mode. It will handle gs_change faults by
|
|
* pretending that the fault happened with kernel GSBASE. Since this handling
|
|
* is omitted for @paranoid != 0, the #GP, #SS, and #NP stubs must have
|
|
* @paranoid == 0. This special handling will do the wrong thing for
|
|
* espfix-induced #DF on IRET, so #DF must not use @paranoid == 0.
|
|
*
|
|
* @paranoid == 2 is special: the stub will never switch stacks. This is for
|
|
* #DF: if the thread stack is somehow unusable, we'll still get a useful OOPS.
|
|
*/
|
|
.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1 ist_offset=0 create_gap=0 read_cr2=0
|
|
SYM_CODE_START(\sym)
|
|
UNWIND_HINT_IRET_REGS offset=\has_error_code*8
|
|
|
|
/* Sanity check */
|
|
.if \shift_ist != -1 && \paranoid != 1
|
|
.error "using shift_ist requires paranoid=1"
|
|
.endif
|
|
|
|
.if \create_gap && \paranoid
|
|
.error "using create_gap requires paranoid=0"
|
|
.endif
|
|
|
|
ASM_CLAC
|
|
|
|
.if \has_error_code == 0
|
|
pushq $-1 /* ORIG_RAX: no syscall to restart */
|
|
.endif
|
|
|
|
.if \paranoid == 1
|
|
testb $3, CS-ORIG_RAX(%rsp) /* If coming from userspace, switch stacks */
|
|
jnz .Lfrom_usermode_switch_stack_\@
|
|
.endif
|
|
|
|
.if \create_gap == 1
|
|
/*
|
|
* If coming from kernel space, create a 6-word gap to allow the
|
|
* int3 handler to emulate a call instruction.
|
|
*/
|
|
testb $3, CS-ORIG_RAX(%rsp)
|
|
jnz .Lfrom_usermode_no_gap_\@
|
|
.rept 6
|
|
pushq 5*8(%rsp)
|
|
.endr
|
|
UNWIND_HINT_IRET_REGS offset=8
|
|
.Lfrom_usermode_no_gap_\@:
|
|
.endif
|
|
|
|
idtentry_part \do_sym, \has_error_code, \read_cr2, \paranoid, \shift_ist, \ist_offset
|
|
|
|
.if \paranoid == 1
|
|
/*
|
|
* Entry from userspace. Switch stacks and treat it
|
|
* as a normal entry. This means that paranoid handlers
|
|
* run in real process context if user_mode(regs).
|
|
*/
|
|
.Lfrom_usermode_switch_stack_\@:
|
|
idtentry_part \do_sym, \has_error_code, \read_cr2, paranoid=0
|
|
.endif
|
|
|
|
_ASM_NOKPROBE(\sym)
|
|
SYM_CODE_END(\sym)
|
|
.endm
|
|
|
|
idtentry divide_error do_divide_error has_error_code=0
|
|
idtentry overflow do_overflow has_error_code=0
|
|
idtentry bounds do_bounds has_error_code=0
|
|
idtentry invalid_op do_invalid_op has_error_code=0
|
|
idtentry device_not_available do_device_not_available has_error_code=0
|
|
idtentry double_fault do_double_fault has_error_code=1 paranoid=2 read_cr2=1
|
|
idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
|
|
idtentry invalid_TSS do_invalid_TSS has_error_code=1
|
|
idtentry segment_not_present do_segment_not_present has_error_code=1
|
|
idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
|
|
idtentry coprocessor_error do_coprocessor_error has_error_code=0
|
|
idtentry alignment_check do_alignment_check has_error_code=1
|
|
idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
|
|
|
|
|
|
/*
|
|
* Reload gs selector with exception handling
|
|
* edi: new selector
|
|
*/
|
|
SYM_FUNC_START(native_load_gs_index)
|
|
FRAME_BEGIN
|
|
pushfq
|
|
DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
|
|
TRACE_IRQS_OFF
|
|
SWAPGS
|
|
.Lgs_change:
|
|
movl %edi, %gs
|
|
