linux_dsm_epyc7002/include/asm-sh/io.h
Paul Mundt b66c1a3919 [PATCH] sh: I/O routine cleanups and ioremap() overhaul
This introduces a few changes in the way that the I/O routines are defined on
SH, specifically so that things like the iomap API properly wrap through the
machvec for board-specific quirks.

In addition to this, the old p3_ioremap() work is converted to a more generic
__ioremap() that will map through the PMB if it's available, or fall back on
page tables for everything else.

An alpha-like IO_CONCAT is also added so we can start to clean up the
board-specific io.h mess, which will be handled in board update patches..

Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-16 23:15:28 -08:00

361 lines
11 KiB
C

#ifndef __ASM_SH_IO_H
#define __ASM_SH_IO_H
/*
* Convention:
* read{b,w,l}/write{b,w,l} are for PCI,
* while in{b,w,l}/out{b,w,l} are for ISA
* These may (will) be platform specific function.
* In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p
* and 'string' versions: ins{b,w,l}/outs{b,w,l}
* For read{b,w,l} and write{b,w,l} there are also __raw versions, which
* do not have a memory barrier after them.
*
* In addition, we have
* ctrl_in{b,w,l}/ctrl_out{b,w,l} for SuperH specific I/O.
* which are processor specific.
*/
/*
* We follow the Alpha convention here:
* __inb expands to an inline function call (which calls via the mv)
* _inb is a real function call (note ___raw fns are _ version of __raw)
* inb by default expands to _inb, but the machine specific code may
* define it to __inb if it chooses.
*/
#include <linux/config.h>
#include <asm/cache.h>
#include <asm/system.h>
#include <asm/addrspace.h>
#include <asm/machvec.h>
#include <asm/pgtable.h>
#include <asm-generic/iomap.h>
#ifdef __KERNEL__
/*
* Depending on which platform we are running on, we need different
* I/O functions.
*/
#define __IO_PREFIX generic
#include <asm/io_generic.h>
#define maybebadio(port) \
printk(KERN_ERR "bad PC-like io %s:%u for port 0x%lx at 0x%08x\n", \
__FUNCTION__, __LINE__, (port), (u32)__builtin_return_address(0))
/*
* Since boards are able to define their own set of I/O routines through
* their respective machine vector, we always wrap through the mv.
*
* Also, in the event that a board hasn't provided its own definition for
* a given routine, it will be wrapped to generic code at run-time.
*/
#define __inb(p) sh_mv.mv_inb((p))
#define __inw(p) sh_mv.mv_inw((p))
#define __inl(p) sh_mv.mv_inl((p))
#define __outb(x,p) sh_mv.mv_outb((x),(p))
#define __outw(x,p) sh_mv.mv_outw((x),(p))
#define __outl(x,p) sh_mv.mv_outl((x),(p))
#define __inb_p(p) sh_mv.mv_inb_p((p))
#define __inw_p(p) sh_mv.mv_inw_p((p))
#define __inl_p(p) sh_mv.mv_inl_p((p))
#define __outb_p(x,p) sh_mv.mv_outb_p((x),(p))
#define __outw_p(x,p) sh_mv.mv_outw_p((x),(p))
#define __outl_p(x,p) sh_mv.mv_outl_p((x),(p))
#define __insb(p,b,c) sh_mv.mv_insb((p), (b), (c))
#define __insw(p,b,c) sh_mv.mv_insw((p), (b), (c))
#define __insl(p,b,c) sh_mv.mv_insl((p), (b), (c))
#define __outsb(p,b,c) sh_mv.mv_outsb((p), (b), (c))
#define __outsw(p,b,c) sh_mv.mv_outsw((p), (b), (c))
#define __outsl(p,b,c) sh_mv.mv_outsl((p), (b), (c))
#define __readb(a) sh_mv.mv_readb((a))
#define __readw(a) sh_mv.mv_readw((a))
#define __readl(a) sh_mv.mv_readl((a))
#define __writeb(v,a) sh_mv.mv_writeb((v),(a))
#define __writew(v,a) sh_mv.mv_writew((v),(a))
#define __writel(v,a) sh_mv.mv_writel((v),(a))
#define inb __inb
#define inw __inw
#define inl __inl
#define outb __outb
#define outw __outw
#define outl __outl
#define inb_p __inb_p
#define inw_p __inw_p
#define inl_p __inl_p
#define outb_p __outb_p
#define outw_p __outw_p
#define outl_p __outl_p
#define insb __insb
#define insw __insw
#define insl __insl
#define outsb __outsb
#define outsw __outsw
#define outsl __outsl
#define __raw_readb(a) __readb((void __iomem *)(a))
#define __raw_readw(a) __readw((void __iomem *)(a))
