linux_dsm_epyc7002/drivers/iio/adc/cpcap-adc.c
Jonathan Cameron 0e64375382 iio: adc: cpcap-adc: Fix missing IRQF_ONESHOT as only threaded handler.
Coccinelle noticed:
CHECK   drivers/iio/adc/cpcap-adc.c
drivers/iio/adc/cpcap-adc.c:1009:9-34: ERROR: Threaded IRQ with no primary handler requested without IRQF_ONESHOT

As far as I can see this is a simple case of it should be specified
but isn't.

Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Acked-by: Tony Lindgren <tony@atomide.com>
2019-10-18 20:02:50 +01:00

1043 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2017 Tony Lindgren <tony@atomide.com>
*
* Rewritten for Linux IIO framework with some code based on
* earlier driver found in the Motorola Linux kernel:
*
* Copyright (C) 2009-2010 Motorola, Inc.
*/
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/iio/buffer.h>
#include <linux/iio/driver.h>
#include <linux/iio/iio.h>
#include <linux/iio/kfifo_buf.h>
#include <linux/mfd/motorola-cpcap.h>
/* Register CPCAP_REG_ADCC1 bits */
#define CPCAP_BIT_ADEN_AUTO_CLR BIT(15) /* Currently unused */
#define CPCAP_BIT_CAL_MODE BIT(14) /* Set with BIT_RAND0 */
#define CPCAP_BIT_ADC_CLK_SEL1 BIT(13) /* Currently unused */
#define CPCAP_BIT_ADC_CLK_SEL0 BIT(12) /* Currently unused */
#define CPCAP_BIT_ATOX BIT(11)
#define CPCAP_BIT_ATO3 BIT(10)
#define CPCAP_BIT_ATO2 BIT(9)
#define CPCAP_BIT_ATO1 BIT(8)
#define CPCAP_BIT_ATO0 BIT(7)
#define CPCAP_BIT_ADA2 BIT(6)
#define CPCAP_BIT_ADA1 BIT(5)
#define CPCAP_BIT_ADA0 BIT(4)
#define CPCAP_BIT_AD_SEL1 BIT(3) /* Set for bank1 */
#define CPCAP_BIT_RAND1 BIT(2) /* Set for channel 16 & 17 */
#define CPCAP_BIT_RAND0 BIT(1) /* Set with CAL_MODE */
#define CPCAP_BIT_ADEN BIT(0) /* Currently unused */
#define CPCAP_REG_ADCC1_DEFAULTS (CPCAP_BIT_ADEN_AUTO_CLR | \
CPCAP_BIT_ADC_CLK_SEL0 | \
CPCAP_BIT_RAND1)
/* Register CPCAP_REG_ADCC2 bits */
#define CPCAP_BIT_CAL_FACTOR_ENABLE BIT(15) /* Currently unused */
#define CPCAP_BIT_BATDETB_EN BIT(14) /* Currently unused */
#define CPCAP_BIT_ADTRIG_ONESHOT BIT(13) /* Set for !TIMING_IMM */
#define CPCAP_BIT_ASC BIT(12) /* Set for TIMING_IMM */
#define CPCAP_BIT_ATOX_PS_FACTOR BIT(11)
#define CPCAP_BIT_ADC_PS_FACTOR1 BIT(10)
#define CPCAP_BIT_ADC_PS_FACTOR0 BIT(9)
#define CPCAP_BIT_AD4_SELECT BIT(8) /* Currently unused */
#define CPCAP_BIT_ADC_BUSY BIT(7) /* Currently unused */
#define CPCAP_BIT_THERMBIAS_EN BIT(6) /* Bias for AD0_BATTDETB */
#define CPCAP_BIT_ADTRIG_DIS BIT(5) /* Disable interrupt */
#define CPCAP_BIT_LIADC BIT(4) /* Currently unused */
#define CPCAP_BIT_TS_REFEN BIT(3) /* Currently unused */
#define CPCAP_BIT_TS_M2 BIT(2) /* Currently unused */
#define CPCAP_BIT_TS_M1 BIT(1) /* Currently unused */
#define CPCAP_BIT_TS_M0 BIT(0) /* Currently unused */
#define CPCAP_REG_ADCC2_DEFAULTS (CPCAP_BIT_AD4_SELECT | \
CPCAP_BIT_ADTRIG_DIS | \
CPCAP_BIT_LIADC | \
CPCAP_BIT_TS_M2 | \
CPCAP_BIT_TS_M1)
#define CPCAP_MAX_TEMP_LVL 27
#define CPCAP_FOUR_POINT_TWO_ADC 801
#define ST_ADC_CAL_CHRGI_HIGH_THRESHOLD 530
#define ST_ADC_CAL_CHRGI_LOW_THRESHOLD 494
#define ST_ADC_CAL_BATTI_HIGH_THRESHOLD 530
#define ST_ADC_CAL_BATTI_LOW_THRESHOLD 494
#define ST_ADC_CALIBRATE_DIFF_THRESHOLD 3
#define CPCAP_ADC_MAX_RETRIES 5 /* Calibration */
/**
* struct cpcap_adc_ato - timing settings for cpcap adc
*
* Unfortunately no cpcap documentation available, please document when
* using these.