2: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
|
|
SWAPGS
|
|
TRACE_IRQS_FLAGS (%rsp)
|
|
popfq
|
|
FRAME_END
|
|
ret
|
|
SYM_FUNC_END(native_load_gs_index)
|
|
EXPORT_SYMBOL(native_load_gs_index)
|
|
|
|
_ASM_EXTABLE(.Lgs_change, .Lbad_gs)
|
|
.section .fixup, "ax"
|
|
/* running with kernelgs */
|
|
SYM_CODE_START_LOCAL_NOALIGN(.Lbad_gs)
|
|
SWAPGS /* switch back to user gs */
|
|
.macro ZAP_GS
|
|
/* This can't be a string because the preprocessor needs to see it. */
|
|
movl $__USER_DS, %eax
|
|
movl %eax, %gs
|
|
.endm
|
|
ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
|
|
xorl %eax, %eax
|
|
movl %eax, %gs
|
|
jmp 2b
|
|
SYM_CODE_END(.Lbad_gs)
|
|
.previous
|
|
|
|
/* Call softirq on interrupt stack. Interrupts are off. */
|
|
SYM_FUNC_START(do_softirq_own_stack)
|
|
pushq %rbp
|
|
mov %rsp, %rbp
|
|
ENTER_IRQ_STACK regs=0 old_rsp=%r11
|
|
call __do_softirq
|
|
LEAVE_IRQ_STACK regs=0
|
|
leaveq
|
|
ret
|
|
SYM_FUNC_END(do_softirq_own_stack)
|
|
|
|
#ifdef CONFIG_XEN_PV
|
|
idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
|
|
|
|
/*
|
|
* A note on the "critical region" in our callback handler.
|
|
* We want to avoid stacking callback handlers due to events occurring
|
|
* during handling of the last event. To do this, we keep events disabled
|
|
* until we've done all processing. HOWEVER, we must enable events before
|
|
* popping the stack frame (can't be done atomically) and so it would still
|
|
* be possible to get enough handler activations to overflow the stack.
|
|
* Although unlikely, bugs of that kind are hard to track down, so we'd
|
|
* like to avoid the possibility.
|
|
* So, on entry to the handler we detect whether we interrupted an
|
|
* existing activation in its critical region -- if so, we pop the current
|
|
* activation and restart the handler using the previous one.
|
|
*/
|
|
/* do_hypervisor_callback(struct *pt_regs) */
|
|
SYM_CODE_START_LOCAL(xen_do_hypervisor_callback)
|
|
|
|
/*
|
|
* Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
|
|
* see the correct pointer to the pt_regs
|
|
*/
|
|
UNWIND_HINT_FUNC
|
|
movq %rdi, %rsp /* we don't return, adjust the stack frame */
|
|
UNWIND_HINT_REGS
|
|
|
|
ENTER_IRQ_STACK old_rsp=%r10
|
|
call xen_evtchn_do_upcall
|
|
LEAVE_IRQ_STACK
|
|
|
|
#ifndef CONFIG_PREEMPTION
|
|
call xen_maybe_preempt_hcall
|
|
#endif
|
|
jmp error_exit
|
|
SYM_CODE_END(xen_do_hypervisor_callback)
|
|
|
|
/*
|
|
* Hypervisor uses this for application faults while it executes.
|
|
* We get here for two reasons:
|
|
* 1. Fault while reloading DS, ES, FS or GS
|
|
* 2. Fault while executing IRET
|
|
* Category 1 we do not need to fix up as Xen has already reloaded all segment
|
|
* registers that could be reloaded and zeroed the others.
|
|
* Category 2 we fix up by killing the current process. We cannot use the
|
|
* normal Linux return path in this case because if we use the IRET hypercall
|
|
* to pop the stack frame we end up in an infinite loop of failsafe callbacks.
|
|
* We distinguish between categories by comparing each saved segment register
|
|
* with its current contents: any discrepancy means we in category 1.
