mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-18 16:26:54 +07:00
a756cf5908
The maximum number of dirty pages that exist in the system at any time is determined by a number of pages considered dirtyable and a user-configured percentage of those, or an absolute number in bytes. This number of dirtyable pages is the sum of memory provided by all the zones in the system minus their lowmem reserves and high watermarks, so that the system can retain a healthy number of free pages without having to reclaim dirty pages. But there is a flaw in that we have a zoned page allocator which does not care about the global state but rather the state of individual memory zones. And right now there is nothing that prevents one zone from filling up with dirty pages while other zones are spared, which frequently leads to situations where kswapd, in order to restore the watermark of free pages, does indeed have to write pages from that zone's LRU list. This can interfere so badly with IO from the flusher threads that major filesystems (btrfs, xfs, ext4) mostly ignore write requests from reclaim already, taking away the VM's only possibility to keep such a zone balanced, aside from hoping the flushers will soon clean pages from that zone. Enter per-zone dirty limits. They are to a zone's dirtyable memory what the global limit is to the global amount of dirtyable memory, and try to make sure that no single zone receives more than its fair share of the globally allowed dirty pages in the first place. As the number of pages considered dirtyable excludes the zones' lowmem reserves and high watermarks, the maximum number of dirty pages in a zone is such that the zone can always be balanced without requiring page cleaning. As this is a placement decision in the page allocator and pages are dirtied only after the allocation, this patch allows allocators to pass __GFP_WRITE when they know in advance that the page will be written to and become dirty soon. The page allocator will then attempt to allocate from the first zone of the zonelist - which on NUMA is determined by the task's NUMA memory policy - that has not exceeded its dirty limit. At first glance, it would appear that the diversion to lower zones can increase pressure on them, but this is not the case. With a full high zone, allocations will be diverted to lower zones eventually, so it is more of a shift in timing of the lower zone allocations. Workloads that previously could fit their dirty pages completely in the higher zone may be forced to allocate from lower zones, but the amount of pages that "spill over" are limited themselves by the lower zones' dirty constraints, and thus unlikely to become a problem. For now, the problem of unfair dirty page distribution remains for NUMA configurations where the zones allowed for allocation are in sum not big enough to trigger the global dirty limits, wake up the flusher threads and remedy the situation. Because of this, an allocation that could not succeed on any of the considered zones is allowed to ignore the dirty limits before going into direct reclaim or even failing the allocation, until a future patch changes the global dirty throttling and flusher thread activation so that they take individual zone states into account. Test results 15M DMA + 3246M DMA32 + 504 