mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-13 22:56:07 +07:00
f6234c1dee
When looking for viable candidates to shrink, we only want objects that are not pinned. However to do so we performed a double iteration over the vma in the objects, first looking for the pin-count, then looking for allocations. We can do both at once and be slightly more explicit in our validity test. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
338 lines
10 KiB
C
338 lines
10 KiB
C
/*
|
|
* Copyright © 2008-2015 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include <linux/oom.h>
|
|
#include <linux/shmem_fs.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/dma-buf.h>
|
|
#include <drm/drmP.h>
|
|
#include <drm/i915_drm.h>
|
|
|
|
#include "i915_drv.h"
|
|
#include "i915_trace.h"
|
|
|
|
static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
|
|
{
|
|
if (!mutex_is_locked(mutex))
|
|
return false;
|
|
|
|
#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
|
|
return mutex->owner == task;
|
|
#else
|
|
/* Since UP may be pre-empted, we cannot assume that we own the lock */
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* i915_gem_shrink - Shrink buffer object caches
|
|
* @dev_priv: i915 device
|
|
* @target: amount of memory to make available, in pages
|
|
* @flags: control flags for selecting cache types
|
|
*
|
|
* This function is the main interface to the shrinker. It will try to release
|
|
* up to @target pages of main memory backing storage from buffer objects.
|
|
* Selection of the specific caches can be done with @flags. This is e.g. useful
|
|
* when purgeable objects should be removed from caches preferentially.
|
|
*
|
|
* Note that it's not guaranteed that released amount is actually available as
|
|
* free system memory - the pages might still be in-used to due to other reasons
|
|
* (like cpu mmaps) or the mm core has reused them before we could grab them.
|
|
* Therefore code that needs to explicitly shrink buffer objects caches (e.g. to
|
|
* avoid deadlocks in memory reclaim) must fall back to i915_gem_shrink_all().
|
|
*
|
|
* Also note that any kind of pinning (both per-vma address space pins and
|
|
* backing storage pins at the buffer object level) result in the shrinker code
|
|
* having to skip the object.
|
|
*
|
|
* Returns:
|
|
* The number of pages of backing storage actually released.
|
|
*/
|
|
unsigned long
|
|
i915_gem_shrink(struct drm_i915_private *dev_priv,
|
|
long target, unsigned flags)
|
|
{
|
|
const struct {
|
|
struct list_head *list;
|
|
unsigned int bit;
|
|
} phases[] = {
|
|
{ &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
|
|
{ &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
|
|
{ NULL, 0 },
|
|
}, *phase;
|
|
unsigned long count = 0;
|
|
|
|
/*
|
|
* As we may completely rewrite the (un)bound list whilst unbinding
|
|
* (due to retiring requests) we have to strictly process only
|
|
* one element of the list at the time, and recheck the list
|
|
* on every iteration.
|
|
*
|
|
* In particular, we must hold a reference whilst removing the
|
|
* object as we may end up waiting for and/or retiring the objects.
|
|
* This might release the final reference (held by the active list)
|
|
* and result in the object being freed from under us. This is
|
|
* similar to the precautions the eviction code must take whilst
|
|
* removing objects.
|
|
*
|
|
* Also note that although these lists do not hold a reference to
|
|
* the object we can safely grab one here: The final object
|
|
* unreferencing and the bound_list are both protected by the
|
|
* dev->struct_mutex and so we won't ever be able to observe an
|
|
* object on the bound_list with a reference count equals 0.
|
|
*/
|
|
for (phase = phases; phase->list; phase++) {
|
|
struct list_head still_in_list;
|
|
|
|
if ((flags & phase->bit) == 0)
|
|
continue;
|
|
|
|
INIT_LIST_HEAD(&still_in_list);
|
|
while (count < target && !list_empty(phase->list)) {
|
|
struct drm_i915_gem_object *obj;
|
|
struct i915_vma *vma, *v;
|
|
|
|
obj = list_first_entry(phase->list,
|
|
typeof(*obj), global_list);
|
|
list_move_tail(&obj->global_list, &still_in_list);
|
|
|
|
if (flags & I915_SHRINK_PURGEABLE &&
|
|
obj->madv != I915_MADV_DONTNEED)
|
|
continue;
|
|
|
|
drm_gem_object_reference(&obj->base);
|
|
|
|
/* For the unbound phase, this should be a no-op! */
|
|
list_for_each_entry_safe(vma, v,
|
|
&obj->vma_list, vma_link)
|
|
if (i915_vma_unbind(vma))
|
|
break;
|
|
|
|
if (i915_gem_object_put_pages(obj) == 0)
|
|
count += obj->base.size >> PAGE_SHIFT;
|
|
|
|
drm_gem_object_unreference(&obj->base);
|
|
}
|
|
list_splice(&still_in_list, phase->list);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_shrink - Shrink buffer object caches completely
|
|
* @dev_priv: i915 device
|
|
*
|
|
* This is a simple wraper around i915_gem_shrink() to aggressively shrink all
|
|
* caches completely. It also first waits for and retires all outstanding
|
|
* requests to also be able to release backing storage for active objects.
|
|
*
|
|
* This should only be used in code to intentionally quiescent the gpu or as a
|
|
* last-ditch effort when memory seems to have run out.
|
|
*
|
|
* Returns:
|
|
* The number of pages of backing storage actually released.