|
|
*/
|
|
SYM_CODE_START(xen_failsafe_callback)
|
|
UNWIND_HINT_EMPTY
|
|
movl %ds, %ecx
|
|
cmpw %cx, 0x10(%rsp)
|
|
jne 1f
|
|
movl %es, %ecx
|
|
cmpw %cx, 0x18(%rsp)
|
|
jne 1f
|
|
movl %fs, %ecx
|
|
cmpw %cx, 0x20(%rsp)
|
|
jne 1f
|
|
movl %gs, %ecx
|
|
cmpw %cx, 0x28(%rsp)
|
|
jne 1f
|
|
/* All segments match their saved values => Category 2 (Bad IRET). */
|
|
movq (%rsp), %rcx
|
|
movq 8(%rsp), %r11
|
|
addq $0x30, %rsp
|
|
pushq $0 /* RIP */
|
|
UNWIND_HINT_IRET_REGS offset=8
|
|
jmp general_protection
|
|
1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
|
|
movq (%rsp), %rcx
|
|
movq 8(%rsp), %r11
|
|
addq $0x30, %rsp
|
|
UNWIND_HINT_IRET_REGS
|
|
pushq $-1 /* orig_ax = -1 => not a system call */
|
|
PUSH_AND_CLEAR_REGS
|
|
ENCODE_FRAME_POINTER
|
|
jmp error_exit
|
|
SYM_CODE_END(xen_failsafe_callback)
|
|
#endif /* CONFIG_XEN_PV */
|
|
|
|
#ifdef CONFIG_XEN_PVHVM
|
|
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
|
|
xen_hvm_callback_vector xen_evtchn_do_upcall
|
|
#endif
|
|
|
|
|
|
#if IS_ENABLED(CONFIG_HYPERV)
|
|
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
|
|
hyperv_callback_vector hyperv_vector_handler
|
|
|
|
apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
|
|
hyperv_reenlightenment_vector hyperv_reenlightenment_intr
|
|
|
|
apicinterrupt3 HYPERV_STIMER0_VECTOR \
|
|
hv_stimer0_callback_vector hv_stimer0_vector_handler
|
|
#endif /* CONFIG_HYPERV */
|
|
|
|
#if IS_ENABLED(CONFIG_ACRN_GUEST)
|
|
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
|
|
acrn_hv_callback_vector acrn_hv_vector_handler
|
|
#endif
|
|
|
|
idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=IST_INDEX_DB ist_offset=DB_STACK_OFFSET
|
|
idtentry int3 do_int3 has_error_code=0 create_gap=1
|
|
idtentry stack_segment do_stack_segment has_error_code=1
|
|
|
|
#ifdef CONFIG_XEN_PV
|
|
idtentry xennmi do_nmi has_error_code=0
|
|
idtentry xendebug do_debug has_error_code=0
|
|
#endif
|
|
|
|
idtentry general_protection do_general_protection has_error_code=1
|
|
idtentry page_fault do_page_fault has_error_code=1 read_cr2=1
|
|
|
|
#ifdef CONFIG_KVM_GUEST
|
|
idtentry async_page_fault do_async_page_fault has_error_code=1 read_cr2=1
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_MCE
|
|
idtentry machine_check do_mce has_error_code=0 paranoid=1
|
|
#endif
|
|
|
|
/*
|
|
* Save all registers in pt_regs, and switch gs if needed.
|
|
* Use slow, but surefire "are we in kernel?" check.
|
|
* Return: ebx=0: need swapgs on exit, ebx=1: otherwise
|
|
*/
|
|
SYM_CODE_START_LOCAL(paranoid_entry)
|
|
UNWIND_HINT_FUNC
|
|
cld
|
|
PUSH_AND_CLEAR_REGS save_ret=1
|
|
ENCODE_FRAME_POINTER 8
|
|
movl $1, %ebx
|
|
movl $MSR_GS_BASE, %ecx
|
|
rdmsr
|
|
testl %edx, %edx
|
|
js 1f /* negative -> in kernel */
|
|
SWAPGS
|
|
xorl %ebx, %ebx
|
|
|
|
1:
|
|
/*
|
|
* Always stash CR3 in %r14. This value will be restored,
|
|
* verbatim, at exit. Needed if paranoid_entry interrupted
|
|
* another entry that already switched to the user CR3 value
|
|
* but has not yet returned to userspace.
|
|
*
|
|
* This is also why CS (stashed in the "iret frame" by the
|
|
* hardware at entry) can not be used: this may be a return
|
|
* to kernel code, but with a user CR3 value.