Normal = 3765M memory 40% dirty ratio 16G USB thumb drive 10 runs of dd if=/dev/zero of=disk/zeroes bs=32k count=$((10 << 15)) seconds nr_vmscan_write (stddev) min| median| max xfs vanilla: 549.747( 3.492) 0.000| 0.000| 0.000 patched: 550.996( 3.802) 0.000| 0.000| 0.000 fuse-ntfs vanilla: 1183.094(53.178) 54349.000| 59341.000| 65163.000 patched: 558.049(17.914) 0.000| 0.000| 43.000 btrfs vanilla: 573.679(14.015) 156657.000| 460178.000| 606926.000 patched: 563.365(11.368) 0.000| 0.000| 1362.000 ext4 vanilla: 561.197(15.782) 0.000|2725438.000|4143837.000 patched: 568.806(17.496) 0.000| 0.000| 0.000 Signed-off-by: Johannes Weiner <jweiner@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Michal Hocko <mhocko@suse.cz> Tested-by: Wu Fengguang <fengguang.wu@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Jan Kara <jack@suse.cz> Cc: Shaohua Li <shaohua.li@intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Chris Mason <chris.mason@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
395 lines
14 KiB
C
395 lines
14 KiB
C
#ifndef __LINUX_GFP_H
|
|
#define __LINUX_GFP_H
|
|
|
|
#include <linux/mmzone.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/linkage.h>
|
|
#include <linux/topology.h>
|
|
#include <linux/mmdebug.h>
|
|
|
|
struct vm_area_struct;
|
|
|
|
/* Plain integer GFP bitmasks. Do not use this directly. */
|
|
#define ___GFP_DMA 0x01u
|
|
#define ___GFP_HIGHMEM 0x02u
|
|
#define ___GFP_DMA32 0x04u
|
|
#define ___GFP_MOVABLE 0x08u
|
|
#define ___GFP_WAIT 0x10u
|
|
#define ___GFP_HIGH 0x20u
|
|
#define ___GFP_IO 0x40u
|
|
#define ___GFP_FS 0x80u
|
|
#define ___GFP_COLD 0x100u
|
|
#define ___GFP_NOWARN 0x200u
|
|
#define ___GFP_REPEAT 0x400u
|
|
#define ___GFP_NOFAIL 0x800u
|
|
#define ___GFP_NORETRY 0x1000u
|
|
#define ___GFP_COMP 0x4000u
|
|
#define ___GFP_ZERO 0x8000u
|
|
#define ___GFP_NOMEMALLOC 0x10000u
|
|
#define ___GFP_HARDWALL 0x20000u
|
|
#define ___GFP_THISNODE 0x40000u
|
|
#define ___GFP_RECLAIMABLE 0x80000u
|
|
#ifdef CONFIG_KMEMCHECK
|
|
#define ___GFP_NOTRACK 0x200000u
|
|
#else
|
|
#define ___GFP_NOTRACK 0
|
|
#endif
|
|
#define ___GFP_NO_KSWAPD 0x400000u
|
|
#define ___GFP_OTHER_NODE 0x800000u
|
|
#define ___GFP_WRITE 0x1000000u
|
|
|
|
/*
|
|
* GFP bitmasks..
|
|
*
|
|
* Zone modifiers (see linux/mmzone.h - low three bits)
|
|
*
|
|
* Do not put any conditional on these. If necessary modify the definitions
|
|
* without the underscores and use them consistently. The definitions here may
|
|
* be used in bit comparisons.
|
|
*/
|
|
#define __GFP_DMA ((__force gfp_t)___GFP_DMA)
|
|
#define __GFP_HIGHMEM ((__force gfp_t)___GFP_HIGHMEM)
|
|
#define __GFP_DMA32 ((__force gfp_t)___GFP_DMA32)
|
|
#define __GFP_MOVABLE ((__force gfp_t)___GFP_MOVABLE) /* Page is movable */
|
|
#define GFP_ZONEMASK (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE)
|
|
/*
|
|
* Action modifiers - doesn't change the zoning
|
|
*
|
|
* __GFP_REPEAT: Try hard to allocate the memory, but the allocation attempt
|
|
* _might_ fail. This depends upon the particular VM implementation.
|
|
*
|
|
* __GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller
|
|
* cannot handle allocation failures. This modifier is deprecated and no new
|
|
* users should be added.
|
|
*
|
|
* __GFP_NORETRY: The VM implementation must not retry indefinitely.
