linux_dsm_epyc7002/net/qrtr/qrtr.c
Bjorn Andersson e04df98adf net: qrtr: Remove receive worker
Rather than enqueuing messages and scheduling a worker to deliver them
to the individual sockets we can now, thanks to the previous work, move
this directly into the endpoint callback.

This saves us a context switch per incoming message and removes the
possibility of an opportunistic suspend to happen between the message is
coming from the endpoint until it ends up in the socket's receive
buffer.

Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-14 18:36:42 -08:00

1317 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2015, Sony Mobile Communications Inc.
* Copyright (c) 2013, The Linux Foundation. All rights reserved.
*/
#include <linux/module.h>
#include <linux/netlink.h>
#include <linux/qrtr.h>
#include <linux/termios.h> /* For TIOCINQ/OUTQ */
#include <linux/numa.h>
#include <linux/spinlock.h>
#include <linux/wait.h>
#include <net/sock.h>
#include "qrtr.h"
#define QRTR_PROTO_VER_1 1
#define QRTR_PROTO_VER_2 3
/* auto-bind range */
#define QRTR_MIN_EPH_SOCKET 0x4000
#define QRTR_MAX_EPH_SOCKET 0x7fff
/**
* struct qrtr_hdr_v1 - (I|R)PCrouter packet header version 1
* @version: protocol version
* @type: packet type; one of QRTR_TYPE_*
* @src_node_id: source node
* @src_port_id: source port
* @confirm_rx: boolean; whether a resume-tx packet should be send in reply
* @size: length of packet, excluding this header
* @dst_node_id: destination node
* @dst_port_id: destination port
*/
struct qrtr_hdr_v1 {
__le32 version;
__le32 type;
__le32 src_node_id;
__le32 src_port_id;
__le32 confirm_rx;
__le32 size;
__le32 dst_node_id;
__le32 dst_port_id;
} __packed;
/**
* struct qrtr_hdr_v2 - (I|R)PCrouter packet header later versions
* @version: protocol version
* @type: packet type; one of QRTR_TYPE_*
* @flags: bitmask of QRTR_FLAGS_*
* @optlen: length of optional header data
* @size: length of packet, excluding this header and optlen
* @src_node_id: source node
* @src_port_id: source port
* @dst_node_id: destination node
* @dst_port_id: destination port
*/
struct qrtr_hdr_v2 {
u8 version;
u8 type;
u8 flags;
u8 optlen;
__le32 size;
__le16 src_node_id;
__le16 src_port_id;
__le16 dst_node_id;
__le16 dst_port_id;
};
#define QRTR_FLAGS_CONFIRM_RX BIT(0)
struct qrtr_cb {
u32 src_node;
u32 src_port;
u32 dst_node;
u32 dst_port;
u8 type;
u8 confirm_rx;
};
#define QRTR_HDR_MAX_SIZE max_t(size_t, sizeof(struct qrtr_hdr_v1), \
sizeof(struct qrtr_hdr_v2))
struct qrtr_sock {
/* WARNING: sk must be the first member */
struct sock sk;
struct sockaddr_qrtr us;
struct sockaddr_qrtr peer;
};
static inline struct qrtr_sock *qrtr_sk(struct sock *sk)
{
BUILD_BUG_ON(offsetof(struct qrtr_sock, sk) != 0);
return container_of(sk, struct qrtr_sock, sk);
}
static unsigned int qrtr_local_nid = NUMA_NO_NODE;
/* for node ids */
static RADIX_TREE(qrtr_nodes, GFP_ATOMIC);
static DEFINE_SPINLOCK(qrtr_nodes_lock);
/* broadcast list */
static LIST_HEAD(qrtr_all_nodes);
/* lock for qrtr_all_nodes and node reference */
static DEFINE_MUTEX(qrtr_node_lock);
/* local port allocation management */
static DEFINE_IDR(qrtr_ports);
static DEFINE_MUTEX(qrtr_port_lock);
/**
* struct qrtr_node - endpoint node
* @ep_lock: lock for endpoint management and callbacks
* @ep: endpoint
* @ref: reference count for node
* @nid: node id
* @qrtr_tx_flow: tree of qrtr_tx_flow, keyed by node << 32 | port
* @qrtr_tx_lock: lock for qrtr_tx_flow inserts
* @rx_queue: receive queue
* @item: list item for broadcast list
*/
struct qrtr_node {
struct mutex ep_lock;
struct qrtr_endpoint *ep;
struct kref ref;
unsigned int nid;
struct radix_tree_root qrtr_tx_flow;
struct mutex qrtr_tx_lock; /* for qrtr_tx_flow */
struct sk_buff_head rx_queue;
struct list_head item;
};
/**
* struct qrtr_tx_flow - tx flow control
* @resume_tx: waiters for a resume tx from the remote
* @pending: number of waiting senders
* @tx_failed: indicates that a message with confirm_rx flag was lost
*/
struct qrtr_tx_flow {
struct wait_queue_head resume_tx;
int pending;
int tx_failed;
};
#define QRTR_TX_FLOW_HIGH 10
#define QRTR_TX_FLOW_LOW 5
static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb,
int type, struct sockaddr_qrtr *from,
struct sockaddr_qrtr *to);
static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb,
int type, struct sockaddr_qrtr *from,
struct sockaddr_qrtr *to);
static struct qrtr_sock *qrtr_port_lookup(int port);
static void qrtr_port_put(struct qrtr_sock *ipc);
/* Release node resources and free the node.
