mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-26 02:36:49 +07:00
58ac323084
Stale && dirty keys can be produced in the follow way: After writeback in write_dirty_finish(), dirty keys k1 will replace by clean keys k2 ==>ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key); ==>btree_insert_fn(struct btree_op *b_op, struct btree *b) ==>static int bch_btree_insert_node(struct btree *b, struct btree_op *op, struct keylist *insert_keys, atomic_t *journal_ref, Then two steps: A) update k1 to k2 in btree node memory; bch_btree_insert_keys(b, op, insert_keys, replace_key) B) Write the bset(contains k2) to cache disk by a 30s delay work bch_btree_leaf_dirty(b, journal_ref). But before the 30s delay work write the bset to cache device, these things happened: A) GC works, and reclaim the bucket k2 point to; B) Allocator works, and invalidate the bucket k2 point to, and increase the gen of the bucket, and place it into free_inc fifo; C) Until now, the 30s delay work still does not finish work, so in the disk, the key still is k1, it is dirty and stale (its gen is smaller than the gen of the bucket). and then the machine power off suddenly happens; D) When the machine power on again, after the btree reconstruction, the stale dirty key appear. In bch_extent_bad(), when expensive_debug_checks is off, it would treat the dirty key as good even it is stale keys, and it would cause bellow probelms: A) In read_dirty() it would cause machine crash: BUG_ON(ptr_stale(dc->disk.c, &w->key, 0)); B) It could be worse when reads hits stale dirty keys, it would read old incorrect data. This patch tolerate the existence of these stale && dirty keys, and treat them as bad key in bch_extent_bad(). (Coly Li: fix indent which was modified by sender's email client) Signed-off-by: Tang Junhui <tang.junhui.linux@gmail.com> Cc: stable@vger.kernel.org Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
631 lines
15 KiB
C
631 lines
15 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
|
|
*
|
|
* Uses a block device as cache for other block devices; optimized for SSDs.
|
|
* All allocation is done in buckets, which should match the erase block size
|
|
* of the device.
|
|
*
|
|
* Buckets containing cached data are kept on a heap sorted by priority;
|
|
* bucket priority is increased on cache hit, and periodically all the buckets
|
|
* on the heap have their priority scaled down. This currently is just used as
|
|
* an LRU but in the future should allow for more intelligent heuristics.
|
|
*
|
|
* Buckets have an 8 bit counter; freeing is accomplished by incrementing the
|
|
* counter. Garbage collection is used to remove stale pointers.
|
|
*
|
|
* Indexing is done via a btree; nodes are not necessarily fully sorted, rather
|
|
* as keys are inserted we only sort the pages that have not yet been written.
|
|
* When garbage collection is run, we resort the entire node.
|
|
*
|
|
* All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
|
|
*/
|
|
|
|
#include "bcache.h"
|
|
#include "btree.h"
|
|
#include "debug.h"
|
|
#include "extents.h"
|
|
#include "writeback.h"
|
|
|
|
static void sort_key_next(struct btree_iter *iter,
|
|
struct btree_iter_set *i)
|
|
{
|
|
i->k = bkey_next(i->k);
|
|
|
|