|
|
*
|
|
* __GFP_MOVABLE: Flag that this page will be movable by the page migration
|
|
* mechanism or reclaimed
|
|
*/
|
|
#define __GFP_WAIT ((__force gfp_t)___GFP_WAIT) /* Can wait and reschedule? */
|
|
#define __GFP_HIGH ((__force gfp_t)___GFP_HIGH) /* Should access emergency pools? */
|
|
#define __GFP_IO ((__force gfp_t)___GFP_IO) /* Can start physical IO? */
|
|
#define __GFP_FS ((__force gfp_t)___GFP_FS) /* Can call down to low-level FS? */
|
|
#define __GFP_COLD ((__force gfp_t)___GFP_COLD) /* Cache-cold page required */
|
|
#define __GFP_NOWARN ((__force gfp_t)___GFP_NOWARN) /* Suppress page allocation failure warning */
|
|
#define __GFP_REPEAT ((__force gfp_t)___GFP_REPEAT) /* See above */
|
|
#define __GFP_NOFAIL ((__force gfp_t)___GFP_NOFAIL) /* See above */
|
|
#define __GFP_NORETRY ((__force gfp_t)___GFP_NORETRY) /* See above */
|
|
#define __GFP_COMP ((__force gfp_t)___GFP_COMP) /* Add compound page metadata */
|
|
#define __GFP_ZERO ((__force gfp_t)___GFP_ZERO) /* Return zeroed page on success */
|
|
#define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC) /* Don't use emergency reserves */
|
|
#define __GFP_HARDWALL ((__force gfp_t)___GFP_HARDWALL) /* Enforce hardwall cpuset memory allocs */
|
|
#define __GFP_THISNODE ((__force gfp_t)___GFP_THISNODE)/* No fallback, no policies */
|
|
#define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE) /* Page is reclaimable */
|
|
#define __GFP_NOTRACK ((__force gfp_t)___GFP_NOTRACK) /* Don't track with kmemcheck */
|
|
|
|
#define __GFP_NO_KSWAPD ((__force gfp_t)___GFP_NO_KSWAPD)
|
|
#define __GFP_OTHER_NODE ((__force gfp_t)___GFP_OTHER_NODE) /* On behalf of other node */
|
|
#define __GFP_WRITE ((__force gfp_t)___GFP_WRITE) /* Allocator intends to dirty page */
|
|
|
|
/*
|
|
* This may seem redundant, but it's a way of annotating false positives vs.
|
|
* allocations that simply cannot be supported (e.g. page tables).
|
|
*/
|
|
#define __GFP_NOTRACK_FALSE_POSITIVE (__GFP_NOTRACK)
|
|
|
|
#define __GFP_BITS_SHIFT 25 /* Room for N __GFP_FOO bits */
|
|
#define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1))
|
|
|
|
/* This equals 0, but use constants in case they ever change */
|
|
#define GFP_NOWAIT (GFP_ATOMIC & ~__GFP_HIGH)
|
|
/* GFP_ATOMIC means both !wait (__GFP_WAIT not set) and use emergency pool */
|
|
#define GFP_ATOMIC (__GFP_HIGH)
|
|
#define GFP_NOIO (__GFP_WAIT)
|
|
#define GFP_NOFS (__GFP_WAIT | __GFP_IO)
|
|
#define GFP_KERNEL (__GFP_WAIT | __GFP_IO | __GFP_FS)
|
|
#define GFP_TEMPORARY (__GFP_WAIT | __GFP_IO | __GFP_FS | \
|
|
__GFP_RECLAIMABLE)
|
|
#define GFP_USER (__GFP_WAIT | __GFP_IO | __GFP_FS | __GFP_HARDWALL)
|
|
#define GFP_HIGHUSER (__GFP_WAIT | __GFP_IO | __GFP_FS | __GFP_HARDWALL | \
|
|
__GFP_HIGHMEM)
|
|
#define GFP_HIGHUSER_MOVABLE (__GFP_WAIT | __GFP_IO | __GFP_FS | \
|
|
__GFP_HARDWALL | __GFP_HIGHMEM | \
|
|
__GFP_MOVABLE)
|
|
#define GFP_IOFS (__GFP_IO | __GFP_FS)
|
|
#define GFP_TRANSHUGE (GFP_HIGHUSER_MOVABLE | __GFP_COMP | \
|
|
__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | \
|
|
__GFP_NO_KSWAPD)
|
|
|
|
#ifdef CONFIG_NUMA
|
|
#define GFP_THISNODE (__GFP_THISNODE | __GFP_NOWARN | __GFP_NORETRY)