*
* Do not call directly, use qrtr_node_release. To be used with
* kref_put_mutex. As such, the node mutex is expected to be locked on call.
*/
static void __qrtr_node_release(struct kref *kref)
{
struct qrtr_node *node = container_of(kref, struct qrtr_node, ref);
struct radix_tree_iter iter;
unsigned long flags;
void __rcu **slot;
spin_lock_irqsave(&qrtr_nodes_lock, flags);
if (node->nid != QRTR_EP_NID_AUTO)
radix_tree_delete(&qrtr_nodes, node->nid);
spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
list_del(&node->item);
mutex_unlock(&qrtr_node_lock);
skb_queue_purge(&node->rx_queue);
/* Free tx flow counters */
radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) {
radix_tree_iter_delete(&node->qrtr_tx_flow, &iter, slot);
kfree(*slot);
}
kfree(node);
}
/* Increment reference to node. */
static struct qrtr_node *qrtr_node_acquire(struct qrtr_node *node)
{
if (node)
kref_get(&node->ref);
return node;
}
/* Decrement reference to node and release as necessary. */
static void qrtr_node_release(struct qrtr_node *node)
{
if (!node)
return;
kref_put_mutex(&node->ref, __qrtr_node_release, &qrtr_node_lock);
}
/**
* qrtr_tx_resume() - reset flow control counter
* @node: qrtr_node that the QRTR_TYPE_RESUME_TX packet arrived on
* @skb: resume_tx packet
*/
static void qrtr_tx_resume(struct qrtr_node *node, struct sk_buff *skb)
{
struct qrtr_ctrl_pkt *pkt = (struct qrtr_ctrl_pkt *)skb->data;
u64 remote_node = le32_to_cpu(pkt->client.node);
u32 remote_port = le32_to_cpu(pkt->client.port);
struct qrtr_tx_flow *flow;
unsigned long key;
key = remote_node << 32 | remote_port;
rcu_read_lock();
flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
rcu_read_unlock();
if (flow) {
spin_lock(&flow->resume_tx.lock);
flow->pending = 0;
spin_unlock(&flow->resume_tx.lock);
wake_up_interruptible_all(&flow->resume_tx);
}
consume_skb(skb);
}
/**
* qrtr_tx_wait() - flow control for outgoing packets
* @node: qrtr_node that the packet is to be send to
* @dest_node: node id of the destination
* @dest_port: port number of the destination
* @type: type of message
*
* The flow control scheme is based around the low and high "watermarks". When
* the low watermark is passed the confirm_rx flag is set on the outgoing
* message, which will trigger the remote to send a control message of the type
* QRTR_TYPE_RESUME_TX to reset the counter. If the high watermark is hit
* further transmision should be paused.
*
* Return: 1 if confirm_rx should be set, 0 otherwise or errno failure
*/
static int qrtr_tx_wait(struct qrtr_node *node, int dest_node, int dest_port,
int type)
{
unsigned long key = (u64)dest_node << 32 | dest_port;
struct qrtr_tx_flow *flow;
int confirm_rx = 0;
int ret;
/* Never set confirm_rx on non-data packets */
if (type != QRTR_TYPE_DATA)
return 0;
mutex_lock(&node->qrtr_tx_lock);
flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
if (!flow) {
flow = kzalloc(sizeof(*flow), GFP_KERNEL);
if (flow) {
init_waitqueue_head(&flow->resume_tx);
radix_tree_insert(&node->qrtr_tx_flow, key, flow);
}
}
mutex_unlock(&node->qrtr_tx_lock);
/* Set confirm_rx if we where unable to find and allocate a flow */
if (!flow)
return 1;
spin_lock_irq(&flow->resume_tx.lock);
ret = wait_event_interruptible_locked_irq(flow->resume_tx,
flow->pending < QRTR_TX_FLOW_HIGH ||
flow->tx_failed ||
!node->ep);
if (ret < 0) {
confirm_rx = ret;
} else if (!node->ep) {
confirm_rx = -EPIPE;
} else if (flow->tx_failed) {
flow->tx_failed = 0;
confirm_rx = 1;
} else {
flow->pending++;
confirm_rx = flow->pending == QRTR_TX_FLOW_LOW;
}
spin_unlock_irq(&flow->resume_tx.lock);
return confirm_rx;
}
/**
* qrtr_tx_flow_failed() - flag that tx of confirm_rx flagged messages failed
* @node: qrtr_node that the packet is to be send to
* @dest_node: node id of the destination
* @dest_port: port number of the destination
*
* Signal that the transmission of a message with confirm_rx flag failed. The
* flow's "pending" counter will keep incrementing towards QRTR_TX_FLOW_HIGH,
* at which point transmission would stall forever waiting for the resume TX
* message associated with the dropped confirm_rx message.