if (i->k == i->end)
|
|
*i = iter->data[--iter->used];
|
|
}
|
|
|
|
static bool bch_key_sort_cmp(struct btree_iter_set l,
|
|
struct btree_iter_set r)
|
|
{
|
|
int64_t c = bkey_cmp(l.k, r.k);
|
|
|
|
return c ? c > 0 : l.k < r.k;
|
|
}
|
|
|
|
static bool __ptr_invalid(struct cache_set *c, const struct bkey *k)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < KEY_PTRS(k); i++)
|
|
if (ptr_available(c, k, i)) {
|
|
struct cache *ca = PTR_CACHE(c, k, i);
|
|
size_t bucket = PTR_BUCKET_NR(c, k, i);
|
|
size_t r = bucket_remainder(c, PTR_OFFSET(k, i));
|
|
|
|
if (KEY_SIZE(k) + r > c->sb.bucket_size ||
|
|
bucket < ca->sb.first_bucket ||
|
|
bucket >= ca->sb.nbuckets)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Common among btree and extent ptrs */
|
|
|
|
static const char *bch_ptr_status(struct cache_set *c, const struct bkey *k)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < KEY_PTRS(k); i++)
|
|
if (ptr_available(c, k, i)) {
|
|
struct cache *ca = PTR_CACHE(c, k, i);
|
|
size_t bucket = PTR_BUCKET_NR(c, k, i);
|
|
size_t r = bucket_remainder(c, PTR_OFFSET(k, i));
|
|
|
|
if (KEY_SIZE(k) + r > c->sb.bucket_size)
|
|
return "bad, length too big";
|
|
if (bucket < ca->sb.first_bucket)
|
|
return "bad, short offset";
|
|
if (bucket >= ca->sb.nbuckets)
|
|
return "bad, offset past end of device";
|
|
if (ptr_stale(c, k, i))
|
|
return "stale";
|
|
}
|
|
|
|
if (!bkey_cmp(k, &ZERO_KEY))
|
|
return "bad, null key";
|
|
if (!KEY_PTRS(k))
|
|
return "bad, no pointers";
|
|
if (!KEY_SIZE(k))
|
|
return "zeroed key";
|
|
return "";
|
|
}
|
|
|
|
void bch_extent_to_text(char *buf, size_t size, const struct bkey *k)
|
|
{
|
|
unsigned int i = 0;
|
|
char *out = buf, *end = buf + size;
|
|
|
|
#define p(...) (out += scnprintf(out, end - out, __VA_ARGS__))
|
|
|
|
p("%llu:%llu len %llu -> [", KEY_INODE(k), KEY_START(k), KEY_SIZE(k));
|
|
|
|
for (i = 0; i < KEY_PTRS(k); i++) {
|
|
if (i)
|
|
p(", ");
|
|
|
|
if (PTR_DEV(k, i) == PTR_CHECK_DEV)
|
|
p("check dev");
|
|
else
|
|
p("%llu:%llu gen %llu", PTR_DEV(k, i),
|
|
PTR_OFFSET(k, i), PTR_GEN(k, i));
|
|
}
|
|
|
|
p("]");
|
|
|
|
if (KEY_DIRTY(k))
|
|
p(" dirty");
|
|
if (KEY_CSUM(k))
|
|
p(" cs%llu %llx", KEY_CSUM(k), k->ptr[1]);
|
|
#undef p
|
|
}
|
|
|
|
static void bch_bkey_dump(struct btree_keys *keys, const struct bkey *k)
|
|
{
|
|
struct btree *b = container_of(keys, struct btree, keys);
|
|
unsigned int j;
|
|
char buf[80];
|
|
|
|
bch_extent_to_text(buf, sizeof(buf), k);
|
|
pr_err(" %s", buf);
|
|
|
|
for (j = 0; j < KEY_PTRS(k); j++) {
|
|
size_t n = PTR_BUCKET_NR(b->c, k, j);
|
|
|
|
pr_err(" bucket %zu", n);
|
|
if (n >= b->c->sb.first_bucket && n < b->c->sb.nbuckets)
|
|
pr_err(" prio %i",
|
|
PTR_BUCKET(b->c, k, j)->prio);
|
|
}
|
|
|
|
pr_err(" %s\n", bch_ptr_status(b->c, k));
|
|
}
|
|
|
|
/* Btree ptrs */
|
|
|
|
bool __bch_btree_ptr_invalid(struct cache_set *c, const struct bkey *k)
|
|
{
|
|
char buf[80];
|
|
|
|
if (!KEY_PTRS(k) || !KEY_SIZE(k) || KEY_DIRTY(k))
|
|
goto bad;
|
|
|
|
if (__ptr_invalid(c, k))
|
|
goto bad;
|
|
|
|
return false;
|
|
bad:
|
|
bch_extent_to_text(buf, sizeof(buf), k);
|
|
cache_bug(c, "spotted btree ptr %s: %s", buf, bch_ptr_status(c, k));
|
|
return true;
|
|
}
|
|
|
|