|
|
*/
|
|
unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv)
|
|
{
|
|
i915_gem_evict_everything(dev_priv->dev);
|
|
return i915_gem_shrink(dev_priv, LONG_MAX,
|
|
I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
|
|
}
|
|
|
|
static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
|
|
{
|
|
if (!mutex_trylock(&dev->struct_mutex)) {
|
|
if (!mutex_is_locked_by(&dev->struct_mutex, current))
|
|
return false;
|
|
|
|
if (to_i915(dev)->mm.shrinker_no_lock_stealing)
|
|
return false;
|
|
|
|
*unlock = false;
|
|
} else
|
|
*unlock = true;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int num_vma_bound(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct i915_vma *vma;
|
|
int count = 0;
|
|
|
|
list_for_each_entry(vma, &obj->vma_list, vma_link) {
|
|
if (drm_mm_node_allocated(&vma->node))
|
|
count++;
|
|
if (vma->pin_count)
|
|
count++;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static unsigned long
|
|
i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
|
|
{
|
|
struct drm_i915_private *dev_priv =
|
|
container_of(shrinker, struct drm_i915_private, mm.shrinker);
|
|
struct drm_device *dev = dev_priv->dev;
|
|
struct drm_i915_gem_object *obj;
|
|
unsigned long count;
|
|
bool unlock;
|
|
|
|
if (!i915_gem_shrinker_lock(dev, &unlock))
|
|
return 0;
|
|
|
|
count = 0;
|
|
list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
|
|
if (obj->pages_pin_count == 0)
|
|
count += obj->base.size >> PAGE_SHIFT;
|
|
|
|
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
|
|
if (obj->pages_pin_count == num_vma_bound(obj))
|
|
count += obj->base.size >> PAGE_SHIFT;
|
|
}
|
|
|
|
if (unlock)
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return count;
|
|
}
|
|
|
|
static unsigned long
|
|
i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
|
|
{
|
|
struct drm_i915_private *dev_priv =
|
|
container_of(shrinker, struct drm_i915_private, mm.shrinker);
|
|
struct drm_device *dev = dev_priv->dev;
|
|
unsigned long freed;
|
|
bool unlock;
|
|
|
|
if (!i915_gem_shrinker_lock(dev, &unlock))
|
|
return SHRINK_STOP;
|
|
|
|
freed = i915_gem_shrink(dev_priv,
|
|
sc->nr_to_scan,
|
|
I915_SHRINK_BOUND |
|
|
I915_SHRINK_UNBOUND |
|
|
I915_SHRINK_PURGEABLE);
|
|
if (freed < sc->nr_to_scan)
|
|
freed += i915_gem_shrink(dev_priv,
|
|
sc->nr_to_scan - freed,
|
|
I915_SHRINK_BOUND |
|
|
I915_SHRINK_UNBOUND);
|
|
if (unlock)
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return freed;
|
|
}
|
|
|
|
static int
|
|
i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
|
|
{
|
|
struct drm_i915_private *dev_priv =
|
|
container_of(nb, struct drm_i915_private, mm.oom_notifier);
|
|
struct drm_device *dev = dev_priv->dev;
|
|
struct drm_i915_gem_object *obj;
|
|
unsigned long timeout = msecs_to_jiffies(5000) + 1;
|
|
unsigned long pinned, bound, unbound, freed_pages;
|
|
bool was_interruptible;
|
|
bool unlock;
|
|
|
|
while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
|
|
schedule_timeout_killable(1);
|
|
if (fatal_signal_pending(current))
|
|
return NOTIFY_DONE;
|
|
}
|
|
if (timeout == 0) {
|
|
pr_err("Unable to purge GPU memory due lock contention.\n");
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
was_interruptible = dev_priv->mm.interruptible;
|
|
dev_priv->mm.interruptible = false;
|
|
|
|
freed_pages = i915_gem_shrink_all(dev_priv);
|
|
|
|
dev_priv->mm.interruptible = was_interruptible;
|
|
|
|
/* Because we may be allocating inside our own driver, we cannot
|
|
* assert that there are no objects with pinned pages that are not
|
|
* being pointed to by hardware.
|
|
*/
|
|
unbound = bound = pinned = 0;
|
|
list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
|
|
if (!obj->base.filp) /* not backed by a freeable object */
|
|
continue;
|
|
|
|
if (obj->pages_pin_count)
|
|
pinned += obj->base.size;
|
|
else
|
|
unbound += obj->base.size;
|
|
}
|
|
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
|
|
if (!obj->base.filp)
|
|
continue;
|
|
|
|
if (obj->pages_pin_count)
|
|
pinned += obj->base.size;
|
|
else
|
|
bound += obj->base.size;
|
|
}
|
|
|
|
if (unlock)
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
if (freed_pages || unbound || bound)
|
|
pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
|
|
freed_pages << PAGE_SHIFT, pinned);
|
|
if (unbound || bound)
|
|
pr_err("%lu and %lu bytes still available in the "
|
|
"bound and unbound GPU page lists.\n",
|
|
bound, unbound);
|
|
|
|
*(unsigned long *)ptr += freed_pages;
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_shrinker_init - Initialize i915 shrinker
|
|
* @dev_priv: i915 device
|
|
*
|
|
* This function registers and sets up the i915 shrinker and OOM handler.
|
|
*/
|
|
void i915_gem_shrinker_init(struct drm_i915_private *dev_priv)
|
|
{
|
|
dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
|
|
dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
|
|
dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
|
|
register_shrinker(&dev_priv->mm.shrinker);
|
|
|
|
dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
|
|
register_oom_notifier(&dev_priv->mm.oom_notifier);
|
|
}
|