*/
struct cpcap_adc_ato {
unsigned short ato_in;
unsigned short atox_in;
unsigned short adc_ps_factor_in;
unsigned short atox_ps_factor_in;
unsigned short ato_out;
unsigned short atox_out;
unsigned short adc_ps_factor_out;
unsigned short atox_ps_factor_out;
};
/**
* struct cpcap-adc - cpcap adc device driver data
* @reg: cpcap regmap
* @dev: struct device
* @vendor: cpcap vendor
* @irq: interrupt
* @lock: mutex
* @ato: request timings
* @wq_data_avail: work queue
* @done: work done
*/
struct cpcap_adc {
struct regmap *reg;
struct device *dev;
u16 vendor;
int irq;
struct mutex lock; /* ADC register access lock */
const struct cpcap_adc_ato *ato;
wait_queue_head_t wq_data_avail;
bool done;
};
/**
* enum cpcap_adc_channel - cpcap adc channels
*/
enum cpcap_adc_channel {
/* Bank0 channels */
CPCAP_ADC_AD0, /* Battery temperature */
CPCAP_ADC_BATTP, /* Battery voltage */
CPCAP_ADC_VBUS, /* USB VBUS voltage */
CPCAP_ADC_AD3, /* Die temperature when charging */
CPCAP_ADC_BPLUS_AD4, /* Another battery or system voltage */
CPCAP_ADC_CHG_ISENSE, /* Calibrated charge current */
CPCAP_ADC_BATTI, /* Calibrated system current */
CPCAP_ADC_USB_ID, /* USB OTG ID, unused on droid 4? */
/* Bank1 channels */
CPCAP_ADC_AD8, /* Seems unused */
CPCAP_ADC_AD9, /* Seems unused */
CPCAP_ADC_LICELL, /* Maybe system voltage? Always 3V */
CPCAP_ADC_HV_BATTP, /* Another battery detection? */
CPCAP_ADC_TSX1_AD12, /* Seems unused, for touchscreen? */
CPCAP_ADC_TSX2_AD13, /* Seems unused, for touchscreen? */
CPCAP_ADC_TSY1_AD14, /* Seems unused, for touchscreen? */
CPCAP_ADC_TSY2_AD15, /* Seems unused, for touchscreen? */
/* Remuxed channels using bank0 entries */
CPCAP_ADC_BATTP_PI16, /* Alternative mux mode for BATTP */
CPCAP_ADC_BATTI_PI17, /* Alternative mux mode for BATTI */
CPCAP_ADC_CHANNEL_NUM,
};
/**
* enum cpcap_adc_timing - cpcap adc timing options
*
* CPCAP_ADC_TIMING_IMM seems to be immediate with no timings.
* Please document when using.