* Work around this by marking the flow as having a failed transmission and
* cause the next transmission attempt to be sent with the confirm_rx.
*/
static void qrtr_tx_flow_failed(struct qrtr_node *node, int dest_node,
int dest_port)
{
unsigned long key = (u64)dest_node << 32 | dest_port;
struct qrtr_tx_flow *flow;
rcu_read_lock();
flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
rcu_read_unlock();
if (flow) {
spin_lock_irq(&flow->resume_tx.lock);
flow->tx_failed = 1;
spin_unlock_irq(&flow->resume_tx.lock);
}
}
/* Pass an outgoing packet socket buffer to the endpoint driver. */
static int qrtr_node_enqueue(struct qrtr_node *node, struct sk_buff *skb,
int type, struct sockaddr_qrtr *from,
struct sockaddr_qrtr *to)
{
struct qrtr_hdr_v1 *hdr;
size_t len = skb->len;
int rc = -ENODEV;
int confirm_rx;
confirm_rx = qrtr_tx_wait(node, to->sq_node, to->sq_port, type);
if (confirm_rx < 0) {
kfree_skb(skb);
return confirm_rx;
}
hdr = skb_push(skb, sizeof(*hdr));
hdr->version = cpu_to_le32(QRTR_PROTO_VER_1);
hdr->type = cpu_to_le32(type);
hdr->src_node_id = cpu_to_le32(from->sq_node);
hdr->src_port_id = cpu_to_le32(from->sq_port);
if (to->sq_port == QRTR_PORT_CTRL) {
hdr->dst_node_id = cpu_to_le32(node->nid);
hdr->dst_port_id = cpu_to_le32(QRTR_NODE_BCAST);
} else {
hdr->dst_node_id = cpu_to_le32(to->sq_node);
hdr->dst_port_id = cpu_to_le32(to->sq_port);
}
hdr->size = cpu_to_le32(len);
hdr->confirm_rx = !!confirm_rx;
skb_put_padto(skb, ALIGN(len, 4) + sizeof(*hdr));
mutex_lock(&node->ep_lock);
if (node->ep)
rc = node->ep->xmit(node->ep, skb);
else
kfree_skb(skb);
mutex_unlock(&node->ep_lock);
/* Need to ensure that a subsequent message carries the otherwise lost
* confirm_rx flag if we dropped this one */
if (rc && confirm_rx)
qrtr_tx_flow_failed(node, to->sq_node, to->sq_port);
return rc;
}
/* Lookup node by id.
*
* callers must release with qrtr_node_release()
*/
static struct qrtr_node *qrtr_node_lookup(unsigned int nid)
{
struct qrtr_node *node;
unsigned long flags;
spin_lock_irqsave(&qrtr_nodes_lock, flags);
node = radix_tree_lookup(&qrtr_nodes, nid);
node = qrtr_node_acquire(node);
spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
return node;
}
/* Assign node id to node.
*
* This is mostly useful for automatic node id assignment, based on
* the source id in the incoming packet.
*/
static void qrtr_node_assign(struct qrtr_node *node, unsigned int nid)
{
unsigned long flags;
if (node->nid != QRTR_EP_NID_AUTO || nid == QRTR_EP_NID_AUTO)
return;
spin_lock_irqsave(&qrtr_nodes_lock, flags);
radix_tree_insert(&qrtr_nodes, nid, node);
node->nid = nid;
spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
}
/**
* qrtr_endpoint_post() - post incoming data
* @ep: endpoint handle
* @data: data pointer
* @len: size of data in bytes
*
* Return: 0 on success; negative error code on failure
*/
int qrtr_endpoint_post(struct qrtr_endpoint *ep, const void *data, size_t len)
{
struct qrtr_node *node = ep->node;
const struct qrtr_hdr_v1 *v1;
const struct qrtr_hdr_v2 *v2;
struct qrtr_sock *ipc;
struct sk_buff *skb;
struct qrtr_cb *cb;
unsigned int size;
unsigned int ver;
size_t hdrlen;
if (len & 3)
return -EINVAL;
skb = netdev_alloc_skb(NULL, len);
if (!skb)
return -ENOMEM;
cb = (struct qrtr_cb *)skb->cb;
/* Version field in v1 is little endian, so this works for both cases */
ver = *(u8*)data;
switch (ver) {
case QRTR_PROTO_VER_1:
v1 = data;
hdrlen = sizeof(*v1);
cb->type = le32_to_cpu(v1->type);
cb->src_node = le32_to_cpu(v1->src_node_id);
cb->src_port = le32_to_cpu(v1->src_port_id);
cb->confirm_rx = !!v1->confirm_rx;
cb->dst_node = le32_to_cpu(v1->dst_node_id);
cb->dst_port = le32_to_cpu(v1->dst_port_id);
size = le32_to_cpu(v1->size);
break;