#define __raw_readl(a) __readl((void __iomem *)(a))
#define __raw_writeb(v, a) __writeb(v, (void __iomem *)(a))
#define __raw_writew(v, a) __writew(v, (void __iomem *)(a))
#define __raw_writel(v, a) __writel(v, (void __iomem *)(a))
/*
* The platform header files may define some of these macros to use
* the inlined versions where appropriate. These macros may also be
* redefined by userlevel programs.
*/
#ifdef __readb
# define readb(a) ({ unsigned long r_ = __raw_readb(a); mb(); r_; })
#endif
#ifdef __raw_readw
# define readw(a) ({ unsigned long r_ = __raw_readw(a); mb(); r_; })
#endif
#ifdef __raw_readl
# define readl(a) ({ unsigned long r_ = __raw_readl(a); mb(); r_; })
#endif
#ifdef __raw_writeb
# define writeb(v,a) ({ __raw_writeb((v),(a)); mb(); })
#endif
#ifdef __raw_writew
# define writew(v,a) ({ __raw_writew((v),(a)); mb(); })
#endif
#ifdef __raw_writel
# define writel(v,a) ({ __raw_writel((v),(a)); mb(); })
#endif
#define readb_relaxed(a) readb(a)
#define readw_relaxed(a) readw(a)
#define readl_relaxed(a) readl(a)
/* Simple MMIO */
#define ioread8(a) readb(a)
#define ioread16(a) readw(a)
#define ioread16be(a) be16_to_cpu(__raw_readw((a)))
#define ioread32(a) readl(a)
#define ioread32be(a) be32_to_cpu(__raw_readl((a)))
#define iowrite8(v,a) writeb((v),(a))
#define iowrite16(v,a) writew((v),(a))
#define iowrite16be(v,a) __raw_writew(cpu_to_be16((v)),(a))
#define iowrite32(v,a) writel((v),(a))
#define iowrite32be(v,a) __raw_writel(cpu_to_be32((v)),(a))
#define ioread8_rep(a,d,c) insb((a),(d),(c))
#define ioread16_rep(a,d,c) insw((a),(d),(c))
#define ioread32_rep(a,d,c) insl((a),(d),(c))
#define iowrite8_rep(a,s,c) outsb((a),(s),(c))
#define iowrite16_rep(a,s,c) outsw((a),(s),(c))
#define iowrite32_rep(a,s,c) outsl((a),(s),(c))
#define mmiowb() wmb() /* synco on SH-4A, otherwise a nop */
/*
* This function provides a method for the generic case where a board-specific
* ioport_map simply needs to return the port + some arbitrary port base.
*
* We use this at board setup time to implicitly set the port base, and
* as a result, we can use the generic ioport_map.
*/
static inline void __set_io_port_base(unsigned long pbase)
{
extern unsigned long generic_io_base;
generic_io_base = pbase;
}
#define isa_readb(a) readb(ioport_map(a, 1))
#define isa_readw(a) readw(ioport_map(a, 2))
#define isa_readl(a) readl(ioport_map(a, 4))
#define isa_writeb(b,a) writeb(b,ioport_map(a, 1))
#define isa_writew(w,a) writew(w,ioport_map(a, 2))
#define isa_writel(l,a) writel(l,ioport_map(a, 4))
#define isa_memset_io(a,b,c) \
memset((void *)(ioport_map((unsigned long)(a), 1)),(b),(c))
#define isa_memcpy_fromio(a,b,c) \
memcpy((a),(void *)(ioport_map((unsigned long)(b), 1)),(c))
#define isa_memcpy_toio(a,b,c) \
memcpy((void *)(ioport_map((unsigned long)(a), 1)),(b),(c))
/* We really want to try and get these to memcpy etc */
extern void memcpy_fromio(void *, volatile void __iomem *, unsigned long);
extern void memcpy_toio(volatile void __iomem *, const void *, unsigned long);
extern void memset_io(volatile void __iomem *, int, unsigned long);
/* SuperH on-chip I/O functions */
static inline unsigned char ctrl_inb(unsigned long addr)
{
return *(volatile unsigned char*)addr;
}
static inline unsigned short ctrl_inw(unsigned long addr)
{
return *(volatile unsigned short*)addr;
}
static inline unsigned int ctrl_inl(unsigned long addr)
{
return *(volatile unsigned long*)addr;
}
static inline void ctrl_outb(unsigned char b, unsigned long addr)
{
*(volatile unsigned char*)addr = b;
}
static inline void ctrl_outw(unsigned short b, unsigned long addr)
{
*(volatile unsigned short*)addr = b;
}
static inline void ctrl_outl(unsigned int b, unsigned long addr)
{
*(volatile unsigned long*)addr = b;
}
#define IO_SPACE_LIMIT 0xffffffff
/*
* Change virtual addresses to physical addresses and vv.
* These are trivial on the 1:1 Linux/SuperH mapping
*/
static inline unsigned long virt_to_phys(volatile void *address)