static bool bch_btree_ptr_invalid(struct btree_keys *bk, const struct bkey *k)
|
|
{
|
|
struct btree *b = container_of(bk, struct btree, keys);
|
|
|
|
return __bch_btree_ptr_invalid(b->c, k);
|
|
}
|
|
|
|
static bool btree_ptr_bad_expensive(struct btree *b, const struct bkey *k)
|
|
{
|
|
unsigned int i;
|
|
char buf[80];
|
|
struct bucket *g;
|
|
|
|
if (mutex_trylock(&b->c->bucket_lock)) {
|
|
for (i = 0; i < KEY_PTRS(k); i++)
|
|
if (ptr_available(b->c, k, i)) {
|
|
g = PTR_BUCKET(b->c, k, i);
|
|
|
|
if (KEY_DIRTY(k) ||
|
|
g->prio != BTREE_PRIO ||
|
|
(b->c->gc_mark_valid &&
|
|
GC_MARK(g) != GC_MARK_METADATA))
|
|
goto err;
|
|
}
|
|
|
|
mutex_unlock(&b->c->bucket_lock);
|
|
}
|
|
|
|
return false;
|
|
err:
|
|
mutex_unlock(&b->c->bucket_lock);
|
|
bch_extent_to_text(buf, sizeof(buf), k);
|
|
btree_bug(b,
|
|
"inconsistent btree pointer %s: bucket %zi pin %i prio %i gen %i last_gc %i mark %llu",
|
|
buf, PTR_BUCKET_NR(b->c, k, i), atomic_read(&g->pin),
|
|
g->prio, g->gen, g->last_gc, GC_MARK(g));
|
|
return true;
|
|
}
|
|
|
|
static bool bch_btree_ptr_bad(struct btree_keys *bk, const struct bkey *k)
|
|
{
|
|
struct btree *b = container_of(bk, struct btree, keys);
|
|
unsigned int i;
|
|
|
|
if (!bkey_cmp(k, &ZERO_KEY) ||
|
|
!KEY_PTRS(k) ||
|
|
bch_ptr_invalid(bk, k))
|
|
return true;
|
|
|
|
for (i = 0; i < KEY_PTRS(k); i++)
|
|
if (!ptr_available(b->c, k, i) ||
|
|
ptr_stale(b->c, k, i))
|
|
return true;
|
|
|
|
if (expensive_debug_checks(b->c) &&
|
|
btree_ptr_bad_expensive(b, k))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool bch_btree_ptr_insert_fixup(struct btree_keys *bk,
|
|
struct bkey *insert,
|
|
struct btree_iter *iter,
|
|
struct bkey *replace_key)
|
|
{
|
|
struct btree *b = container_of(bk, struct btree, keys);
|
|
|
|
if (!KEY_OFFSET(insert))
|
|
btree_current_write(b)->prio_blocked++;
|
|
|
|
return false;
|
|
}
|
|
|
|
const struct btree_keys_ops bch_btree_keys_ops = {
|
|
.sort_cmp = bch_key_sort_cmp,
|
|
.insert_fixup = bch_btree_ptr_insert_fixup,
|
|
.key_invalid = bch_btree_ptr_invalid,
|
|
.key_bad = bch_btree_ptr_bad,
|
|
.key_to_text = bch_extent_to_text,
|
|
.key_dump = bch_bkey_dump,
|
|
};
|
|
|
|
/* Extents */
|
|
|
|
/*
|
|
* Returns true if l > r - unless l == r, in which case returns true if l is
|
|
* older than r.
|
|
*
|
|
* Necessary for btree_sort_fixup() - if there are multiple keys that compare
|
|
* equal in different sets, we have to process them newest to oldest.
|
|
*/
|
|
static bool bch_extent_sort_cmp(struct btree_iter_set l,
|
|
struct btree_iter_set r)
|
|
{
|
|
int64_t c = bkey_cmp(&START_KEY(l.k), &START_KEY(r.k));
|
|
|
|
return c ? c > 0 : l.k < r.k;
|
|
}
|
|
|
|
static struct bkey *bch_extent_sort_fixup(struct btree_iter *iter,
|
|
struct bkey *tmp)
|
|
{
|
|
while (iter->used > 1) {
|
|
struct btree_iter_set *top = iter->data, *i = top + 1;
|
|
|
|
if (iter->used > 2 &&
|
|
bch_extent_sort_cmp(i[0], i[1]))
|
|
i++;
|
|
|
|
if (bkey_cmp(top->k, &START_KEY(i->k)) <= 0)
|
|
break;
|
|
|
|
if (!KEY_SIZE(i->k)) {
|
|
sort_key_next(iter, i);
|
|
heap_sift(iter, i - top, bch_extent_sort_cmp);
|
|
continue;
|
|
}
|
|
|
|
if (top->k > i->k) {
|
|
if (bkey_cmp(top->k, i->k) >= 0)
|
|
sort_key_next(iter, i);
|
|
else
|
|