*/
enum cpcap_adc_timing {
CPCAP_ADC_TIMING_IMM,
CPCAP_ADC_TIMING_IN,
CPCAP_ADC_TIMING_OUT,
};
/**
* struct cpcap_adc_phasing_tbl - cpcap phasing table
* @offset: offset in the phasing table
* @multiplier: multiplier in the phasing table
* @divider: divider in the phasing table
* @min: minimum value
* @max: maximum value
*/
struct cpcap_adc_phasing_tbl {
short offset;
unsigned short multiplier;
unsigned short divider;
short min;
short max;
};
/**
* struct cpcap_adc_conversion_tbl - cpcap conversion table
* @conv_type: conversion type
* @align_offset: align offset
* @conv_offset: conversion offset
* @cal_offset: calibration offset
* @multiplier: conversion multiplier
* @divider: conversion divider
*/
struct cpcap_adc_conversion_tbl {
enum iio_chan_info_enum conv_type;
int align_offset;
int conv_offset;
int cal_offset;
int multiplier;
int divider;
};
/**
* struct cpcap_adc_request - cpcap adc request
* @channel: request channel
* @phase_tbl: channel phasing table
* @conv_tbl: channel conversion table
* @bank_index: channel index within the bank
* @timing: timing settings
* @result: result
*/
struct cpcap_adc_request {
int channel;
const struct cpcap_adc_phasing_tbl *phase_tbl;
const struct cpcap_adc_conversion_tbl *conv_tbl;
int bank_index;
enum cpcap_adc_timing timing;
int result;
};
/* Phasing table for channels. Note that channels 16 & 17 use BATTP and BATTI */
static const struct cpcap_adc_phasing_tbl bank_phasing[] = {
/* Bank0 */
[CPCAP_ADC_AD0] = {0, 0x80, 0x80, 0, 1023},
[CPCAP_ADC_BATTP] = {0, 0x80, 0x80, 0, 1023},
[CPCAP_ADC_VBUS] = {0, 0x80, 0x80, 0, 1023},
[CPCAP_ADC_AD3] = {0, 0x80, 0x80, 0, 1023},
[CPCAP_ADC_BPLUS_AD4] = {0, 0x80, 0x80, 0, 1023},
[CPCAP_ADC_CHG_ISENSE] = {0, 0x80, 0x80, -512, 511},
[CPCAP_ADC_BATTI] = {0, 0x80, 0x80, -512, 511},
[CPCAP_ADC_USB_ID] = {0, 0x80, 0x80, 0, 1023},
/* Bank1 */
[CPCAP_ADC_AD8] = {0, 0x80, 0x80, 0, 1023},
[CPCAP_ADC_AD9] = {0, 0x80, 0x80, 0, 1023},
[CPCAP_ADC_LICELL] = {0, 0x80, 0x80, 0, 1023},
[CPCAP_ADC_HV_BATTP] = {0, 0x80, 0x80, 0, 1023},
[CPCAP_ADC_TSX1_AD12] = {0, 0x80, 0x80, 0, 1023},
[CPCAP_ADC_TSX2_AD13] = {0, 0x80, 0x80, 0, 1023},
[CPCAP_ADC_TSY1_AD14] = {0, 0x80, 0x80, 0, 1023},
[CPCAP_ADC_TSY2_AD15] = {0, 0x80, 0x80, 0, 1023},
};
/*
* Conversion table for channels. Updated during init based on calibration.
* Here too channels 16 & 17 use BATTP and BATTI.
*/
static struct cpcap_adc_conversion_tbl bank_conversion[] = {
/* Bank0 */
[CPCAP_ADC_AD0] = {
IIO_CHAN_INFO_PROCESSED, 0, 0, 0, 1, 1,
},
[CPCAP_ADC_BATTP] = {
IIO_CHAN_INFO_PROCESSED, 0, 2400, 0, 2300, 1023,
},
[CPCAP_ADC_VBUS] = {
IIO_CHAN_INFO_PROCESSED, 0, 0, 0, 10000, 1023,
},
[CPCAP_ADC_AD3] = {
IIO_CHAN_INFO_PROCESSED, 0, 0, 0, 1, 1,
},
[CPCAP_ADC_BPLUS_AD4] = {
IIO_CHAN_INFO_PROCESSED, 0, 2400, 0, 2300, 1023,
},
[CPCAP_ADC_CHG_ISENSE] = {
IIO_CHAN_INFO_PROCESSED, -512, 2, 0, 5000, 1023,
},
[CPCAP_ADC_BATTI] = {
IIO_CHAN_INFO_PROCESSED, -512, 2, 0, 5000, 1023,
},
[CPCAP_ADC_USB_ID] = {
IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1,
},
/* Bank1 */
[CPCAP_ADC_AD8] = {
IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1,
},
[CPCAP_ADC_AD9] = {
IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1,
},
[CPCAP_ADC_LICELL] = {
IIO_CHAN_INFO_PROCESSED, 0, 0, 0, 3400, 1023,
},
[CPCAP_ADC_HV_BATTP] = {
IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1,
},
[CPCAP_ADC_TSX1_AD12] = {
IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1,
},
[CPCAP_ADC_TSX2_AD13] = {
IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1,
},
[CPCAP_ADC_TSY1_AD14] = {
IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1,
},
[CPCAP_ADC_TSY2_AD15] = {
IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1,
},
};
/*
* Temperature lookup table of register values to milliCelcius.
