linux_dsm_epyc7002/arch/mips/lantiq/xway/sysctrl.c
Hauke Mehrtens e182c98a59 MIPS: Lantiq: Add PMU bits for USB and SDIO devices
This adds the PUM bits for USB and SDIO devices

Signed-off-by: Hauke Mehrtens <hauke.mehrtens@lantiq.com>
Acked-by: John Crispin <blogic@openwrt.org>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/11387/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2015-11-11 08:37:13 +01:00

502 lines
14 KiB
C

/*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* Copyright (C) 2011-2012 John Crispin <blogic@openwrt.org>
* Copyright (C) 2013-2015 Lantiq Beteiligungs-GmbH & Co.KG
*/
#include <linux/ioport.h>
#include <linux/export.h>
#include <linux/clkdev.h>
#include <linux/spinlock.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/of_address.h>
#include <lantiq_soc.h>
#include "../clk.h"
#include "../prom.h"
/* clock control register for legacy */
#define CGU_IFCCR 0x0018
#define CGU_IFCCR_VR9 0x0024
/* system clock register for legacy */
#define CGU_SYS 0x0010
/* pci control register */
#define CGU_PCICR 0x0034
#define CGU_PCICR_VR9 0x0038
/* ephy configuration register */
#define CGU_EPHY 0x10
/* Legacy PMU register for ar9, ase, danube */
/* power control register */
#define PMU_PWDCR 0x1C
/* power status register */
#define PMU_PWDSR 0x20
/* power control register */
#define PMU_PWDCR1 0x24
/* power status register */
#define PMU_PWDSR1 0x28
/* power control register */
#define PWDCR(x) ((x) ? (PMU_PWDCR1) : (PMU_PWDCR))
/* power status register */
#define PWDSR(x) ((x) ? (PMU_PWDSR1) : (PMU_PWDSR))
/* PMU register for ar10 and grx390 */
/* First register set */
#define PMU_CLK_SR 0x20 /* status */
#define PMU_CLK_CR_A 0x24 /* Enable */
#define PMU_CLK_CR_B 0x28 /* Disable */
/* Second register set */
#define PMU_CLK_SR1 0x30 /* status */
#define PMU_CLK_CR1_A 0x34 /* Enable */
#define PMU_CLK_CR1_B 0x38 /* Disable */
/* Third register set */
#define PMU_ANA_SR 0x40 /* status */
#define PMU_ANA_CR_A 0x44 /* Enable */
#define PMU_ANA_CR_B 0x48 /* Disable */
/* Status */
static u32 pmu_clk_sr[] = {
PMU_CLK_SR,
PMU_CLK_SR1,
PMU_ANA_SR,
};
/* Enable */
static u32 pmu_clk_cr_a[] = {
PMU_CLK_CR_A,
PMU_CLK_CR1_A,
PMU_ANA_CR_A,
};
/* Disable */
static u32 pmu_clk_cr_b[] = {
PMU_CLK_CR_B,
PMU_CLK_CR1_B,
PMU_ANA_CR_B,
};
#define PWDCR_EN_XRX(x) (pmu_clk_cr_a[(x)])
#define PWDCR_DIS_XRX(x) (pmu_clk_cr_b[(x)])
#define PWDSR_XRX(x) (pmu_clk_sr[(x)])
/* clock gates that we can en/disable */
#define PMU_USB0_P BIT(0)
#define PMU_ASE_SDIO BIT(2) /* ASE special */
#define PMU_PCI BIT(4)
#define PMU_DMA BIT(5)
#define PMU_USB0 BIT(6)
#define PMU_ASC0 BIT(7)
#define PMU_EPHY BIT(7) /* ase */
#define PMU_USIF BIT(7) /* from vr9 until grx390 */
#define PMU_SPI BIT(8)
#define PMU_DFE BIT(9)
#define PMU_EBU BIT(10)
#define PMU_STP BIT(11)
#define PMU_GPT BIT(12)