case QRTR_PROTO_VER_2:
v2 = data;
hdrlen = sizeof(*v2) + v2->optlen;
cb->type = v2->type;
cb->confirm_rx = !!(v2->flags & QRTR_FLAGS_CONFIRM_RX);
cb->src_node = le16_to_cpu(v2->src_node_id);
cb->src_port = le16_to_cpu(v2->src_port_id);
cb->dst_node = le16_to_cpu(v2->dst_node_id);
cb->dst_port = le16_to_cpu(v2->dst_port_id);
if (cb->src_port == (u16)QRTR_PORT_CTRL)
cb->src_port = QRTR_PORT_CTRL;
if (cb->dst_port == (u16)QRTR_PORT_CTRL)
cb->dst_port = QRTR_PORT_CTRL;
size = le32_to_cpu(v2->size);
break;
default:
pr_err("qrtr: Invalid version %d\n", ver);
goto err;
}
if (len != ALIGN(size, 4) + hdrlen)
goto err;
if (cb->dst_port != QRTR_PORT_CTRL && cb->type != QRTR_TYPE_DATA &&
cb->type != QRTR_TYPE_RESUME_TX)
goto err;
skb_put_data(skb, data + hdrlen, size);
qrtr_node_assign(node, cb->src_node);
if (cb->type == QRTR_TYPE_RESUME_TX) {
qrtr_tx_resume(node, skb);
} else {
ipc = qrtr_port_lookup(cb->dst_port);
if (!ipc)
goto err;
if (sock_queue_rcv_skb(&ipc->sk, skb))
goto err;
qrtr_port_put(ipc);
}
return 0;
err:
kfree_skb(skb);
return -EINVAL;
}
EXPORT_SYMBOL_GPL(qrtr_endpoint_post);
/**
* qrtr_alloc_ctrl_packet() - allocate control packet skb
* @pkt: reference to qrtr_ctrl_pkt pointer
*
* Returns newly allocated sk_buff, or NULL on failure
*
* This function allocates a sk_buff large enough to carry a qrtr_ctrl_pkt and
* on success returns a reference to the control packet in @pkt.
*/
static struct sk_buff *qrtr_alloc_ctrl_packet(struct qrtr_ctrl_pkt **pkt)
{
const int pkt_len = sizeof(struct qrtr_ctrl_pkt);
struct sk_buff *skb;
skb = alloc_skb(QRTR_HDR_MAX_SIZE + pkt_len, GFP_KERNEL);
if (!skb)
return NULL;
skb_reserve(skb, QRTR_HDR_MAX_SIZE);
*pkt = skb_put_zero(skb, pkt_len);
return skb;
}
/**
* qrtr_endpoint_register() - register a new endpoint
* @ep: endpoint to register
* @nid: desired node id; may be QRTR_EP_NID_AUTO for auto-assignment
* Return: 0 on success; negative error code on failure
*
* The specified endpoint must have the xmit function pointer set on call.
*/
int qrtr_endpoint_register(struct qrtr_endpoint *ep, unsigned int nid)
{
struct qrtr_node *node;
if (!ep || !ep->xmit)
return -EINVAL;
node = kzalloc(sizeof(*node), GFP_KERNEL);
if (!node)
return -ENOMEM;
kref_init(&node->ref);
mutex_init(&node->ep_lock);
skb_queue_head_init(&node->rx_queue);
node->nid = QRTR_EP_NID_AUTO;
node->ep = ep;
INIT_RADIX_TREE(&node->qrtr_tx_flow, GFP_KERNEL);
mutex_init(&node->qrtr_tx_lock);
qrtr_node_assign(node, nid);
mutex_lock(&qrtr_node_lock);
list_add(&node->item, &qrtr_all_nodes);
mutex_unlock(&qrtr_node_lock);
ep->node = node;
return 0;
}
EXPORT_SYMBOL_GPL(qrtr_endpoint_register);
/**
* qrtr_endpoint_unregister - unregister endpoint
* @ep: endpoint to unregister
*/
void qrtr_endpoint_unregister(struct qrtr_endpoint *ep)
{
struct qrtr_node *node = ep->node;
struct sockaddr_qrtr src = {AF_QIPCRTR, node->nid, QRTR_PORT_CTRL};
struct sockaddr_qrtr dst = {AF_QIPCRTR, qrtr_local_nid, QRTR_PORT_CTRL};
struct radix_tree_iter iter;
struct qrtr_ctrl_pkt *pkt;
struct qrtr_tx_flow *flow;
struct sk_buff *skb;
void __rcu **slot;
mutex_lock(&node->ep_lock);
node->ep = NULL;
mutex_unlock(&node->ep_lock);
/* Notify the local controller about the event */
skb = qrtr_alloc_ctrl_packet(&pkt);
if (skb) {
pkt->cmd = cpu_to_le32(QRTR_TYPE_BYE);
qrtr_local_enqueue(NULL, skb, QRTR_TYPE_BYE, &src, &dst);
}
/* Wake up any transmitters waiting for resume-tx from the node */
mutex_lock(&node->qrtr_tx_lock);
radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) {
flow = *slot;
wake_up_interruptible_all(&flow->resume_tx);
}
mutex_unlock(&node->qrtr_tx_lock);
qrtr_node_release(node);
ep->node = NULL;
}
EXPORT_SYMBOL_GPL(qrtr_endpoint_unregister);
/* Lookup socket by port.