* REVISIT: Check the duplicate 0x3ff entry in a freezer
*/
static const int temp_map[CPCAP_MAX_TEMP_LVL][2] = {
{ 0x03ff, -40000 },
{ 0x03ff, -35000 },
{ 0x03ef, -30000 },
{ 0x03b2, -25000 },
{ 0x036c, -20000 },
{ 0x0320, -15000 },
{ 0x02d0, -10000 },
{ 0x027f, -5000 },
{ 0x022f, 0 },
{ 0x01e4, 5000 },
{ 0x019f, 10000 },
{ 0x0161, 15000 },
{ 0x012b, 20000 },
{ 0x00fc, 25000 },
{ 0x00d4, 30000 },
{ 0x00b2, 35000 },
{ 0x0095, 40000 },
{ 0x007d, 45000 },
{ 0x0069, 50000 },
{ 0x0059, 55000 },
{ 0x004b, 60000 },
{ 0x003f, 65000 },
{ 0x0036, 70000 },
{ 0x002e, 75000 },
{ 0x0027, 80000 },
{ 0x0022, 85000 },
{ 0x001d, 90000 },
};
#define CPCAP_CHAN(_type, _index, _address, _datasheet_name) { \
.type = (_type), \
.address = (_address), \
.indexed = 1, \
.channel = (_index), \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_PROCESSED), \
.scan_index = (_index), \
.scan_type = { \
.sign = 'u', \
.realbits = 10, \
.storagebits = 16, \
.endianness = IIO_CPU, \
}, \
.datasheet_name = (_datasheet_name), \
}
/*
* The datasheet names are from Motorola mapphone Linux kernel except
* for the last two which might be uncalibrated charge voltage and
* current.
*/
static const struct iio_chan_spec cpcap_adc_channels[] = {
/* Bank0 */
CPCAP_CHAN(IIO_TEMP, 0, CPCAP_REG_ADCD0, "battdetb"),
CPCAP_CHAN(IIO_VOLTAGE, 1, CPCAP_REG_ADCD1, "battp"),
CPCAP_CHAN(IIO_VOLTAGE, 2, CPCAP_REG_ADCD2, "vbus"),
CPCAP_CHAN(IIO_TEMP, 3, CPCAP_REG_ADCD3, "ad3"),
CPCAP_CHAN(IIO_VOLTAGE, 4, CPCAP_REG_ADCD4, "ad4"),
CPCAP_CHAN(IIO_CURRENT, 5, CPCAP_REG_ADCD5, "chg_isense"),
CPCAP_CHAN(IIO_CURRENT, 6, CPCAP_REG_ADCD6, "batti"),
CPCAP_CHAN(IIO_VOLTAGE, 7, CPCAP_REG_ADCD7, "usb_id"),
/* Bank1 */
CPCAP_CHAN(IIO_CURRENT, 8, CPCAP_REG_ADCD0, "ad8"),
CPCAP_CHAN(IIO_VOLTAGE, 9, CPCAP_REG_ADCD1, "ad9"),
CPCAP_CHAN(IIO_VOLTAGE, 10, CPCAP_REG_ADCD2, "licell"),
CPCAP_CHAN(IIO_VOLTAGE, 11, CPCAP_REG_ADCD3, "hv_battp"),
CPCAP_CHAN(IIO_VOLTAGE, 12, CPCAP_REG_ADCD4, "tsx1_ad12"),
CPCAP_CHAN(IIO_VOLTAGE, 13, CPCAP_REG_ADCD5, "tsx2_ad13"),
CPCAP_CHAN(IIO_VOLTAGE, 14, CPCAP_REG_ADCD6, "tsy1_ad14"),
CPCAP_CHAN(IIO_VOLTAGE, 15, CPCAP_REG_ADCD7, "tsy2_ad15"),
/* There are two registers with multiplexed functionality */
CPCAP_CHAN(IIO_VOLTAGE, 16, CPCAP_REG_ADCD0, "chg_vsense"),
CPCAP_CHAN(IIO_CURRENT, 17, CPCAP_REG_ADCD1, "batti2"),
};
static irqreturn_t cpcap_adc_irq_thread(int irq, void *data)
{
struct iio_dev *indio_dev = data;
struct cpcap_adc *ddata = iio_priv(indio_dev);
int error;
error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
CPCAP_BIT_ADTRIG_DIS,
CPCAP_BIT_ADTRIG_DIS);
if (error)
return IRQ_NONE;
ddata->done = true;
wake_up_interruptible(&ddata->wq_data_avail);
return IRQ_HANDLED;
}
/* ADC calibration functions */
static void cpcap_adc_setup_calibrate(struct cpcap_adc *ddata,
enum cpcap_adc_channel chan)
{
unsigned int value = 0;
unsigned long timeout = jiffies + msecs_to_jiffies(3000);
int error;
if ((chan != CPCAP_ADC_CHG_ISENSE) &&
(chan != CPCAP_ADC_BATTI))
return;
value |= CPCAP_BIT_CAL_MODE | CPCAP_BIT_RAND0;
value |= ((chan << 4) &
(CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 | CPCAP_BIT_ADA0));
error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
CPCAP_BIT_CAL_MODE | CPCAP_BIT_ATOX |
CPCAP_BIT_ATO3 | CPCAP_BIT_ATO2 |
CPCAP_BIT_ATO1 | CPCAP_BIT_ATO0 |
CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 |
CPCAP_BIT_ADA0 | CPCAP_BIT_AD_SEL1 |
CPCAP_BIT_RAND1 | CPCAP_BIT_RAND0,
value);
if (error)
return;
error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
CPCAP_BIT_ATOX_PS_FACTOR |
CPCAP_BIT_ADC_PS_FACTOR1 |
CPCAP_BIT_ADC_PS_FACTOR0,
0);
if (error)
return;