#define PMU_AHBS BIT(13) /* vr9 */
#define PMU_FPI BIT(14)
#define PMU_AHBM BIT(15)
#define PMU_SDIO BIT(16) /* danube, ar9, vr9 */
#define PMU_ASC1 BIT(17)
#define PMU_PPE_QSB BIT(18)
#define PMU_PPE_SLL01 BIT(19)
#define PMU_PPE_TC BIT(21)
#define PMU_PPE_EMA BIT(22)
#define PMU_PPE_DPLUM BIT(23)
#define PMU_PPE_DPLUS BIT(24)
#define PMU_USB1_P BIT(26)
#define PMU_USB1 BIT(27)
#define PMU_SWITCH BIT(28)
#define PMU_PPE_TOP BIT(29)
#define PMU_GPHY BIT(30)
#define PMU_PCIE_CLK BIT(31)
#define PMU1_PCIE_PHY BIT(0)
#define PMU1_PCIE_CTL BIT(1)
#define PMU1_PCIE_PDI BIT(4)
#define PMU1_PCIE_MSI BIT(5)
#define pmu_w32(x, y) ltq_w32((x), pmu_membase + (y))
#define pmu_r32(x) ltq_r32(pmu_membase + (x))
static void __iomem *pmu_membase;
void __iomem *ltq_cgu_membase;
void __iomem *ltq_ebu_membase;
static u32 ifccr = CGU_IFCCR;
static u32 pcicr = CGU_PCICR;
static DEFINE_SPINLOCK(g_pmu_lock);
/* legacy function kept alive to ease clkdev transition */
void ltq_pmu_enable(unsigned int module)
{
int retry = 1000000;
spin_lock(&g_pmu_lock);
pmu_w32(pmu_r32(PMU_PWDCR) & ~module, PMU_PWDCR);
do {} while (--retry && (pmu_r32(PMU_PWDSR) & module));
spin_unlock(&g_pmu_lock);
if (!retry)
panic("activating PMU module failed!");
}
EXPORT_SYMBOL(ltq_pmu_enable);
/* legacy function kept alive to ease clkdev transition */
void ltq_pmu_disable(unsigned int module)
{
int retry = 1000000;
spin_lock(&g_pmu_lock);
pmu_w32(pmu_r32(PMU_PWDCR) | module, PMU_PWDCR);
do {} while (--retry && (!(pmu_r32(PMU_PWDSR) & module)));
spin_unlock(&g_pmu_lock);
if (!retry)
pr_warn("deactivating PMU module failed!");
}
EXPORT_SYMBOL(ltq_pmu_disable);
/* enable a hw clock */
static int cgu_enable(struct clk *clk)
{
ltq_cgu_w32(ltq_cgu_r32(ifccr) | clk->bits, ifccr);
return 0;
}
/* disable a hw clock */
static void cgu_disable(struct clk *clk)
{
ltq_cgu_w32(ltq_cgu_r32(ifccr) & ~clk->bits, ifccr);
}
/* enable a clock gate */
static int pmu_enable(struct clk *clk)
{
int retry = 1000000;
if (of_machine_is_compatible("lantiq,ar10")
|| of_machine_is_compatible("lantiq,grx390")) {
pmu_w32(clk->bits, PWDCR_EN_XRX(clk->module));
do {} while (--retry &&
(!(pmu_r32(PWDSR_XRX(clk->module)) & clk->bits)));
} else {
spin_lock(&g_pmu_lock);
pmu_w32(pmu_r32(PWDCR(clk->module)) & ~clk->bits,
PWDCR(clk->module));
do {} while (--retry &&
(pmu_r32(PWDSR(clk->module)) & clk->bits));
spin_unlock(&g_pmu_lock);
}
if (!retry)
panic("activating PMU module failed!");
return 0;
}
/* disable a clock gate */
static void pmu_disable(struct clk *clk)
{
int retry = 1000000;
if (of_machine_is_compatible("lantiq,ar10")
|| of_machine_is_compatible("lantiq,grx390")) {
pmu_w32(clk->bits, PWDCR_DIS_XRX(clk->module));
do {} while (--retry &&
(pmu_r32(PWDSR_XRX(clk->module)) & clk->bits));
} else {
spin_lock(&g_pmu_lock);
pmu_w32(pmu_r32(PWDCR(clk->module)) | clk->bits,