*
* Callers must release with qrtr_port_put()
*/
static struct qrtr_sock *qrtr_port_lookup(int port)
{
struct qrtr_sock *ipc;
if (port == QRTR_PORT_CTRL)
port = 0;
rcu_read_lock();
ipc = idr_find(&qrtr_ports, port);
if (ipc)
sock_hold(&ipc->sk);
rcu_read_unlock();
return ipc;
}
/* Release acquired socket. */
static void qrtr_port_put(struct qrtr_sock *ipc)
{
sock_put(&ipc->sk);
}
/* Remove port assignment. */
static void qrtr_port_remove(struct qrtr_sock *ipc)
{
struct qrtr_ctrl_pkt *pkt;
struct sk_buff *skb;
int port = ipc->us.sq_port;
struct sockaddr_qrtr to;
to.sq_family = AF_QIPCRTR;
to.sq_node = QRTR_NODE_BCAST;
to.sq_port = QRTR_PORT_CTRL;
skb = qrtr_alloc_ctrl_packet(&pkt);
if (skb) {
pkt->cmd = cpu_to_le32(QRTR_TYPE_DEL_CLIENT);
pkt->client.node = cpu_to_le32(ipc->us.sq_node);
pkt->client.port = cpu_to_le32(ipc->us.sq_port);
skb_set_owner_w(skb, &ipc->sk);
qrtr_bcast_enqueue(NULL, skb, QRTR_TYPE_DEL_CLIENT, &ipc->us,
&to);
}
if (port == QRTR_PORT_CTRL)
port = 0;
__sock_put(&ipc->sk);
mutex_lock(&qrtr_port_lock);
idr_remove(&qrtr_ports, port);
mutex_unlock(&qrtr_port_lock);
/* Ensure that if qrtr_port_lookup() did enter the RCU read section we
* wait for it to up increment the refcount */
synchronize_rcu();
}
/* Assign port number to socket.
*
* Specify port in the integer pointed to by port, and it will be adjusted
* on return as necesssary.
*
* Port may be:
* 0: Assign ephemeral port in [QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET]
* <QRTR_MIN_EPH_SOCKET: Specified; requires CAP_NET_ADMIN
* >QRTR_MIN_EPH_SOCKET: Specified; available to all
*/
static int qrtr_port_assign(struct qrtr_sock *ipc, int *port)
{
int rc;
mutex_lock(&qrtr_port_lock);
if (!*port) {
rc = idr_alloc(&qrtr_ports, ipc,
QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET + 1,
GFP_ATOMIC);
if (rc >= 0)
*port = rc;
} else if (*port < QRTR_MIN_EPH_SOCKET && !capable(CAP_NET_ADMIN)) {
rc = -EACCES;
} else if (*port == QRTR_PORT_CTRL) {
rc = idr_alloc(&qrtr_ports, ipc, 0, 1, GFP_ATOMIC);
} else {
rc = idr_alloc(&qrtr_ports, ipc, *port, *port + 1, GFP_ATOMIC);
if (rc >= 0)
*port = rc;
}
mutex_unlock(&qrtr_port_lock);
if (rc == -ENOSPC)
return -EADDRINUSE;
else if (rc < 0)
return rc;
sock_hold(&ipc->sk);
return 0;
}
/* Reset all non-control ports */
static void qrtr_reset_ports(void)
{
struct qrtr_sock *ipc;
int id;
mutex_lock(&qrtr_port_lock);
idr_for_each_entry(&qrtr_ports, ipc, id) {
/* Don't reset control port */
if (id == 0)
continue;
sock_hold(&ipc->sk);
ipc->sk.sk_err = ENETRESET;
ipc->sk.sk_error_report(&ipc->sk);
sock_put(&ipc->sk);
}
mutex_unlock(&qrtr_port_lock);
}
/* Bind socket to address.
*
* Socket should be locked upon call.