|
|
*/
|
|
SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
|
|
|
|
/*
|
|
* The above SAVE_AND_SWITCH_TO_KERNEL_CR3 macro doesn't do an
|
|
* unconditional CR3 write, even in the PTI case. So do an lfence
|
|
* to prevent GS speculation, regardless of whether PTI is enabled.
|
|
*/
|
|
FENCE_SWAPGS_KERNEL_ENTRY
|
|
|
|
ret
|
|
SYM_CODE_END(paranoid_entry)
|
|
|
|
/*
|
|
* "Paranoid" exit path from exception stack. This is invoked
|
|
* only on return from non-NMI IST interrupts that came
|
|
* from kernel space.
|
|
*
|
|
* We may be returning to very strange contexts (e.g. very early
|
|
* in syscall entry), so checking for preemption here would
|
|
* be complicated. Fortunately, we there's no good reason
|
|
* to try to handle preemption here.
|
|
*
|
|
* On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
|
|
*/
|
|
SYM_CODE_START_LOCAL(paranoid_exit)
|
|
UNWIND_HINT_REGS
|
|
DISABLE_INTERRUPTS(CLBR_ANY)
|
|
TRACE_IRQS_OFF_DEBUG
|
|
testl %ebx, %ebx /* swapgs needed? */
|
|
jnz .Lparanoid_exit_no_swapgs
|
|
TRACE_IRQS_IRETQ
|
|
/* Always restore stashed CR3 value (see paranoid_entry) */
|
|
RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
|
|
SWAPGS_UNSAFE_STACK
|
|
jmp restore_regs_and_return_to_kernel
|
|
.Lparanoid_exit_no_swapgs:
|
|
TRACE_IRQS_IRETQ_DEBUG
|
|
/* Always restore stashed CR3 value (see paranoid_entry) */
|
|
RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
|
|
jmp restore_regs_and_return_to_kernel
|
|
SYM_CODE_END(paranoid_exit)
|
|
|
|
/*
|
|
* Save all registers in pt_regs, and switch GS if needed.
|
|
*/
|
|
SYM_CODE_START_LOCAL(error_entry)
|
|
UNWIND_HINT_FUNC
|
|
cld
|
|
PUSH_AND_CLEAR_REGS save_ret=1
|
|
ENCODE_FRAME_POINTER 8
|
|
testb $3, CS+8(%rsp)
|
|
jz .Lerror_kernelspace
|
|
|
|
/*
|
|
* We entered from user mode or we're pretending to have entered
|
|
* from user mode due to an IRET fault.
|
|
*/
|
|
SWAPGS
|
|
FENCE_SWAPGS_USER_ENTRY
|
|
/* We have user CR3. Change to kernel CR3. */
|
|
SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
|
|
|
|
.Lerror_entry_from_usermode_after_swapgs:
|
|
/* Put us onto the real thread stack. */
|
|
popq %r12 /* save return addr in %12 */
|
|
movq %rsp, %rdi /* arg0 = pt_regs pointer */
|
|
call sync_regs
|
|
movq %rax, %rsp /* switch stack */
|
|
ENCODE_FRAME_POINTER
|
|
pushq %r12
|
|
ret
|
|
|
|
.Lerror_entry_done_lfence:
|
|
FENCE_SWAPGS_KERNEL_ENTRY
|
|
.Lerror_entry_done:
|
|
ret
|
|
|
|
/*
|
|
* There are two places in the kernel that can potentially fault with
|
|
* usergs. Handle them here. B stepping K8s sometimes report a
|
|
* truncated RIP for IRET exceptions returning to compat mode. Check
|
|
* for these here too.
|
|
*/
|
|
.Lerror_kernelspace:
|
|
leaq native_irq_return_iret(%rip), %rcx
|
|
cmpq %rcx, RIP+8(%rsp)
|
|
je .Lerror_bad_iret
|
|
movl %ecx, %eax /* zero extend */
|
|
cmpq %rax, RIP+8(%rsp)
|
|
je .Lbstep_iret
|
|
cmpq $.Lgs_change, RIP+8(%rsp)
|
|
jne .Lerror_entry_done_lfence
|
|
|
|
/*
|
|
* hack: .Lgs_change can fail with user gsbase. If this happens, fix up
|
|
* gsbase and proceed. We'll fix up the exception and land in
|
|
* .Lgs_change's error handler with kernel gsbase.