error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
CPCAP_BIT_ADTRIG_DIS,
CPCAP_BIT_ADTRIG_DIS);
if (error)
return;
error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
CPCAP_BIT_ASC,
CPCAP_BIT_ASC);
if (error)
return;
do {
schedule_timeout_uninterruptible(1);
error = regmap_read(ddata->reg, CPCAP_REG_ADCC2, &value);
if (error)
return;
} while ((value & CPCAP_BIT_ASC) && time_before(jiffies, timeout));
if (value & CPCAP_BIT_ASC)
dev_err(ddata->dev,
"Timeout waiting for calibration to complete\n");
error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
CPCAP_BIT_CAL_MODE, 0);
if (error)
return;
}
static int cpcap_adc_calibrate_one(struct cpcap_adc *ddata,
int channel,
u16 calibration_register,
int lower_threshold,
int upper_threshold)
{
unsigned int calibration_data[2];
unsigned short cal_data_diff;
int i, error;
for (i = 0; i < CPCAP_ADC_MAX_RETRIES; i++) {
calibration_data[0] = 0;
calibration_data[1] = 0;
cal_data_diff = 0;
cpcap_adc_setup_calibrate(ddata, channel);
error = regmap_read(ddata->reg, calibration_register,
&calibration_data[0]);
if (error)
return error;
cpcap_adc_setup_calibrate(ddata, channel);
error = regmap_read(ddata->reg, calibration_register,
&calibration_data[1]);
if (error)
return error;
if (calibration_data[0] > calibration_data[1])
cal_data_diff =
calibration_data[0] - calibration_data[1];
else
cal_data_diff =
calibration_data[1] - calibration_data[0];
if (((calibration_data[1] >= lower_threshold) &&
(calibration_data[1] <= upper_threshold) &&
(cal_data_diff <= ST_ADC_CALIBRATE_DIFF_THRESHOLD)) ||
(ddata->vendor == CPCAP_VENDOR_TI)) {
bank_conversion[channel].cal_offset =
((short)calibration_data[1] * -1) + 512;
dev_dbg(ddata->dev, "ch%i calibration complete: %i\n",
channel, bank_conversion[channel].cal_offset);
break;
}
usleep_range(5000, 10000);
}
return 0;
}
static int cpcap_adc_calibrate(struct cpcap_adc *ddata)
{
int error;
error = cpcap_adc_calibrate_one(ddata, CPCAP_ADC_CHG_ISENSE,
CPCAP_REG_ADCAL1,
ST_ADC_CAL_CHRGI_LOW_THRESHOLD,
ST_ADC_CAL_CHRGI_HIGH_THRESHOLD);
if (error)
return error;
error = cpcap_adc_calibrate_one(ddata, CPCAP_ADC_BATTI,
CPCAP_REG_ADCAL2,
ST_ADC_CAL_BATTI_LOW_THRESHOLD,
ST_ADC_CAL_BATTI_HIGH_THRESHOLD);
if (error)
return error;
return 0;
}
/* ADC setup, read and scale functions */
static void cpcap_adc_setup_bank(struct cpcap_adc *ddata,
struct cpcap_adc_request *req)
{
const struct cpcap_adc_ato *ato = ddata->ato;
unsigned short value1 = 0;
unsigned short value2 = 0;
int error;
if (!ato)
return;
switch (req->channel) {
case CPCAP_ADC_AD0:
value2 |= CPCAP_BIT_THERMBIAS_EN;
error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
CPCAP_BIT_THERMBIAS_EN,
value2);
if (error)
return;
usleep_range(800, 1000);
break;
case CPCAP_ADC_AD8 ... CPCAP_ADC_TSY2_AD15:
value1 |= CPCAP_BIT_AD_SEL1;
break;
case CPCAP_ADC_BATTP_PI16 ... CPCAP_ADC_BATTI_PI17:
value1 |= CPCAP_BIT_RAND1;
default:
break;
}
switch (req->timing) {
case CPCAP_ADC_TIMING_IN:
value1 |= ato->ato_in;
value1 |= ato->atox_in;
value2 |= ato->adc_ps_factor_in;
value2 |= ato->atox_ps_factor_in;
break;
case CPCAP_ADC_TIMING_OUT:
value1 |= ato->ato_out;
value1 |= ato->atox_out;
value2 |= ato->adc_ps_factor_out;
value2 |= ato->atox_ps_factor_out;
break;
case CPCAP_ADC_TIMING_IMM:
default:
break;
}
error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
CPCAP_BIT_CAL_MODE | CPCAP_BIT_ATOX |
CPCAP_BIT_ATO3 | CPCAP_BIT_ATO2 |
CPCAP_BIT_ATO1 | CPCAP_BIT_ATO0 |
CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 |
CPCAP_BIT_ADA0 | CPCAP_BIT_AD_SEL1 |
CPCAP_BIT_RAND1 | CPCAP_BIT_RAND0,
value1);
if (error)
return;