{
return PHYSADDR(address);
}
static inline void *phys_to_virt(unsigned long address)
{
return (void *)P1SEGADDR(address);
}
#define virt_to_bus virt_to_phys
#define bus_to_virt phys_to_virt
#define page_to_bus page_to_phys
/*
* readX/writeX() are used to access memory mapped devices. On some
* architectures the memory mapped IO stuff needs to be accessed
* differently. On the x86 architecture, we just read/write the
* memory location directly.
*
* On SH, we traditionally have the whole physical address space mapped
* at all times (as MIPS does), so "ioremap()" and "iounmap()" do not
* need to do anything but place the address in the proper segment. This
* is true for P1 and P2 addresses, as well as some P3 ones. However,
* most of the P3 addresses and newer cores using extended addressing
* need to map through page tables, so the ioremap() implementation
* becomes a bit more complicated. See arch/sh/mm/ioremap.c for
* additional notes on this.
*
* We cheat a bit and always return uncachable areas until we've fixed
* the drivers to handle caching properly.
*/
#ifdef CONFIG_MMU
void __iomem *__ioremap(unsigned long offset, unsigned long size,
unsigned long flags);
void __iounmap(void __iomem *addr);
#else
#define __ioremap(offset, size, flags) ((void __iomem *)(offset))
#define __iounmap(addr) do { } while (0)
#endif /* CONFIG_MMU */
static inline void __iomem *
__ioremap_mode(unsigned long offset, unsigned long size, unsigned long flags)
{
unsigned long last_addr = offset + size - 1;
/*
* For P1 and P2 space this is trivial, as everything is already
* mapped. Uncached access for P1 addresses are done through P2.
* In the P3 case or for addresses outside of the 29-bit space,
* mapping must be done by the PMB or by using page tables.
*/
if (likely(PXSEG(offset) < P3SEG && PXSEG(last_addr) < P3SEG)) {
if (unlikely(flags & _PAGE_CACHABLE))
return (void __iomem *)P1SEGADDR(offset);
return (void __iomem *)P2SEGADDR(offset);
}
return __ioremap(offset, size, flags);
}
#define ioremap(offset, size) \
__ioremap_mode((offset), (size), 0)
#define ioremap_nocache(offset, size) \
__ioremap_mode((offset), (size), 0)
#define ioremap_cache(offset, size) \
__ioremap_mode((offset), (size), _PAGE_CACHABLE)
#define p3_ioremap(offset, size, flags) \
__ioremap((offset), (size), (flags))
#define iounmap(addr) \
__iounmap((addr))
static inline int check_signature(char __iomem *io_addr,
const unsigned char *signature, int length)
{
int retval = 0;
do {
if (readb(io_addr) != *signature)
goto out;
io_addr++;
signature++;
length--;
} while (length);
retval = 1;
out:
return retval;
}
/*
* The caches on some architectures aren't dma-coherent and have need to
* handle this in software. There are three types of operations that
* can be applied to dma buffers.
*
* - dma_cache_wback_inv(start, size) makes caches and RAM coherent by
* writing the content of the caches back to memory, if necessary.
* The function also invalidates the affected part of the caches as
* necessary before DMA transfers from outside to memory.
* - dma_cache_inv(start, size) invalidates the affected parts of the
* caches. Dirty lines of the caches may be written back or simply
* be discarded. This operation is necessary before dma operations
* to the memory.
* - dma_cache_wback(start, size) writes back any dirty lines but does
* not invalidate the cache. This can be used before DMA reads from
* memory,
*/
#define dma_cache_wback_inv(_start,_size) \
__flush_purge_region(_start,_size)
#define dma_cache_inv(_start,_size) \
__flush_invalidate_region(_start,_size)
#define dma_cache_wback(_start,_size) \
__flush_wback_region(_start,_size)
/*
* Convert a physical pointer to a virtual kernel pointer for /dev/mem
* access
*/
#define xlate_dev_mem_ptr(p) __va(p)
/*
* Convert a virtual cached pointer to an uncached pointer
*/
#define xlate_dev_kmem_ptr(p) p
#endif /* __KERNEL__ */
#endif /* __ASM_SH_IO_H */