|
|
#else
|
|
#define GFP_THISNODE ((__force gfp_t)0)
|
|
#endif
|
|
|
|
/* This mask makes up all the page movable related flags */
|
|
#define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE)
|
|
|
|
/* Control page allocator reclaim behavior */
|
|
#define GFP_RECLAIM_MASK (__GFP_WAIT|__GFP_HIGH|__GFP_IO|__GFP_FS|\
|
|
__GFP_NOWARN|__GFP_REPEAT|__GFP_NOFAIL|\
|
|
__GFP_NORETRY|__GFP_NOMEMALLOC)
|
|
|
|
/* Control slab gfp mask during early boot */
|
|
#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_WAIT|__GFP_IO|__GFP_FS))
|
|
|
|
/* Control allocation constraints */
|
|
#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
|
|
|
|
/* Do not use these with a slab allocator */
|
|
#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
|
|
|
|
/* Flag - indicates that the buffer will be suitable for DMA. Ignored on some
|
|
platforms, used as appropriate on others */
|
|
|
|
#define GFP_DMA __GFP_DMA
|
|
|
|
/* 4GB DMA on some platforms */
|
|
#define GFP_DMA32 __GFP_DMA32
|
|
|
|
/* Convert GFP flags to their corresponding migrate type */
|
|
static inline int allocflags_to_migratetype(gfp_t gfp_flags)
|
|
{
|
|
WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
|
|
|
|
if (unlikely(page_group_by_mobility_disabled))
|
|
return MIGRATE_UNMOVABLE;
|
|
|
|
/* Group based on mobility */
|
|
return (((gfp_flags & __GFP_MOVABLE) != 0) << 1) |
|
|
((gfp_flags & __GFP_RECLAIMABLE) != 0);
|
|
}
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
#define OPT_ZONE_HIGHMEM ZONE_HIGHMEM
|
|
#else
|
|
#define OPT_ZONE_HIGHMEM ZONE_NORMAL
|
|
#endif
|
|
|
|
#ifdef CONFIG_ZONE_DMA
|
|
#define OPT_ZONE_DMA ZONE_DMA
|
|
#else
|
|
#define OPT_ZONE_DMA ZONE_NORMAL
|
|
#endif
|
|
|
|
#ifdef CONFIG_ZONE_DMA32
|
|
#define OPT_ZONE_DMA32 ZONE_DMA32
|
|
#else
|
|
#define OPT_ZONE_DMA32 ZONE_NORMAL
|
|
#endif
|
|
|
|
/*
|
|
* GFP_ZONE_TABLE is a word size bitstring that is used for looking up the
|
|
* zone to use given the lowest 4 bits of gfp_t. Entries are ZONE_SHIFT long
|
|
* and there are 16 of them to cover all possible combinations of
|
|
* __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM.
|
|
*
|
|
* The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA.
|
|
* But GFP_MOVABLE is not only a zone specifier but also an allocation
|
|
* policy. Therefore __GFP_MOVABLE plus another zone selector is valid.
|
|
* Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1".
|
|
*
|
|
* bit result
|
|
* =================
|
|
* 0x0 => NORMAL
|
|
* 0x1 => DMA or NORMAL
|
|
* 0x2 => HIGHMEM or NORMAL
|
|
* 0x3 => BAD (DMA+HIGHMEM)
|
|
* 0x4 => DMA32 or DMA or NORMAL
|
|
* 0x5 => BAD (DMA+DMA32)
|
|
* 0x6 => BAD (HIGHMEM+DMA32)
|
|
* 0x7 => BAD (HIGHMEM+DMA32+DMA)
|
|
* 0x8 => NORMAL (MOVABLE+0)
|
|
* 0x9 => DMA or NORMAL (MOVABLE+DMA)
|
|
* 0xa => MOVABLE (Movable is valid only if HIGHMEM is set too)
|
|
* 0xb => BAD (MOVABLE+HIGHMEM+DMA)
|
|
* 0xc => DMA32 (MOVABLE+HIGHMEM+DMA32)
|
|
* 0xd => BAD (MOVABLE+DMA32+DMA)
|
|
* 0xe => BAD (MOVABLE+DMA32+HIGHMEM)
|
|
* 0xf => BAD (MOVABLE+DMA32+HIGHMEM+DMA)
|
|
*
|
|
* ZONES_SHIFT must be <= 2 on 32 bit platforms.