error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
CPCAP_BIT_ATOX_PS_FACTOR |
CPCAP_BIT_ADC_PS_FACTOR1 |
CPCAP_BIT_ADC_PS_FACTOR0 |
CPCAP_BIT_THERMBIAS_EN,
value2);
if (error)
return;
if (req->timing == CPCAP_ADC_TIMING_IMM) {
error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
CPCAP_BIT_ADTRIG_DIS,
CPCAP_BIT_ADTRIG_DIS);
if (error)
return;
error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
CPCAP_BIT_ASC,
CPCAP_BIT_ASC);
if (error)
return;
} else {
error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
CPCAP_BIT_ADTRIG_ONESHOT,
CPCAP_BIT_ADTRIG_ONESHOT);
if (error)
return;
error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
CPCAP_BIT_ADTRIG_DIS, 0);
if (error)
return;
}
}
static int cpcap_adc_start_bank(struct cpcap_adc *ddata,
struct cpcap_adc_request *req)
{
int i, error;
req->timing = CPCAP_ADC_TIMING_IMM;
ddata->done = false;
for (i = 0; i < CPCAP_ADC_MAX_RETRIES; i++) {
cpcap_adc_setup_bank(ddata, req);
error = wait_event_interruptible_timeout(ddata->wq_data_avail,
ddata->done,
msecs_to_jiffies(50));
if (error > 0)
return 0;
if (error == 0) {
error = -ETIMEDOUT;
continue;
}
if (error < 0)
return error;
}
return error;
}
static int cpcap_adc_stop_bank(struct cpcap_adc *ddata)
{
int error;
error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
0xffff,
CPCAP_REG_ADCC1_DEFAULTS);
if (error)
return error;
return regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
0xffff,
CPCAP_REG_ADCC2_DEFAULTS);
}
static void cpcap_adc_phase(struct cpcap_adc_request *req)
{
const struct cpcap_adc_conversion_tbl *conv_tbl = req->conv_tbl;
const struct cpcap_adc_phasing_tbl *phase_tbl = req->phase_tbl;
int index = req->channel;
/* Remuxed channels 16 and 17 use BATTP and BATTI entries */
switch (req->channel) {
case CPCAP_ADC_BATTP:
case CPCAP_ADC_BATTP_PI16:
index = req->bank_index;
req->result -= phase_tbl[index].offset;
req->result -= CPCAP_FOUR_POINT_TWO_ADC;
req->result *= phase_tbl[index].multiplier;
if (phase_tbl[index].divider == 0)
return;
req->result /= phase_tbl[index].divider;
req->result += CPCAP_FOUR_POINT_TWO_ADC;
break;
case CPCAP_ADC_BATTI_PI17:
index = req->bank_index;
/* fallthrough */
default:
req->result += conv_tbl[index].cal_offset;
req->result += conv_tbl[index].align_offset;
req->result *= phase_tbl[index].multiplier;
if (phase_tbl[index].divider == 0)
return;
req->result /= phase_tbl[index].divider;
req->result += phase_tbl[index].offset;
break;
}
if (req->result < phase_tbl[index].min)
req->result = phase_tbl[index].min;
else if (req->result > phase_tbl[index].max)
req->result = phase_tbl[index].max;
}
/* Looks up temperatures in a table and calculates averages if needed */
static int cpcap_adc_table_to_millicelcius(unsigned short value)
{
int i, result = 0, alpha;
if (value <= temp_map[CPCAP_MAX_TEMP_LVL - 1][0])
return temp_map[CPCAP_MAX_TEMP_LVL - 1][1];
if (value >= temp_map[0][0])
return temp_map[0][1];
for (i = 0; i < CPCAP_MAX_TEMP_LVL - 1; i++) {
if ((value <= temp_map[i][0]) &&
(value >= temp_map[i + 1][0])) {
if (value == temp_map[i][0]) {
result = temp_map[i][1];
} else if (value == temp_map[i + 1][0]) {
result = temp_map[i + 1][1];
} else {
alpha = ((value - temp_map[i][0]) * 1000) /
(temp_map[i + 1][0] - temp_map[i][0]);
result = temp_map[i][1] +
((alpha * (temp_map[i + 1][1] -
temp_map[i][1])) / 1000);
}
break;
}
}
return result;
}
static void cpcap_adc_convert(struct cpcap_adc_request *req)
{
const struct cpcap_adc_conversion_tbl *conv_tbl = req->conv_tbl;
int index = req->channel;
/* Remuxed channels 16 and 17 use BATTP and BATTI entries */
switch (req->channel) {
case CPCAP_ADC_BATTP_PI16:
index = CPCAP_ADC_BATTP;
break;
case CPCAP_ADC_BATTI_PI17:
index = CPCAP_ADC_BATTI;
break;
default:
break;
}
/* No conversion for raw channels */
if (conv_tbl[index].conv_type == IIO_CHAN_INFO_RAW)
return;
/* Temperatures use a lookup table instead of conversion table */
if ((req->channel == CPCAP_ADC_AD0) ||
(req->channel == CPCAP_ADC_AD3)) {
req->result =
cpcap_adc_table_to_millicelcius(req->result);
return;
}
/* All processed channels use a conversion table */
req->result *= conv_tbl[index].multiplier;
if (conv_tbl[index].divider == 0)
return;
req->result /= conv_tbl[index].divider;
req->result += conv_tbl[index].conv_offset;
}
/*
* REVISIT: Check if timed sampling can use multiple channels at the
* same time. If not, replace channel_mask with just channel.
*/
static int cpcap_adc_read_bank_scaled(struct cpcap_adc *ddata,
struct cpcap_adc_request *req)
{
int calibration_data, error, addr;
if (ddata->vendor == CPCAP_VENDOR_TI) {
error = regmap_read(ddata->reg, CPCAP_REG_ADCAL1,
&calibration_data);
if (error)
return error;
bank_conversion[CPCAP_ADC_CHG_ISENSE].cal_offset =
((short)calibration_data * -1) + 512;
error = regmap_read(ddata->reg, CPCAP_REG_ADCAL2,
&calibration_data);
if (error)
return error;
bank_conversion[CPCAP_ADC_BATTI].cal_offset =
((short)calibration_data * -1) + 512;
}
addr = CPCAP_REG_ADCD0 + req->bank_index * 4;
error = regmap_read(ddata->reg, addr, &req->result);
if (error)
return error;
req->result &= 0x3ff;
cpcap_adc_phase(req);
cpcap_adc_convert(req);
return 0;
}
static int cpcap_adc_init_request(struct cpcap_adc_request *req,
int channel)
{
req->channel = channel;
req->phase_tbl = bank_phasing;
req->conv_tbl = bank_conversion;
switch (channel) {
case CPCAP_ADC_AD0 ... CPCAP_ADC_USB_ID:
req->bank_index = channel;
break;
case CPCAP_ADC_AD8 ... CPCAP_ADC_TSY2_AD15:
req->bank_index = channel - 8;
break;
case CPCAP_ADC_BATTP_PI16:
req->bank_index = CPCAP_ADC_BATTP;
break;
case CPCAP_ADC_BATTI_PI17:
req->bank_index = CPCAP_ADC_BATTI;
break;
default:
return -EINVAL;
}
return 0;
}
static int cpcap_adc_read_st_die_temp(struct cpcap_adc *ddata,
int addr, int *val)
{
int error;
error = regmap_read(ddata->reg, addr, val);
if (error)
return error;
*val -= 282;
*val *= 114;
*val += 25000;
return 0;
}
static int cpcap_adc_read(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct cpcap_adc *ddata = iio_priv(indio_dev);
struct cpcap_adc_request req;
int error;
error = cpcap_adc_init_request(&req, chan->channel);
if (error)
return error;
switch (mask) {
case IIO_CHAN_INFO_RAW:
mutex_lock(&ddata->lock);
error = cpcap_adc_start_bank(ddata, &req);
if (error)
goto err_unlock;
error = regmap_read(ddata->reg, chan->address, val);
if (error)
goto err_unlock;
error = cpcap_adc_stop_bank(ddata);
if (error)
goto err_unlock;
mutex_unlock(&ddata->lock);
break;
case IIO_CHAN_INFO_PROCESSED:
mutex_lock(&ddata->lock);
error = cpcap_adc_start_bank(ddata, &req);
if (error)
goto err_unlock;
if ((ddata->vendor == CPCAP_VENDOR_ST) &&
(chan->channel == CPCAP_ADC_AD3)) {
error = cpcap_adc_read_st_die_temp(ddata,
chan->address,
&req.result);
if (error)
goto err_unlock;
} else {
error = cpcap_adc_read_bank_scaled(ddata, &req);
if (error)
goto err_unlock;
}
error = cpcap_adc_stop_bank(ddata);
if (error)
goto err_unlock;
mutex_unlock(&ddata->lock);
*val = req.result;
break;
default:
return -EINVAL;
}
return IIO_VAL_INT;
err_unlock:
mutex_unlock(&ddata->lock);
dev_err(ddata->dev, "error reading ADC: %i\n", error);
return error;
}
static const struct iio_info cpcap_adc_info = {
.read_raw = &cpcap_adc_read,
};
/*
* Configuration for Motorola mapphone series such as droid 4.