PWDCR(clk->module));
do {} while (--retry &&
(!(pmu_r32(PWDSR(clk->module)) & clk->bits)));
spin_unlock(&g_pmu_lock);
}
if (!retry)
pr_warn("deactivating PMU module failed!");
}
/* the pci enable helper */
static int pci_enable(struct clk *clk)
{
unsigned int val = ltq_cgu_r32(ifccr);
/* set bus clock speed */
if (of_machine_is_compatible("lantiq,ar9") ||
of_machine_is_compatible("lantiq,vr9")) {
val &= ~0x1f00000;
if (clk->rate == CLOCK_33M)
val |= 0xe00000;
else
val |= 0x700000; /* 62.5M */
} else {
val &= ~0xf00000;
if (clk->rate == CLOCK_33M)
val |= 0x800000;
else
val |= 0x400000; /* 62.5M */
}
ltq_cgu_w32(val, ifccr);
pmu_enable(clk);
return 0;
}
/* enable the external clock as a source */
static int pci_ext_enable(struct clk *clk)
{
ltq_cgu_w32(ltq_cgu_r32(ifccr) & ~(1 << 16), ifccr);
ltq_cgu_w32((1 << 30), pcicr);
return 0;
}
/* disable the external clock as a source */
static void pci_ext_disable(struct clk *clk)
{
ltq_cgu_w32(ltq_cgu_r32(ifccr) | (1 << 16), ifccr);
ltq_cgu_w32((1 << 31) | (1 << 30), pcicr);
}
/* enable a clockout source */
static int clkout_enable(struct clk *clk)
{
int i;
/* get the correct rate */
for (i = 0; i < 4; i++) {
if (clk->rates[i] == clk->rate) {
int shift = 14 - (2 * clk->module);
int enable = 7 - clk->module;
unsigned int val = ltq_cgu_r32(ifccr);
val &= ~(3 << shift);
val |= i << shift;
val |= enable;
ltq_cgu_w32(val, ifccr);
return 0;
}
}
return -1;
}
/* manage the clock gates via PMU */
static void clkdev_add_pmu(const char *dev, const char *con, bool deactivate,
unsigned int module, unsigned int bits)
{
struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
clk->cl.dev_id = dev;
clk->cl.con_id = con;
clk->cl.clk = clk;
clk->enable = pmu_enable;
clk->disable = pmu_disable;
clk->module = module;
clk->bits = bits;
if (deactivate) {
/*
* Disable it during the initialization. Module should enable
* when used
*/
pmu_disable(clk);
}
clkdev_add(&clk->cl);
}
/* manage the clock generator */
static void clkdev_add_cgu(const char *dev, const char *con,
unsigned int bits)
{
struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
clk->cl.dev_id = dev;
clk->cl.con_id = con;
clk->cl.clk = clk;
clk->enable = cgu_enable;
clk->disable = cgu_disable;
clk->bits = bits;
clkdev_add(&clk->cl);
}
/* pci needs its own enable function as the setup is a bit more complex */
static unsigned long valid_pci_rates[] = {CLOCK_33M, CLOCK_62_5M, 0};
static void clkdev_add_pci(void)
{
struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
struct clk *clk_ext = kzalloc(sizeof(struct clk), GFP_KERNEL);
/* main pci clock */
clk->cl.dev_id = "17000000.pci";
clk->cl.con_id = NULL;
clk->cl.clk = clk;
clk->rate = CLOCK_33M;
clk->rates = valid_pci_rates;
clk->enable = pci_enable;
clk->disable = pmu_disable;
clk->module = 0;
clk->bits = PMU_PCI;