|
|
*/
|
|
SWAPGS
|
|
FENCE_SWAPGS_USER_ENTRY
|
|
SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
|
|
jmp .Lerror_entry_done
|
|
|
|
.Lbstep_iret:
|
|
/* Fix truncated RIP */
|
|
movq %rcx, RIP+8(%rsp)
|
|
/* fall through */
|
|
|
|
.Lerror_bad_iret:
|
|
/*
|
|
* We came from an IRET to user mode, so we have user
|
|
* gsbase and CR3. Switch to kernel gsbase and CR3:
|
|
*/
|
|
SWAPGS
|
|
FENCE_SWAPGS_USER_ENTRY
|
|
SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
|
|
|
|
/*
|
|
* Pretend that the exception came from user mode: set up pt_regs
|
|
* as if we faulted immediately after IRET.
|
|
*/
|
|
mov %rsp, %rdi
|
|
call fixup_bad_iret
|
|
mov %rax, %rsp
|
|
jmp .Lerror_entry_from_usermode_after_swapgs
|
|
SYM_CODE_END(error_entry)
|
|
|
|
SYM_CODE_START_LOCAL(error_exit)
|
|
UNWIND_HINT_REGS
|
|
DISABLE_INTERRUPTS(CLBR_ANY)
|
|
TRACE_IRQS_OFF
|
|
testb $3, CS(%rsp)
|
|
jz retint_kernel
|
|
jmp .Lretint_user
|
|
SYM_CODE_END(error_exit)
|
|
|
|
/*
|
|
* Runs on exception stack. Xen PV does not go through this path at all,
|
|
* so we can use real assembly here.
|
|
*
|
|
* Registers:
|
|
* %r14: Used to save/restore the CR3 of the interrupted context
|
|
* when PAGE_TABLE_ISOLATION is in use. Do not clobber.
|
|
*/
|
|
SYM_CODE_START(nmi)
|
|
UNWIND_HINT_IRET_REGS
|
|
|
|
/*
|
|
* We allow breakpoints in NMIs. If a breakpoint occurs, then
|
|
* the iretq it performs will take us out of NMI context.
|
|
* This means that we can have nested NMIs where the next
|
|
* NMI is using the top of the stack of the previous NMI. We
|
|
* can't let it execute because the nested NMI will corrupt the
|
|
* stack of the previous NMI. NMI handlers are not re-entrant
|
|
* anyway.
|
|
*
|
|
* To handle this case we do the following:
|
|
* Check the a special location on the stack that contains
|
|
* a variable that is set when NMIs are executing.
|
|
* The interrupted task's stack is also checked to see if it
|
|
* is an NMI stack.
|
|
* If the variable is not set and the stack is not the NMI
|
|
* stack then:
|
|
* o Set the special variable on the stack
|
|
* o Copy the interrupt frame into an "outermost" location on the
|
|
* stack
|
|
* o Copy the interrupt frame into an "iret" location on the stack
|
|
* o Continue processing the NMI
|
|
* If the variable is set or the previous stack is the NMI stack:
|
|
* o Modify the "iret" location to jump to the repeat_nmi
|
|
* o return back to the first NMI
|
|
*
|
|
* Now on exit of the first NMI, we first clear the stack variable
|
|
* The NMI stack will tell any nested NMIs at that point that it is
|
|
* nested. Then we pop the stack normally with iret, and if there was
|
|
* a nested NMI that updated the copy interrupt stack frame, a
|
|
* jump will be made to the repeat_nmi code that will handle the second
|
|
* NMI.
|
|
*
|
|
* However, espfix prevents us from directly returning to userspace
|
|
* with a single IRET instruction. Similarly, IRET to user mode
|
|
* can fault. We therefore handle NMIs from user space like
|
|
* other IST entries.
|
|
*/
|
|
|
|
ASM_CLAC
|
|
|
|
/* Use %rdx as our temp variable throughout */
|
|
pushq %rdx
|
|
|
|
testb $3, CS-RIP+8(%rsp)
|
|
jz .Lnmi_from_kernel
|
|
|
|
/*
|
|
* NMI from user mode. We need to run on the thread stack, but we
|
|
* can't go through the normal entry paths: NMIs are masked, and
|
|
* we don't want to enable interrupts, because then we'll end
|
|
* up in an awkward situation in which IRQs are on but NMIs
|
|
* are off.