bch_cut_front(top->k, i->k);
|
|
|
|
heap_sift(iter, i - top, bch_extent_sort_cmp);
|
|
} else {
|
|
/* can't happen because of comparison func */
|
|
BUG_ON(!bkey_cmp(&START_KEY(top->k), &START_KEY(i->k)));
|
|
|
|
if (bkey_cmp(i->k, top->k) < 0) {
|
|
bkey_copy(tmp, top->k);
|
|
|
|
bch_cut_back(&START_KEY(i->k), tmp);
|
|
bch_cut_front(i->k, top->k);
|
|
heap_sift(iter, 0, bch_extent_sort_cmp);
|
|
|
|
return tmp;
|
|
} else {
|
|
bch_cut_back(&START_KEY(i->k), top->k);
|
|
}
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void bch_subtract_dirty(struct bkey *k,
|
|
struct cache_set *c,
|
|
uint64_t offset,
|
|
int sectors)
|
|
{
|
|
if (KEY_DIRTY(k))
|
|
bcache_dev_sectors_dirty_add(c, KEY_INODE(k),
|
|
offset, -sectors);
|
|
}
|
|
|
|
static bool bch_extent_insert_fixup(struct btree_keys *b,
|
|
struct bkey *insert,
|
|
struct btree_iter *iter,
|
|
struct bkey *replace_key)
|
|
{
|
|
struct cache_set *c = container_of(b, struct btree, keys)->c;
|
|
|
|
uint64_t old_offset;
|
|
unsigned int old_size, sectors_found = 0;
|
|
|
|
BUG_ON(!KEY_OFFSET(insert));
|
|
BUG_ON(!KEY_SIZE(insert));
|
|
|
|
while (1) {
|
|
struct bkey *k = bch_btree_iter_next(iter);
|
|
|
|
if (!k)
|
|
break;
|
|
|
|
if (bkey_cmp(&START_KEY(k), insert) >= 0) {
|
|
if (KEY_SIZE(k))
|
|
break;
|
|
else
|
|
continue;
|
|
}
|
|
|
|
if (bkey_cmp(k, &START_KEY(insert)) <= 0)
|
|
continue;
|
|
|
|
old_offset = KEY_START(k);
|
|
old_size = KEY_SIZE(k);
|
|
|
|
/*
|
|
* We might overlap with 0 size extents; we can't skip these
|
|
* because if they're in the set we're inserting to we have to
|
|
* adjust them so they don't overlap with the key we're
|
|
* inserting. But we don't want to check them for replace
|
|
* operations.
|
|
*/
|
|
|
|
if (replace_key && KEY_SIZE(k)) {
|
|
/*
|
|
* k might have been split since we inserted/found the
|
|
* key we're replacing
|
|
*/
|
|
unsigned int i;
|
|
uint64_t offset = KEY_START(k) -
|
|
KEY_START(replace_key);
|
|
|
|
/* But it must be a subset of the replace key */
|
|
if (KEY_START(k) < KEY_START(replace_key) ||
|
|
KEY_OFFSET(k) > KEY_OFFSET(replace_key))
|
|
goto check_failed;
|
|
|
|
/* We didn't find a key that we were supposed to */
|
|
if (KEY_START(k) > KEY_START(insert) + sectors_found)
|
|
goto check_failed;
|
|
|
|
if (!bch_bkey_equal_header(k, replace_key))
|
|
goto check_failed;
|
|
|
|
/* skip past gen */
|
|
offset <<= 8;
|
|
|
|
BUG_ON(!KEY_PTRS(replace_key));
|
|
|
|
for (i = 0; i < KEY_PTRS(replace_key); i++)
|
|
if (k->ptr[i] != replace_key->ptr[i] + offset)
|
|
goto check_failed;
|
|
|
|
sectors_found = KEY_OFFSET(k) - KEY_START(insert);
|
|
}
|
|
|
|
if (bkey_cmp(insert, k) < 0 &&
|
|
bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) {
|
|
/*
|
|
* We overlapped in the middle of an existing key: that
|
|
* means we have to split the old key. But we have to do
|
|
* slightly different things depending on whether the
|
|
* old key has been written out yet.
|
|
*/
|
|
|
|
struct bkey *top;
|
|
|
|
bch_subtract_dirty(k, c, KEY_START(insert),
|
|
KEY_SIZE(insert));
|
|
|
|
if (bkey_written(b, k)) {
|
|
/*
|
|
* We insert a new key to cover the top of the
|
|
* old key, and the old key is modified in place
|
|
* to represent the bottom split.