*/
static int __qrtr_bind(struct socket *sock,
const struct sockaddr_qrtr *addr, int zapped)
{
struct qrtr_sock *ipc = qrtr_sk(sock->sk);
struct sock *sk = sock->sk;
int port;
int rc;
/* rebinding ok */
if (!zapped && addr->sq_port == ipc->us.sq_port)
return 0;
port = addr->sq_port;
rc = qrtr_port_assign(ipc, &port);
if (rc)
return rc;
/* unbind previous, if any */
if (!zapped)
qrtr_port_remove(ipc);
ipc->us.sq_port = port;
sock_reset_flag(sk, SOCK_ZAPPED);
/* Notify all open ports about the new controller */
if (port == QRTR_PORT_CTRL)
qrtr_reset_ports();
return 0;
}
/* Auto bind to an ephemeral port. */
static int qrtr_autobind(struct socket *sock)
{
struct sock *sk = sock->sk;
struct sockaddr_qrtr addr;
if (!sock_flag(sk, SOCK_ZAPPED))
return 0;
addr.sq_family = AF_QIPCRTR;
addr.sq_node = qrtr_local_nid;
addr.sq_port = 0;
return __qrtr_bind(sock, &addr, 1);
}
/* Bind socket to specified sockaddr. */
static int qrtr_bind(struct socket *sock, struct sockaddr *saddr, int len)
{
DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr);
struct qrtr_sock *ipc = qrtr_sk(sock->sk);
struct sock *sk = sock->sk;
int rc;
if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR)
return -EINVAL;
if (addr->sq_node != ipc->us.sq_node)
return -EINVAL;
lock_sock(sk);
rc = __qrtr_bind(sock, addr, sock_flag(sk, SOCK_ZAPPED));
release_sock(sk);
return rc;
}
/* Queue packet to local peer socket. */
static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb,
int type, struct sockaddr_qrtr *from,
struct sockaddr_qrtr *to)
{
struct qrtr_sock *ipc;
struct qrtr_cb *cb;
ipc = qrtr_port_lookup(to->sq_port);
if (!ipc || &ipc->sk == skb->sk) { /* do not send to self */
kfree_skb(skb);
return -ENODEV;
}
cb = (struct qrtr_cb *)skb->cb;
cb->src_node = from->sq_node;
cb->src_port = from->sq_port;
if (sock_queue_rcv_skb(&ipc->sk, skb)) {
qrtr_port_put(ipc);
kfree_skb(skb);
return -ENOSPC;
}
qrtr_port_put(ipc);
return 0;
}
/* Queue packet for broadcast. */
static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb,
int type, struct sockaddr_qrtr *from,
struct sockaddr_qrtr *to)
{
struct sk_buff *skbn;
mutex_lock(&qrtr_node_lock);
list_for_each_entry(node, &qrtr_all_nodes, item) {
skbn = skb_clone(skb, GFP_KERNEL);
if (!skbn)
break;
skb_set_owner_w(skbn, skb->sk);
qrtr_node_enqueue(node, skbn, type, from, to);
}
mutex_unlock(&qrtr_node_lock);
qrtr_local_enqueue(node, skb, type, from, to);
return 0;
}
static int qrtr_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
{
DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name);
int (*enqueue_fn)(struct qrtr_node *, struct sk_buff *, int,
struct sockaddr_qrtr *, struct sockaddr_qrtr *);
__le32 qrtr_type = cpu_to_le32(QRTR_TYPE_DATA);
struct qrtr_sock *ipc = qrtr_sk(sock->sk);
struct sock *sk = sock->sk;
struct qrtr_node *node;
struct sk_buff *skb;
size_t plen;
u32 type;
int rc;
if (msg->msg_flags & ~(MSG_DONTWAIT))
return -EINVAL;
if (len > 65535)
return -EMSGSIZE;
lock_sock(sk);
if (addr) {
if (msg->msg_namelen < sizeof(*addr)) {
release_sock(sk);
return -EINVAL;
}
if (addr->sq_family != AF_QIPCRTR) {
release_sock(sk);
return -EINVAL;
}
rc = qrtr_autobind(sock);
if (rc) {
release_sock(sk);
return rc;
}
} else if (sk->sk_state == TCP_ESTABLISHED) {
addr = &ipc->peer;
} else {
release_sock(sk);
return -ENOTCONN;
}
node = NULL;
if (addr->sq_node == QRTR_NODE_BCAST) {
enqueue_fn = qrtr_bcast_enqueue;
if (addr->sq_port != QRTR_PORT_CTRL) {
release_sock(sk);
return -ENOTCONN;
}
} else if (addr->sq_node == ipc->us.sq_node) {
enqueue_fn = qrtr_local_enqueue;
} else {
enqueue_fn = qrtr_node_enqueue;
node = qrtr_node_lookup(addr->sq_node);
if (!node) {
release_sock(sk);