|
|
*/
|
|
|
|
#if 16 * ZONES_SHIFT > BITS_PER_LONG
|
|
#error ZONES_SHIFT too large to create GFP_ZONE_TABLE integer
|
|
#endif
|
|
|
|
#define GFP_ZONE_TABLE ( \
|
|
(ZONE_NORMAL << 0 * ZONES_SHIFT) \
|
|
| (OPT_ZONE_DMA << ___GFP_DMA * ZONES_SHIFT) \
|
|
| (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * ZONES_SHIFT) \
|
|
| (OPT_ZONE_DMA32 << ___GFP_DMA32 * ZONES_SHIFT) \
|
|
| (ZONE_NORMAL << ___GFP_MOVABLE * ZONES_SHIFT) \
|
|
| (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * ZONES_SHIFT) \
|
|
| (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * ZONES_SHIFT) \
|
|
| (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * ZONES_SHIFT) \
|
|
)
|
|
|
|
/*
|
|
* GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32
|
|
* __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per
|
|
* entry starting with bit 0. Bit is set if the combination is not
|
|
* allowed.
|
|
*/
|
|
#define GFP_ZONE_BAD ( \
|
|
1 << (___GFP_DMA | ___GFP_HIGHMEM) \
|
|
| 1 << (___GFP_DMA | ___GFP_DMA32) \
|
|
| 1 << (___GFP_DMA32 | ___GFP_HIGHMEM) \
|
|
| 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM) \
|
|
| 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA) \
|
|
| 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA) \
|
|
| 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM) \
|
|
| 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM) \
|
|
)
|
|
|
|
static inline enum zone_type gfp_zone(gfp_t flags)
|
|
{
|
|
enum zone_type z;
|
|
int bit = (__force int) (flags & GFP_ZONEMASK);
|
|
|
|
z = (GFP_ZONE_TABLE >> (bit * ZONES_SHIFT)) &
|
|
((1 << ZONES_SHIFT) - 1);
|
|
VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1);
|
|
return z;
|
|
}
|
|
|
|
/*
|
|
* There is only one page-allocator function, and two main namespaces to
|
|
* it. The alloc_page*() variants return 'struct page *' and as such
|
|
* can allocate highmem pages, the *get*page*() variants return
|
|
* virtual kernel addresses to the allocated page(s).
|
|
*/
|
|
|
|
static inline int gfp_zonelist(gfp_t flags)
|
|
{
|
|
if (NUMA_BUILD && unlikely(flags & __GFP_THISNODE))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We get the zone list from the current node and the gfp_mask.
|
|
* This zone list contains a maximum of MAXNODES*MAX_NR_ZONES zones.
|
|
* There are two zonelists per node, one for all zones with memory and
|
|
* one containing just zones from the node the zonelist belongs to.
|
|
*
|
|
* For the normal case of non-DISCONTIGMEM systems the NODE_DATA() gets
|
|
* optimized to &contig_page_data at compile-time.