|
|
*
|
|
* We also must not push anything to the stack before switching
|
|
* stacks lest we corrupt the "NMI executing" variable.
|
|
*/
|
|
|
|
swapgs
|
|
cld
|
|
FENCE_SWAPGS_USER_ENTRY
|
|
SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
|
|
movq %rsp, %rdx
|
|
movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
|
|
UNWIND_HINT_IRET_REGS base=%rdx offset=8
|
|
pushq 5*8(%rdx) /* pt_regs->ss */
|
|
pushq 4*8(%rdx) /* pt_regs->rsp */
|
|
pushq 3*8(%rdx) /* pt_regs->flags */
|
|
pushq 2*8(%rdx) /* pt_regs->cs */
|
|
pushq 1*8(%rdx) /* pt_regs->rip */
|
|
UNWIND_HINT_IRET_REGS
|
|
pushq $-1 /* pt_regs->orig_ax */
|
|
PUSH_AND_CLEAR_REGS rdx=(%rdx)
|
|
ENCODE_FRAME_POINTER
|
|
|
|
/*
|
|
* At this point we no longer need to worry about stack damage
|
|
* due to nesting -- we're on the normal thread stack and we're
|
|
* done with the NMI stack.
|
|
*/
|
|
|
|
movq %rsp, %rdi
|
|
movq $-1, %rsi
|
|
call do_nmi
|
|
|
|
/*
|
|
* Return back to user mode. We must *not* do the normal exit
|
|
* work, because we don't want to enable interrupts.
|
|
*/
|
|
jmp swapgs_restore_regs_and_return_to_usermode
|
|
|
|
.Lnmi_from_kernel:
|
|
/*
|
|
* Here's what our stack frame will look like:
|
|
* +---------------------------------------------------------+
|
|
* | original SS |
|
|
* | original Return RSP |
|
|
* | original RFLAGS |
|
|
* | original CS |
|
|
* | original RIP |
|
|
* +---------------------------------------------------------+
|
|
* | temp storage for rdx |
|
|
* +---------------------------------------------------------+
|
|
* | "NMI executing" variable |
|
|
* +---------------------------------------------------------+
|
|
* | iret SS } Copied from "outermost" frame |
|
|
* | iret Return RSP } on each loop iteration; overwritten |
|
|
* | iret RFLAGS } by a nested NMI to force another |
|
|
* | iret CS } iteration if needed. |
|
|
* | iret RIP } |
|
|
* +---------------------------------------------------------+
|
|
* | outermost SS } initialized in first_nmi; |
|
|
* | outermost Return RSP } will not be changed before |
|
|
* | outermost RFLAGS } NMI processing is done. |
|
|
* | outermost CS } Copied to "iret" frame on each |
|
|
* | outermost RIP } iteration. |
|
|
* +---------------------------------------------------------+
|
|
* | pt_regs |
|
|
* +---------------------------------------------------------+
|
|
*
|
|
* The "original" frame is used by hardware. Before re-enabling
|
|
* NMIs, we need to be done with it, and we need to leave enough
|
|
* space for the asm code here.
|
|
*
|
|
* We return by executing IRET while RSP points to the "iret" frame.
|
|
* That will either return for real or it will loop back into NMI
|
|
* processing.
|
|
*
|
|
* The "outermost" frame is copied to the "iret" frame on each
|
|
* iteration of the loop, so each iteration starts with the "iret"
|
|
* frame pointing to the final return target.
|
|
*/
|
|
|
|
/*
|
|
* Determine whether we're a nested NMI.
|
|
*
|
|
* If we interrupted kernel code between repeat_nmi and
|
|
* end_repeat_nmi, then we are a nested NMI. We must not
|
|
* modify the "iret" frame because it's being written by
|
|
* the outer NMI. That's okay; the outer NMI handler is
|
|
* about to about to call do_nmi anyway, so we can just
|
|
* resume the outer NMI.