return -ECONNRESET;
}
}
plen = (len + 3) & ~3;
skb = sock_alloc_send_skb(sk, plen + QRTR_HDR_MAX_SIZE,
msg->msg_flags & MSG_DONTWAIT, &rc);
if (!skb)
goto out_node;
skb_reserve(skb, QRTR_HDR_MAX_SIZE);
rc = memcpy_from_msg(skb_put(skb, len), msg, len);
if (rc) {
kfree_skb(skb);
goto out_node;
}
if (ipc->us.sq_port == QRTR_PORT_CTRL) {
if (len < 4) {
rc = -EINVAL;
kfree_skb(skb);
goto out_node;
}
/* control messages already require the type as 'command' */
skb_copy_bits(skb, 0, &qrtr_type, 4);
}
type = le32_to_cpu(qrtr_type);
rc = enqueue_fn(node, skb, type, &ipc->us, addr);
if (rc >= 0)
rc = len;
out_node:
qrtr_node_release(node);
release_sock(sk);
return rc;
}
static int qrtr_send_resume_tx(struct qrtr_cb *cb)
{
struct sockaddr_qrtr remote = { AF_QIPCRTR, cb->src_node, cb->src_port };
struct sockaddr_qrtr local = { AF_QIPCRTR, cb->dst_node, cb->dst_port };
struct qrtr_ctrl_pkt *pkt;
struct qrtr_node *node;
struct sk_buff *skb;
int ret;
node = qrtr_node_lookup(remote.sq_node);
if (!node)
return -EINVAL;
skb = qrtr_alloc_ctrl_packet(&pkt);
if (!skb)
return -ENOMEM;
pkt->cmd = cpu_to_le32(QRTR_TYPE_RESUME_TX);
pkt->client.node = cpu_to_le32(cb->dst_node);
pkt->client.port = cpu_to_le32(cb->dst_port);
ret = qrtr_node_enqueue(node, skb, QRTR_TYPE_RESUME_TX, &local, &remote);
qrtr_node_release(node);
return ret;
}
static int qrtr_recvmsg(struct socket *sock, struct msghdr *msg,
size_t size, int flags)
{
DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name);
struct sock *sk = sock->sk;
struct sk_buff *skb;
struct qrtr_cb *cb;
int copied, rc;
lock_sock(sk);
if (sock_flag(sk, SOCK_ZAPPED)) {
release_sock(sk);
return -EADDRNOTAVAIL;
}
skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT,
flags & MSG_DONTWAIT, &rc);
if (!skb) {
release_sock(sk);
return rc;
}
cb = (struct qrtr_cb *)skb->cb;
copied = skb->len;
if (copied > size) {
copied = size;
msg->msg_flags |= MSG_TRUNC;
}
rc = skb_copy_datagram_msg(skb, 0, msg, copied);
if (rc < 0)
goto out;
rc = copied;
if (addr) {
addr->sq_family = AF_QIPCRTR;
addr->sq_node = cb->src_node;
addr->sq_port = cb->src_port;
msg->msg_namelen = sizeof(*addr);
}
out:
if (cb->confirm_rx)
qrtr_send_resume_tx(cb);
skb_free_datagram(sk, skb);
release_sock(sk);
return rc;
}
static int qrtr_connect(struct socket *sock, struct sockaddr *saddr,
int len, int flags)
{
DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr);
struct qrtr_sock *ipc = qrtr_sk(sock->sk);
struct sock *sk = sock->sk;
int rc;
if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR)
return -EINVAL;
lock_sock(sk);
sk->sk_state = TCP_CLOSE;
sock->state = SS_UNCONNECTED;
rc = qrtr_autobind(sock);
if (rc) {
release_sock(sk);
return rc;
}
ipc->peer = *addr;
sock->state = SS_CONNECTED;
sk->sk_state = TCP_ESTABLISHED;
release_sock(sk);
return 0;
}
static int qrtr_getname(struct socket *sock, struct sockaddr *saddr,
int peer)
{
struct qrtr_sock *ipc = qrtr_sk(sock->sk);
struct sockaddr_qrtr qaddr;
struct sock *sk = sock->sk;
lock_sock(sk);
if (peer) {
if (sk->sk_state != TCP_ESTABLISHED) {
release_sock(sk);
return -ENOTCONN;
}
qaddr = ipc->peer;
} else {
qaddr = ipc->us;
}
release_sock(sk);
qaddr.sq_family = AF_QIPCRTR;
memcpy(saddr, &qaddr, sizeof(qaddr));
return sizeof(qaddr);
}
static int qrtr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
{
void __user *argp = (void __user *)arg;
struct qrtr_sock *ipc = qrtr_sk(sock->sk);
struct sock *sk = sock->sk;
struct sockaddr_qrtr *sq;
struct sk_buff *skb;
struct ifreq ifr;
long len = 0;
int rc = 0;
lock_sock(sk);
switch (cmd) {
case TIOCOUTQ:
len = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
if (len < 0)
len = 0;
rc = put_user(len, (int __user *)argp);