|
|
*/
|
|
static inline struct zonelist *node_zonelist(int nid, gfp_t flags)
|
|
{
|
|
return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags);
|
|
}
|
|
|
|
#ifndef HAVE_ARCH_FREE_PAGE
|
|
static inline void arch_free_page(struct page *page, int order) { }
|
|
#endif
|
|
#ifndef HAVE_ARCH_ALLOC_PAGE
|
|
static inline void arch_alloc_page(struct page *page, int order) { }
|
|
#endif
|
|
|
|
struct page *
|
|
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
|
|
struct zonelist *zonelist, nodemask_t *nodemask);
|
|
|
|
static inline struct page *
|
|
__alloc_pages(gfp_t gfp_mask, unsigned int order,
|
|
struct zonelist *zonelist)
|
|
{
|
|
return __alloc_pages_nodemask(gfp_mask, order, zonelist, NULL);
|
|
}
|
|
|
|
static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask,
|
|
unsigned int order)
|
|
{
|
|
/* Unknown node is current node */
|
|
if (nid < 0)
|
|
nid = numa_node_id();
|
|
|
|
return __alloc_pages(gfp_mask, order, node_zonelist(nid, gfp_mask));
|
|
}
|
|
|
|
static inline struct page *alloc_pages_exact_node(int nid, gfp_t gfp_mask,
|
|
unsigned int order)
|
|
{
|
|
VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES || !node_online(nid));
|
|
|
|
return __alloc_pages(gfp_mask, order, node_zonelist(nid, gfp_mask));
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
extern struct page *alloc_pages_current(gfp_t gfp_mask, unsigned order);
|
|
|
|
static inline struct page *
|
|
alloc_pages(gfp_t gfp_mask, unsigned int order)
|
|
{
|
|
return alloc_pages_current(gfp_mask, order);
|
|
}
|
|
extern struct page *alloc_pages_vma(gfp_t gfp_mask, int order,
|
|
struct vm_area_struct *vma, unsigned long addr,
|
|
int node);
|
|
#else
|
|
#define alloc_pages(gfp_mask, order) \
|
|
alloc_pages_node(numa_node_id(), gfp_mask, order)
|
|
#define alloc_pages_vma(gfp_mask, order, vma, addr, node) \
|
|
alloc_pages(gfp_mask, order)
|
|
#endif
|
|
#define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)
|
|
#define alloc_page_vma(gfp_mask, vma, addr) \
|
|
alloc_pages_vma(gfp_mask, 0, vma, addr, numa_node_id())
|
|
#define alloc_page_vma_node(gfp_mask, vma, addr, node) \
|
|
alloc_pages_vma(gfp_mask, 0, vma, addr, node)
|
|
|
|
extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order);
|
|
extern unsigned long get_zeroed_page(gfp_t gfp_mask);
|
|
|
|
void *alloc_pages_exact(size_t size, gfp_t gfp_mask);
|
|
void free_pages_exact(void *virt, size_t size);
|
|
/* This is different from alloc_pages_exact_node !!! */
|
|
void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask);
|
|
|
|
#define __get_free_page(gfp_mask) \
|
|
__get_free_pages((gfp_mask), 0)
|
|
|
|
#define __get_dma_pages(gfp_mask, order) \
|
|
__get_free_pages((gfp_mask) | GFP_DMA, (order))
|
|
|
|
extern void __free_pages(struct page *page, unsigned int order);
|
|
extern void free_pages(unsigned long addr, unsigned int order);
|
|
extern void free_hot_cold_page(struct page *page, int cold);
|
|
extern void free_hot_cold_page_list(struct list_head *list, int cold);
|
|
|
|
#define __free_page(page) __free_pages((page), 0)
|
|
#define free_page(addr) free_pages((addr), 0)
|
|
|
|
void page_alloc_init(void);
|
|
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp);
|
|
void drain_all_pages(void);
|
|
void drain_local_pages(void *dummy);
|
|
|
|
/*
|
|
* gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what
|
|
* GFP flags are used before interrupts are enabled. Once interrupts are
|
|
* enabled, it is set to __GFP_BITS_MASK while the system is running. During
|
|
* hibernation, it is used by PM to avoid I/O during memory allocation while
|
|
* devices are suspended.
|
|
*/
|
|
extern gfp_t gfp_allowed_mask;
|
|
|
|
extern void pm_restrict_gfp_mask(void);
|
|
extern void pm_restore_gfp_mask(void);
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
extern bool pm_suspended_storage(void);
|
|
#else
|
|
static inline bool pm_suspended_storage(void)
|
|
{
|
|
return false;
|
|
}
|
|
#endif /* CONFIG_PM_SLEEP */
|
|
|
|
#endif /* __LINUX_GFP_H */
|