* Copied from the Motorola mapphone kernel tree.
*/
static const struct cpcap_adc_ato mapphone_adc = {
.ato_in = 0x0480,
.atox_in = 0,
.adc_ps_factor_in = 0x0200,
.atox_ps_factor_in = 0,
.ato_out = 0,
.atox_out = 0,
.adc_ps_factor_out = 0,
.atox_ps_factor_out = 0,
};
static const struct of_device_id cpcap_adc_id_table[] = {
{
.compatible = "motorola,cpcap-adc",
},
{
.compatible = "motorola,mapphone-cpcap-adc",
.data = &mapphone_adc,
},
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, cpcap_adc_id_table);
static int cpcap_adc_probe(struct platform_device *pdev)
{
const struct of_device_id *match;
struct cpcap_adc *ddata;
struct iio_dev *indio_dev;
int error;
match = of_match_device(of_match_ptr(cpcap_adc_id_table),
&pdev->dev);
if (!match)
return -EINVAL;
if (!match->data) {
dev_err(&pdev->dev, "no configuration data found\n");
return -ENODEV;
}
indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*ddata));
if (!indio_dev) {
dev_err(&pdev->dev, "failed to allocate iio device\n");
return -ENOMEM;
}
ddata = iio_priv(indio_dev);
ddata->ato = match->data;
ddata->dev = &pdev->dev;
mutex_init(&ddata->lock);
init_waitqueue_head(&ddata->wq_data_avail);
indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
indio_dev->dev.parent = &pdev->dev;
indio_dev->dev.of_node = pdev->dev.of_node;
indio_dev->channels = cpcap_adc_channels;
indio_dev->num_channels = ARRAY_SIZE(cpcap_adc_channels);
indio_dev->name = dev_name(&pdev->dev);
indio_dev->info = &cpcap_adc_info;
ddata->reg = dev_get_regmap(pdev->dev.parent, NULL);
if (!ddata->reg)
return -ENODEV;
error = cpcap_get_vendor(ddata->dev, ddata->reg, &ddata->vendor);
if (error)
return error;
platform_set_drvdata(pdev, indio_dev);
ddata->irq = platform_get_irq_byname(pdev, "adcdone");
if (ddata->irq < 0)
return -ENODEV;
error = devm_request_threaded_irq(&pdev->dev, ddata->irq, NULL,
cpcap_adc_irq_thread,
IRQF_TRIGGER_NONE | IRQF_ONESHOT,
"cpcap-adc", indio_dev);
if (error) {
dev_err(&pdev->dev, "could not get irq: %i\n",
error);
return error;
}
error = cpcap_adc_calibrate(ddata);
if (error)
return error;
dev_info(&pdev->dev, "CPCAP ADC device probed\n");
return devm_iio_device_register(&pdev->dev, indio_dev);
}
static struct platform_driver cpcap_adc_driver = {
.driver = {
.name = "cpcap_adc",
.of_match_table = of_match_ptr(cpcap_adc_id_table),
},
.probe = cpcap_adc_probe,
};
module_platform_driver(cpcap_adc_driver);
MODULE_ALIAS("platform:cpcap_adc");
MODULE_DESCRIPTION("CPCAP ADC driver");
MODULE_AUTHOR("Tony Lindgren <tony@atomide.com");
MODULE_LICENSE("GPL v2");