break;
case TIOCINQ:
skb = skb_peek(&sk->sk_receive_queue);
if (skb)
len = skb->len;
rc = put_user(len, (int __user *)argp);
break;
case SIOCGIFADDR:
if (copy_from_user(&ifr, argp, sizeof(ifr))) {
rc = -EFAULT;
break;
}
sq = (struct sockaddr_qrtr *)&ifr.ifr_addr;
*sq = ipc->us;
if (copy_to_user(argp, &ifr, sizeof(ifr))) {
rc = -EFAULT;
break;
}
break;
case SIOCADDRT:
case SIOCDELRT:
case SIOCSIFADDR:
case SIOCGIFDSTADDR:
case SIOCSIFDSTADDR:
case SIOCGIFBRDADDR:
case SIOCSIFBRDADDR:
case SIOCGIFNETMASK:
case SIOCSIFNETMASK:
rc = -EINVAL;
break;
default:
rc = -ENOIOCTLCMD;
break;
}
release_sock(sk);
return rc;
}
static int qrtr_release(struct socket *sock)
{
struct sock *sk = sock->sk;
struct qrtr_sock *ipc;
if (!sk)
return 0;
lock_sock(sk);
ipc = qrtr_sk(sk);
sk->sk_shutdown = SHUTDOWN_MASK;
if (!sock_flag(sk, SOCK_DEAD))
sk->sk_state_change(sk);
sock_set_flag(sk, SOCK_DEAD);
sock->sk = NULL;
if (!sock_flag(sk, SOCK_ZAPPED))
qrtr_port_remove(ipc);
skb_queue_purge(&sk->sk_receive_queue);
release_sock(sk);
sock_put(sk);
return 0;
}
static const struct proto_ops qrtr_proto_ops = {
.owner = THIS_MODULE,
.family = AF_QIPCRTR,
.bind = qrtr_bind,
.connect = qrtr_connect,
.socketpair = sock_no_socketpair,
.accept = sock_no_accept,
.listen = sock_no_listen,
.sendmsg = qrtr_sendmsg,
.recvmsg = qrtr_recvmsg,
.getname = qrtr_getname,
.ioctl = qrtr_ioctl,
.gettstamp = sock_gettstamp,
.poll = datagram_poll,
.shutdown = sock_no_shutdown,
.setsockopt = sock_no_setsockopt,
.getsockopt = sock_no_getsockopt,
.release = qrtr_release,
.mmap = sock_no_mmap,
.sendpage = sock_no_sendpage,
};
static struct proto qrtr_proto = {
.name = "QIPCRTR",
.owner = THIS_MODULE,
.obj_size = sizeof(struct qrtr_sock),
};
static int qrtr_create(struct net *net, struct socket *sock,
int protocol, int kern)
{
struct qrtr_sock *ipc;
struct sock *sk;
if (sock->type != SOCK_DGRAM)
return -EPROTOTYPE;
sk = sk_alloc(net, AF_QIPCRTR, GFP_KERNEL, &qrtr_proto, kern);
if (!sk)
return -ENOMEM;
sock_set_flag(sk, SOCK_ZAPPED);
sock_init_data(sock, sk);
sock->ops = &qrtr_proto_ops;
ipc = qrtr_sk(sk);
ipc->us.sq_family = AF_QIPCRTR;
ipc->us.sq_node = qrtr_local_nid;
ipc->us.sq_port = 0;
return 0;
}
static const struct nla_policy qrtr_policy[IFA_MAX + 1] = {
[IFA_LOCAL] = { .type = NLA_U32 },
};
static int qrtr_addr_doit(struct sk_buff *skb, struct nlmsghdr *nlh,
struct netlink_ext_ack *extack)
{
struct nlattr *tb[IFA_MAX + 1];
struct ifaddrmsg *ifm;
int rc;
if (!netlink_capable(skb, CAP_NET_ADMIN))
return -EPERM;
if (!netlink_capable(skb, CAP_SYS_ADMIN))
return -EPERM;
ASSERT_RTNL();
rc = nlmsg_parse_deprecated(nlh, sizeof(*ifm), tb, IFA_MAX,
qrtr_policy, extack);
if (rc < 0)
return rc;
ifm = nlmsg_data(nlh);
if (!tb[IFA_LOCAL])
return -EINVAL;
qrtr_local_nid = nla_get_u32(tb[IFA_LOCAL]);
return 0;
}
static const struct net_proto_family qrtr_family = {
.owner = THIS_MODULE,
.family = AF_QIPCRTR,
.create = qrtr_create,
};
static int __init qrtr_proto_init(void)
{
int rc;
rc = proto_register(&qrtr_proto, 1);
if (rc)
return rc;
rc = sock_register(&qrtr_family);
if (rc) {
proto_unregister(&qrtr_proto);
return rc;
}
rc = rtnl_register_module(THIS_MODULE, PF_QIPCRTR, RTM_NEWADDR, qrtr_addr_doit, NULL, 0);
if (rc) {
sock_unregister(qrtr_family.family);
proto_unregister(&qrtr_proto);
}
return rc;
}
postcore_initcall(qrtr_proto_init);
static void __exit qrtr_proto_fini(void)
{
rtnl_unregister(PF_QIPCRTR, RTM_NEWADDR);
sock_unregister(qrtr_family.family);
proto_unregister(&qrtr_proto);
}
module_exit(qrtr_proto_fini);
MODULE_DESCRIPTION("Qualcomm IPC-router driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS_NETPROTO(PF_QIPCRTR);