|
|
*
|
|
* It's completely arbitrary whether the new key
|
|
* is the top or the bottom, but it has to match
|
|
* up with what btree_sort_fixup() does - it
|
|
* doesn't check for this kind of overlap, it
|
|
* depends on us inserting a new key for the top
|
|
* here.
|
|
*/
|
|
top = bch_bset_search(b, bset_tree_last(b),
|
|
insert);
|
|
bch_bset_insert(b, top, k);
|
|
} else {
|
|
BKEY_PADDED(key) temp;
|
|
bkey_copy(&temp.key, k);
|
|
bch_bset_insert(b, k, &temp.key);
|
|
top = bkey_next(k);
|
|
}
|
|
|
|
bch_cut_front(insert, top);
|
|
bch_cut_back(&START_KEY(insert), k);
|
|
bch_bset_fix_invalidated_key(b, k);
|
|
goto out;
|
|
}
|
|
|
|
if (bkey_cmp(insert, k) < 0) {
|
|
bch_cut_front(insert, k);
|
|
} else {
|
|
if (bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0)
|
|
old_offset = KEY_START(insert);
|
|
|
|
if (bkey_written(b, k) &&
|
|
bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) {
|
|
/*
|
|
* Completely overwrote, so we don't have to
|
|
* invalidate the binary search tree
|
|
*/
|
|
bch_cut_front(k, k);
|
|
} else {
|
|
__bch_cut_back(&START_KEY(insert), k);
|
|
bch_bset_fix_invalidated_key(b, k);
|
|
}
|
|
}
|
|
|
|
bch_subtract_dirty(k, c, old_offset, old_size - KEY_SIZE(k));
|
|
}
|
|
|
|
check_failed:
|
|
if (replace_key) {
|
|
if (!sectors_found) {
|
|
return true;
|
|
} else if (sectors_found < KEY_SIZE(insert)) {
|
|
SET_KEY_OFFSET(insert, KEY_OFFSET(insert) -
|
|
(KEY_SIZE(insert) - sectors_found));
|
|
SET_KEY_SIZE(insert, sectors_found);
|
|
}
|
|
}
|
|
out:
|
|
if (KEY_DIRTY(insert))
|
|
bcache_dev_sectors_dirty_add(c, KEY_INODE(insert),
|
|
KEY_START(insert),
|
|
KEY_SIZE(insert));
|
|
|
|
return false;
|
|
}
|
|
|
|
bool __bch_extent_invalid(struct cache_set *c, const struct bkey *k)
|
|
{
|
|
char buf[80];
|
|
|
|
if (!KEY_SIZE(k))
|
|
return true;
|
|
|
|
if (KEY_SIZE(k) > KEY_OFFSET(k))
|
|
goto bad;
|
|
|
|
if (__ptr_invalid(c, k))
|
|
goto bad;
|
|
|
|
return false;
|
|
bad:
|
|
bch_extent_to_text(buf, sizeof(buf), k);
|
|
cache_bug(c, "spotted extent %s: %s", buf, bch_ptr_status(c, k));
|
|
return true;
|
|
}
|
|
|
|
static bool bch_extent_invalid(struct btree_keys *bk, const struct bkey *k)
|
|
{
|
|
struct btree *b = container_of(bk, struct btree, keys);
|
|
|
|
return __bch_extent_invalid(b->c, k);
|
|
}
|
|
|
|
static bool bch_extent_bad_expensive(struct btree *b, const struct bkey *k,
|
|
unsigned int ptr)
|
|
{
|
|
struct bucket *g = PTR_BUCKET(b->c, k, ptr);
|
|
char buf[80];
|
|
|
|
if (mutex_trylock(&b->c->bucket_lock)) {
|
|
if (b->c->gc_mark_valid &&
|
|
(!GC_MARK(g) ||
|
|
GC_MARK(g) == GC_MARK_METADATA ||
|
|
(GC_MARK(g) != GC_MARK_DIRTY && KEY_DIRTY(k))))
|
|
goto err;
|
|
|
|
if (g->prio == BTREE_PRIO)
|
|
goto err;
|
|
|
|
mutex_unlock(&b->c->bucket_lock);
|
|
}
|