|
|
*/
|
|
|
|
movq $repeat_nmi, %rdx
|
|
cmpq 8(%rsp), %rdx
|
|
ja 1f
|
|
movq $end_repeat_nmi, %rdx
|
|
cmpq 8(%rsp), %rdx
|
|
ja nested_nmi_out
|
|
1:
|
|
|
|
/*
|
|
* Now check "NMI executing". If it's set, then we're nested.
|
|
* This will not detect if we interrupted an outer NMI just
|
|
* before IRET.
|
|
*/
|
|
cmpl $1, -8(%rsp)
|
|
je nested_nmi
|
|
|
|
/*
|
|
* Now test if the previous stack was an NMI stack. This covers
|
|
* the case where we interrupt an outer NMI after it clears
|
|
* "NMI executing" but before IRET. We need to be careful, though:
|
|
* there is one case in which RSP could point to the NMI stack
|
|
* despite there being no NMI active: naughty userspace controls
|
|
* RSP at the very beginning of the SYSCALL targets. We can
|
|
* pull a fast one on naughty userspace, though: we program
|
|
* SYSCALL to mask DF, so userspace cannot cause DF to be set
|
|
* if it controls the kernel's RSP. We set DF before we clear
|
|
* "NMI executing".
|
|
*/
|
|
lea 6*8(%rsp), %rdx
|
|
/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
|
|
cmpq %rdx, 4*8(%rsp)
|
|
/* If the stack pointer is above the NMI stack, this is a normal NMI */
|
|
ja first_nmi
|
|
|
|
subq $EXCEPTION_STKSZ, %rdx
|
|
cmpq %rdx, 4*8(%rsp)
|
|
/* If it is below the NMI stack, it is a normal NMI */
|
|
jb first_nmi
|
|
|
|
/* Ah, it is within the NMI stack. */
|
|
|
|
testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
|
|
jz first_nmi /* RSP was user controlled. */
|
|
|
|
/* This is a nested NMI. */
|
|
|
|
nested_nmi:
|
|
/*
|
|
* Modify the "iret" frame to point to repeat_nmi, forcing another
|
|
* iteration of NMI handling.
|
|
*/
|
|
subq $8, %rsp
|
|
leaq -10*8(%rsp), %rdx
|
|
pushq $__KERNEL_DS
|
|
pushq %rdx
|
|
pushfq
|
|
pushq $__KERNEL_CS
|
|
pushq $repeat_nmi
|
|
|
|
/* Put stack back */
|
|
addq $(6*8), %rsp
|
|
|
|
nested_nmi_out:
|
|
popq %rdx
|
|
|
|
/* We are returning to kernel mode, so this cannot result in a fault. */
|
|
iretq
|
|
|
|
first_nmi:
|
|
/* Restore rdx. */
|
|
movq (%rsp), %rdx
|
|
|
|
/* Make room for "NMI executing". */
|
|
pushq $0
|
|
|
|
/* Leave room for the "iret" frame */
|
|
subq $(5*8), %rsp
|
|
|
|
/* Copy the "original" frame to the "outermost" frame */
|
|
.rept 5
|
|
pushq 11*8(%rsp)
|
|
.endr
|
|
UNWIND_HINT_IRET_REGS
|
|
|
|
/* Everything up to here is safe from nested NMIs */
|
|
|
|
#ifdef CONFIG_DEBUG_ENTRY
|
|
/*
|
|
* For ease of testing, unmask NMIs right away. Disabled by
|
|
* default because IRET is very expensive.
|
|
*/
|
|
pushq $0 /* SS */
|
|
pushq %rsp /* RSP (minus 8 because of the previous push) */
|
|
addq $8, (%rsp) /* Fix up RSP */
|
|
pushfq /* RFLAGS */
|
|
pushq $__KERNEL_CS /* CS */
|
|
pushq $1f /* RIP */
|
|
iretq /* continues at repeat_nmi below */
|
|
UNWIND_HINT_IRET_REGS
|
|
1:
|
|
#endif
|
|
|
|
repeat_nmi:
|
|
/*
|
|
* If there was a nested NMI, the first NMI's iret will return
|
|
* here. But NMIs are still enabled and we can take another
|
|
* nested NMI. The nested NMI checks the interrupted RIP to see
|
|
* if it is between repeat_nmi and end_repeat_nmi, and if so
|
|
* it will just return, as we are about to repeat an NMI anyway.