clkdev_add(&clk->cl);
/* use internal/external bus clock */
clk_ext->cl.dev_id = "17000000.pci";
clk_ext->cl.con_id = "external";
clk_ext->cl.clk = clk_ext;
clk_ext->enable = pci_ext_enable;
clk_ext->disable = pci_ext_disable;
clkdev_add(&clk_ext->cl);
}
/* xway socs can generate clocks on gpio pins */
static unsigned long valid_clkout_rates[4][5] = {
{CLOCK_32_768K, CLOCK_1_536M, CLOCK_2_5M, CLOCK_12M, 0},
{CLOCK_40M, CLOCK_12M, CLOCK_24M, CLOCK_48M, 0},
{CLOCK_25M, CLOCK_40M, CLOCK_30M, CLOCK_60M, 0},
{CLOCK_12M, CLOCK_50M, CLOCK_32_768K, CLOCK_25M, 0},
};
static void clkdev_add_clkout(void)
{
int i;
for (i = 0; i < 4; i++) {
struct clk *clk;
char *name;
name = kzalloc(sizeof("clkout0"), GFP_KERNEL);
sprintf(name, "clkout%d", i);
clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
clk->cl.dev_id = "1f103000.cgu";
clk->cl.con_id = name;
clk->cl.clk = clk;
clk->rate = 0;
clk->rates = valid_clkout_rates[i];
clk->enable = clkout_enable;
clk->module = i;
clkdev_add(&clk->cl);
}
}
/* bring up all register ranges that we need for basic system control */
void __init ltq_soc_init(void)
{
struct resource res_pmu, res_cgu, res_ebu;
struct device_node *np_pmu =
of_find_compatible_node(NULL, NULL, "lantiq,pmu-xway");
struct device_node *np_cgu =
of_find_compatible_node(NULL, NULL, "lantiq,cgu-xway");
struct device_node *np_ebu =
of_find_compatible_node(NULL, NULL, "lantiq,ebu-xway");
/* check if all the core register ranges are available */
if (!np_pmu || !np_cgu || !np_ebu)
panic("Failed to load core nodes from devicetree");
if (of_address_to_resource(np_pmu, 0, &res_pmu) ||
of_address_to_resource(np_cgu, 0, &res_cgu) ||
of_address_to_resource(np_ebu, 0, &res_ebu))
panic("Failed to get core resources");
if ((request_mem_region(res_pmu.start, resource_size(&res_pmu),
res_pmu.name) < 0) ||
(request_mem_region(res_cgu.start, resource_size(&res_cgu),
res_cgu.name) < 0) ||
(request_mem_region(res_ebu.start, resource_size(&res_ebu),
res_ebu.name) < 0))
pr_err("Failed to request core resources");
pmu_membase = ioremap_nocache(res_pmu.start, resource_size(&res_pmu));
ltq_cgu_membase = ioremap_nocache(res_cgu.start,
resource_size(&res_cgu));
ltq_ebu_membase = ioremap_nocache(res_ebu.start,
resource_size(&res_ebu));
if (!pmu_membase || !ltq_cgu_membase || !ltq_ebu_membase)
panic("Failed to remap core resources");
/* make sure to unprotect the memory region where flash is located */
ltq_ebu_w32(ltq_ebu_r32(LTQ_EBU_BUSCON0) & ~EBU_WRDIS, LTQ_EBU_BUSCON0);
/* add our generic xway clocks */
clkdev_add_pmu("10000000.fpi", NULL, 0, 0, PMU_FPI);
clkdev_add_pmu("1e100400.serial", NULL, 0, 0, PMU_ASC0);
clkdev_add_pmu("1e100a00.gptu", NULL, 1, 0, PMU_GPT);
clkdev_add_pmu("1e100bb0.stp", NULL, 1, 0, PMU_STP);
clkdev_add_pmu("1e104100.dma", NULL, 1, 0, PMU_DMA);
clkdev_add_pmu("1e100800.spi", NULL, 1, 0, PMU_SPI);