|
|
|
return false;
|
|
err:
|
|
mutex_unlock(&b->c->bucket_lock);
|
|
bch_extent_to_text(buf, sizeof(buf), k);
|
|
btree_bug(b,
|
|
"inconsistent extent pointer %s:\nbucket %zu pin %i prio %i gen %i last_gc %i mark %llu",
|
|
buf, PTR_BUCKET_NR(b->c, k, ptr), atomic_read(&g->pin),
|
|
g->prio, g->gen, g->last_gc, GC_MARK(g));
|
|
return true;
|
|
}
|
|
|
|
static bool bch_extent_bad(struct btree_keys *bk, const struct bkey *k)
|
|
{
|
|
struct btree *b = container_of(bk, struct btree, keys);
|
|
unsigned int i, stale;
|
|
char buf[80];
|
|
|
|
if (!KEY_PTRS(k) ||
|
|
bch_extent_invalid(bk, k))
|
|
return true;
|
|
|
|
for (i = 0; i < KEY_PTRS(k); i++)
|
|
if (!ptr_available(b->c, k, i))
|
|
return true;
|
|
|
|
for (i = 0; i < KEY_PTRS(k); i++) {
|
|
stale = ptr_stale(b->c, k, i);
|
|
|
|
if (stale && KEY_DIRTY(k)) {
|
|
bch_extent_to_text(buf, sizeof(buf), k);
|
|
pr_info("stale dirty pointer, stale %u, key: %s",
|
|
stale, buf);
|
|
}
|
|
|
|
btree_bug_on(stale > BUCKET_GC_GEN_MAX, b,
|
|
"key too stale: %i, need_gc %u",
|
|
stale, b->c->need_gc);
|
|
|
|
if (stale)
|
|
return true;
|
|
|
|
if (expensive_debug_checks(b->c) &&
|
|
bch_extent_bad_expensive(b, k, i))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static uint64_t merge_chksums(struct bkey *l, struct bkey *r)
|
|
{
|
|
return (l->ptr[KEY_PTRS(l)] + r->ptr[KEY_PTRS(r)]) &
|
|
~((uint64_t)1 << 63);
|
|
}
|
|
|
|
static bool bch_extent_merge(struct btree_keys *bk,
|
|
struct bkey *l,
|
|
struct bkey *r)
|
|
{
|
|
struct btree *b = container_of(bk, struct btree, keys);
|
|
unsigned int i;
|
|
|
|
if (key_merging_disabled(b->c))
|
|
return false;
|
|
|
|
for (i = 0; i < KEY_PTRS(l); i++)
|
|
if (l->ptr[i] + MAKE_PTR(0, KEY_SIZE(l), 0) != r->ptr[i] ||
|
|
PTR_BUCKET_NR(b->c, l, i) != PTR_BUCKET_NR(b->c, r, i))
|
|
return false;
|
|
|
|
/* Keys with no pointers aren't restricted to one bucket and could
|
|
* overflow KEY_SIZE
|
|
*/
|
|
if (KEY_SIZE(l) + KEY_SIZE(r) > USHRT_MAX) {
|
|
SET_KEY_OFFSET(l, KEY_OFFSET(l) + USHRT_MAX - KEY_SIZE(l));
|
|
SET_KEY_SIZE(l, USHRT_MAX);
|
|
|
|
bch_cut_front(l, r);
|
|
return false;
|
|
}
|
|
|
|
if (KEY_CSUM(l)) {
|
|
if (KEY_CSUM(r))
|
|
l->ptr[KEY_PTRS(l)] = merge_chksums(l, r);
|
|
else
|
|
SET_KEY_CSUM(l, 0);
|
|
}
|
|
|
|
SET_KEY_OFFSET(l, KEY_OFFSET(l) + KEY_SIZE(r));
|
|
SET_KEY_SIZE(l, KEY_SIZE(l) + KEY_SIZE(r));
|
|
|
|
return true;
|
|
}
|
|
|
|
const struct btree_keys_ops bch_extent_keys_ops = {
|
|
.sort_cmp = bch_extent_sort_cmp,
|
|
.sort_fixup = bch_extent_sort_fixup,
|
|
.insert_fixup = bch_extent_insert_fixup,
|
|
.key_invalid = bch_extent_invalid,
|
|
.key_bad = bch_extent_bad,
|
|
.key_merge = bch_extent_merge,
|
|
.key_to_text = bch_extent_to_text,
|
|
.key_dump = bch_bkey_dump,
|
|
.is_extents = true,
|
|
};
|