mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-23 01:39:34 +07:00
96d4f267e4
Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument of the user address range verification function since we got rid of the old racy i386-only code to walk page tables by hand. It existed because the original 80386 would not honor the write protect bit when in kernel mode, so you had to do COW by hand before doing any user access. But we haven't supported that in a long time, and these days the 'type' argument is a purely historical artifact. A discussion about extending 'user_access_begin()' to do the range checking resulted this patch, because there is no way we're going to move the old VERIFY_xyz interface to that model. And it's best done at the end of the merge window when I've done most of my merges, so let's just get this done once and for all. This patch was mostly done with a sed-script, with manual fix-ups for the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form. There were a couple of notable cases: - csky still had the old "verify_area()" name as an alias. - the iter_iov code had magical hardcoded knowledge of the actual values of VERIFY_{READ,WRITE} (not that they mattered, since nothing really used it) - microblaze used the type argument for a debug printout but other than those oddities this should be a total no-op patch. I tried to fix up all architectures, did fairly extensive grepping for access_ok() uses, and the changes are trivial, but I may have missed something. Any missed conversion should be trivially fixable, though. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
609 lines
15 KiB
C
609 lines
15 KiB
C
/*
|
|
* Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
* Communication to userspace based on kernel/printk.c
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/init.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/topology.h>
|
|
|
|
#include <linux/uaccess.h>
|
|
#include <asm/io.h>
|
|
#include <asm/rtas.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/nvram.h>
|
|
#include <linux/atomic.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/topology.h>
|
|
|
|
|
|
static DEFINE_SPINLOCK(rtasd_log_lock);
|
|
|
|
static DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait);
|
|
|
|
static char *rtas_log_buf;
|
|
static unsigned long rtas_log_start;
|
|
static unsigned long rtas_log_size;
|
|
|
|
static int surveillance_timeout = -1;
|
|
|
|
static unsigned int rtas_error_log_max;
|
|
static unsigned int rtas_error_log_buffer_max;
|
|
|
|
/* RTAS service tokens */
|
|
static unsigned int event_scan;
|
|
static unsigned int rtas_event_scan_rate;
|
|
|
|
static bool full_rtas_msgs;
|
|
|
|
/* Stop logging to nvram after first fatal error */
|
|
static int logging_enabled; /* Until we initialize everything,
|
|
* make sure we don't try logging
|
|
* anything */
|
|
static int error_log_cnt;
|
|
|
|
/*
|
|
* Since we use 32 bit RTAS, the physical address of this must be below
|
|
* 4G or else bad things happen. Allocate this in the kernel data and
|
|
* make it big enough.
|
|
*/
|
|
static unsigned char logdata[RTAS_ERROR_LOG_MAX];
|
|
|
|
static char *rtas_type[] = {
|
|
"Unknown", "Retry", "TCE Error", "Internal Device Failure",
|
|
"Timeout", "Data Parity", "Address Parity", "Cache Parity",
|
|
"Address Invalid", "ECC Uncorrected", "ECC Corrupted",
|
|
};
|
|
|
|
static char *rtas_event_type(int type)
|
|
{
|
|
if ((type > 0) && (type < 11))
|
|
return rtas_type[type];
|
|
|
|
switch (type) {
|
|
case RTAS_TYPE_EPOW:
|
|
return "EPOW";
|
|
case RTAS_TYPE_PLATFORM:
|
|
return "Platform Error";
|
|
case RTAS_TYPE_IO:
|
|
return "I/O Event";
|
|
case RTAS_TYPE_INFO:
|
|
return "Platform Information Event";
|
|
case RTAS_TYPE_DEALLOC:
|
|
return "Resource Deallocation Event";
|
|
case RTAS_TYPE_DUMP:
|
|
return "Dump Notification Event";
|
|
case RTAS_TYPE_PRRN:
|
|
return "Platform Resource Reassignment Event";
|
|
case RTAS_TYPE_HOTPLUG:
|
|
return "Hotplug Event";
|
|
}
|
|
|
|
return rtas_type[0];
|
|
}
|
|
|
|
/* To see this info, grep RTAS /var/log/messages and each entry
|
|
* will be collected together with obvious begin/end.
|
|
* There will be a unique identifier on the begin and end lines.
|
|
* This will persist across reboots.
|
|
*
|
|
* format of error logs returned from RTAS:
|
|
* bytes (size) : contents
|
|
* --------------------------------------------------------
|
|
* 0-7 (8) : rtas_error_log
|
|
* 8-47 (40) : extended info
|
|
* 48-51 (4) : vendor id
|
|
* 52-1023 (vendor specific) : location code and debug data
|
|
*/
|
|
static void printk_log_rtas(char *buf, int len)
|
|
{
|
|
|
|
int i,j,n = 0;
|
|
int perline = 16;
|
|
char buffer[64];
|
|
char * str = "RTAS event";
|
|
|
|
if (full_rtas_msgs) {
|
|
printk(RTAS_DEBUG "%d -------- %s begin --------\n",
|
|
error_log_cnt, str);
|
|
|
|
/*
|
|
* Print perline bytes on each line, each line will start
|
|
* with RTAS and a changing number, so syslogd will
|
|
* print lines that are otherwise the same. Separate every
|
|
* 4 bytes with a space.