clkdev_add_pmu("1e105300.ebu", NULL, 0, 0, PMU_EBU);
clkdev_add_clkout();
/* add the soc dependent clocks */
if (of_machine_is_compatible("lantiq,vr9")) {
ifccr = CGU_IFCCR_VR9;
pcicr = CGU_PCICR_VR9;
} else {
clkdev_add_pmu("1e180000.etop", NULL, 1, 0, PMU_PPE);
}
if (!of_machine_is_compatible("lantiq,ase")) {
clkdev_add_pmu("1e100c00.serial", NULL, 0, 0, PMU_ASC1);
clkdev_add_pci();
}
if (of_machine_is_compatible("lantiq,ase")) {
if (ltq_cgu_r32(CGU_SYS) & (1 << 5))
clkdev_add_static(CLOCK_266M, CLOCK_133M,
CLOCK_133M, CLOCK_266M);
else
clkdev_add_static(CLOCK_133M, CLOCK_133M,
CLOCK_133M, CLOCK_133M);
clkdev_add_pmu("1e101000.usb", "ctl", 1, 0, PMU_USB0);
clkdev_add_pmu("1e101000.usb", "phy", 1, 0, PMU_USB0_P);
clkdev_add_pmu("1e180000.etop", "ppe", 1, 0, PMU_PPE);
clkdev_add_cgu("1e180000.etop", "ephycgu", CGU_EPHY);
clkdev_add_pmu("1e180000.etop", "ephy", 1, 0, PMU_EPHY);
clkdev_add_pmu("1e103000.sdio", NULL, 1, 0, PMU_ASE_SDIO);
} else if (of_machine_is_compatible("lantiq,vr9")) {
clkdev_add_static(ltq_vr9_cpu_hz(), ltq_vr9_fpi_hz(),
ltq_vr9_fpi_hz(), ltq_vr9_pp32_hz());
clkdev_add_pmu("1e101000.usb", "phy", 1, 0, PMU_USB0_P);
clkdev_add_pmu("1e101000.usb", "ctl", 1, 0, PMU_USB0 | PMU_AHBM);
clkdev_add_pmu("1e106000.usb", "phy", 1, 0, PMU_USB1_P);
clkdev_add_pmu("1e106000.usb", "ctl", 1, 0, PMU_USB1 | PMU_AHBM);
clkdev_add_pmu("1d900000.pcie", "phy", 1, 1, PMU1_PCIE_PHY);
clkdev_add_pmu("1d900000.pcie", "bus", 1, 0, PMU_PCIE_CLK);
clkdev_add_pmu("1d900000.pcie", "msi", 1, 1, PMU1_PCIE_MSI);
clkdev_add_pmu("1d900000.pcie", "pdi", 1, 1, PMU1_PCIE_PDI);
clkdev_add_pmu("1d900000.pcie", "ctl", 1, 1, PMU1_PCIE_CTL);
clkdev_add_pmu("1d900000.pcie", "ahb", 1, 0, PMU_AHBM | PMU_AHBS);
clkdev_add_pmu("1da00000.usif", "NULL", 1, 0, PMU_USIF);
clkdev_add_pmu("1e108000.eth", NULL, 1, 0,
PMU_SWITCH | PMU_PPE_DPLUS | PMU_PPE_DPLUM |
PMU_PPE_EMA | PMU_PPE_TC | PMU_PPE_SLL01 |
PMU_PPE_QSB | PMU_PPE_TOP);
clkdev_add_pmu("1f203000.rcu", "gphy", 1, 0, PMU_GPHY);
clkdev_add_pmu("1e103000.sdio", NULL, 1, 0, PMU_SDIO);
} else if (of_machine_is_compatible("lantiq,ar9")) {
clkdev_add_static(ltq_ar9_cpu_hz(), ltq_ar9_fpi_hz(),
ltq_ar9_fpi_hz(), CLOCK_250M);
clkdev_add_pmu("1e101000.usb", "ctl", 1, 0, PMU_USB0);
clkdev_add_pmu("1e101000.usb", "phy", 1, 0, PMU_USB0_P);
clkdev_add_pmu("1e106000.usb", "ctl", 1, 0, PMU_USB1);
clkdev_add_pmu("1e106000.usb", "phy", 1, 0, PMU_USB1_P);
clkdev_add_pmu("1e180000.etop", "switch", 1, 0, PMU_SWITCH);
clkdev_add_pmu("1e103000.sdio", NULL, 1, 0, PMU_SDIO);
} else {
clkdev_add_static(ltq_danube_cpu_hz(), ltq_danube_fpi_hz(),
ltq_danube_fpi_hz(), ltq_danube_pp32_hz());
clkdev_add_pmu("1e101000.usb", "ctl", 1, 0, PMU_USB0);
clkdev_add_pmu("1e101000.usb", "phy", 1, 0, PMU_USB0_P);
clkdev_add_pmu("1e103000.sdio", NULL, 1, 0, PMU_SDIO);
}
}