|
|
* This makes it safe to copy to the stack frame that a nested
|
|
* NMI will update.
|
|
*
|
|
* RSP is pointing to "outermost RIP". gsbase is unknown, but, if
|
|
* we're repeating an NMI, gsbase has the same value that it had on
|
|
* the first iteration. paranoid_entry will load the kernel
|
|
* gsbase if needed before we call do_nmi. "NMI executing"
|
|
* is zero.
|
|
*/
|
|
movq $1, 10*8(%rsp) /* Set "NMI executing". */
|
|
|
|
/*
|
|
* Copy the "outermost" frame to the "iret" frame. NMIs that nest
|
|
* here must not modify the "iret" frame while we're writing to
|
|
* it or it will end up containing garbage.
|
|
*/
|
|
addq $(10*8), %rsp
|
|
.rept 5
|
|
pushq -6*8(%rsp)
|
|
.endr
|
|
subq $(5*8), %rsp
|
|
end_repeat_nmi:
|
|
|
|
/*
|
|
* Everything below this point can be preempted by a nested NMI.
|
|
* If this happens, then the inner NMI will change the "iret"
|
|
* frame to point back to repeat_nmi.
|
|
*/
|
|
pushq $-1 /* ORIG_RAX: no syscall to restart */
|
|
|
|
/*
|
|
* Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
|
|
* as we should not be calling schedule in NMI context.
|
|
* Even with normal interrupts enabled. An NMI should not be
|
|
* setting NEED_RESCHED or anything that normal interrupts and
|
|
* exceptions might do.
|
|
*/
|
|
call paranoid_entry
|
|
UNWIND_HINT_REGS
|
|
|
|
/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
|
|
movq %rsp, %rdi
|
|
movq $-1, %rsi
|
|
call do_nmi
|
|
|
|
/* Always restore stashed CR3 value (see paranoid_entry) */
|
|
RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
|
|
|
|
testl %ebx, %ebx /* swapgs needed? */
|
|
jnz nmi_restore
|
|
nmi_swapgs:
|
|
SWAPGS_UNSAFE_STACK
|
|
nmi_restore:
|
|
POP_REGS
|
|
|
|
/*
|
|
* Skip orig_ax and the "outermost" frame to point RSP at the "iret"
|
|
* at the "iret" frame.
|
|
*/
|
|
addq $6*8, %rsp
|
|
|
|
/*
|
|
* Clear "NMI executing". Set DF first so that we can easily
|
|
* distinguish the remaining code between here and IRET from
|
|
* the SYSCALL entry and exit paths.
|
|
*
|
|
* We arguably should just inspect RIP instead, but I (Andy) wrote
|
|
* this code when I had the misapprehension that Xen PV supported
|
|
* NMIs, and Xen PV would break that approach.
|
|
*/
|
|
std
|
|
movq $0, 5*8(%rsp) /* clear "NMI executing" */
|
|
|
|
/*
|
|
* iretq reads the "iret" frame and exits the NMI stack in a
|
|
* single instruction. We are returning to kernel mode, so this
|
|
* cannot result in a fault. Similarly, we don't need to worry
|
|
* about espfix64 on the way back to kernel mode.
|
|
*/
|
|
iretq
|
|
SYM_CODE_END(nmi)
|
|
|
|
#ifndef CONFIG_IA32_EMULATION
|
|
/*
|
|
* This handles SYSCALL from 32-bit code. There is no way to program
|
|
* MSRs to fully disable 32-bit SYSCALL.
|
|
*/
|
|
SYM_CODE_START(ignore_sysret)
|
|
UNWIND_HINT_EMPTY
|
|
mov $-ENOSYS, %eax
|
|
sysretl
|
|
SYM_CODE_END(ignore_sysret)
|
|
#endif
|
|
|
|
SYM_CODE_START(rewind_stack_do_exit)
|
|
UNWIND_HINT_FUNC
|
|
/* Prevent any naive code from trying to unwind to our caller. */
|
|
xorl %ebp, %ebp
|
|
|
|
movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
|
|
leaq -PTREGS_SIZE(%rax), %rsp
|
|
UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
|
|
|
|
call do_exit
|
|
SYM_CODE_END(rewind_stack_do_exit)
|