|
|
*/
|
|
for (i = 0; i < len; i++) {
|
|
j = i % perline;
|
|
if (j == 0) {
|
|
memset(buffer, 0, sizeof(buffer));
|
|
n = sprintf(buffer, "RTAS %d:", i/perline);
|
|
}
|
|
|
|
if ((i % 4) == 0)
|
|
n += sprintf(buffer+n, " ");
|
|
|
|
n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]);
|
|
|
|
if (j == (perline-1))
|
|
printk(KERN_DEBUG "%s\n", buffer);
|
|
}
|
|
if ((i % perline) != 0)
|
|
printk(KERN_DEBUG "%s\n", buffer);
|
|
|
|
printk(RTAS_DEBUG "%d -------- %s end ----------\n",
|
|
error_log_cnt, str);
|
|
} else {
|
|
struct rtas_error_log *errlog = (struct rtas_error_log *)buf;
|
|
|
|
printk(RTAS_DEBUG "event: %d, Type: %s (%d), Severity: %d\n",
|
|
error_log_cnt,
|
|
rtas_event_type(rtas_error_type(errlog)),
|
|
rtas_error_type(errlog),
|
|
rtas_error_severity(errlog));
|
|
}
|
|
}
|
|
|
|
static int log_rtas_len(char * buf)
|
|
{
|
|
int len;
|
|
struct rtas_error_log *err;
|
|
uint32_t extended_log_length;
|
|
|
|
/* rtas fixed header */
|
|
len = 8;
|
|
err = (struct rtas_error_log *)buf;
|
|
extended_log_length = rtas_error_extended_log_length(err);
|
|
if (rtas_error_extended(err) && extended_log_length) {
|
|
|
|
/* extended header */
|
|
len += extended_log_length;
|
|
}
|
|
|
|
if (rtas_error_log_max == 0)
|
|
rtas_error_log_max = rtas_get_error_log_max();
|
|
|
|
if (len > rtas_error_log_max)
|
|
len = rtas_error_log_max;
|
|
|
|
return len;
|
|
}
|
|
|
|
/*
|
|
* First write to nvram, if fatal error, that is the only
|
|
* place we log the info. The error will be picked up
|
|
* on the next reboot by rtasd. If not fatal, run the
|
|
* method for the type of error. Currently, only RTAS
|
|
* errors have methods implemented, but in the future
|
|
* there might be a need to store data in nvram before a
|
|
* call to panic().
|
|
*
|
|
* XXX We write to nvram periodically, to indicate error has
|
|
* been written and sync'd, but there is a possibility
|
|
* that if we don't shutdown correctly, a duplicate error
|
|
* record will be created on next reboot.
|
|
*/
|
|
void pSeries_log_error(char *buf, unsigned int err_type, int fatal)
|
|
{
|
|
unsigned long offset;
|
|
unsigned long s;
|
|
int len = 0;
|
|
|
|
pr_debug("rtasd: logging event\n");
|
|
if (buf == NULL)
|
|
return;
|
|
|
|
spin_lock_irqsave(&rtasd_log_lock, s);
|
|
|
|
/* get length and increase count */
|
|
switch (err_type & ERR_TYPE_MASK) {
|
|
case ERR_TYPE_RTAS_LOG:
|
|
len = log_rtas_len(buf);
|
|
if (!(err_type & ERR_FLAG_BOOT))
|
|
error_log_cnt++;
|
|
break;
|
|
case ERR_TYPE_KERNEL_PANIC:
|
|
default:
|
|
WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
|
|
spin_unlock_irqrestore(&rtasd_log_lock, s);
|
|
return;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC64
|
|
/* Write error to NVRAM */
|
|
if (logging_enabled && !(err_type & ERR_FLAG_BOOT))
|
|
nvram_write_error_log(buf, len, err_type, error_log_cnt);
|
|
#endif /* CONFIG_PPC64 */
|
|
|
|
/*
|
|
* rtas errors can occur during boot, and we do want to capture
|
|
* those somewhere, even if nvram isn't ready (why not?), and even
|
|
* if rtasd isn't ready. Put them into the boot log, at least.
|
|
*/
|
|
if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG)
|
|
printk_log_rtas(buf, len);
|
|
|
|
/* Check to see if we need to or have stopped logging */
|
|
if (fatal || !logging_enabled) {
|
|
logging_enabled = 0;
|
|
WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
|
|
spin_unlock_irqrestore(&rtasd_log_lock, s);
|
|
return;
|
|
}
|
|
|
|
/* call type specific method for error */
|
|
switch (err_type & ERR_TYPE_MASK) {
|
|
case ERR_TYPE_RTAS_LOG:
|
|
offset = rtas_error_log_buffer_max *
|
|
((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK);
|
|
|
|
/* First copy over sequence number */
|
|
memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int));
|
|
|
|
/* Second copy over error log data */
|
|
offset += sizeof(int);
|
|
memcpy(&rtas_log_buf[offset], buf, len);
|
|
|
|
if (rtas_log_size < LOG_NUMBER)
|
|
rtas_log_size += 1;
|
|
else
|
|
rtas_log_start += 1;
|
|
|
|
WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
|
|
spin_unlock_irqrestore(&rtasd_log_lock, s);
|
|
wake_up_interruptible(&rtas_log_wait);
|
|
break;
|
|
case ERR_TYPE_KERNEL_PANIC:
|
|
default:
|
|
WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
|
|
spin_unlock_irqrestore(&rtasd_log_lock, s);
|
|
return;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_PSERIES
|
|
static void handle_prrn_event(s32 scope)
|
|
{
|
|
/*
|
|
* For PRRN, we must pass the negative of the scope value in
|
|
* the RTAS event.
|
|
*/
|
|
pseries_devicetree_update(-scope);
|
|
numa_update_cpu_topology(false);
|
|
}
|
|
|
|
static void handle_rtas_event(const struct rtas_error_log *log)
|
|
{
|
|
if (rtas_error_type(log) != RTAS_TYPE_PRRN || !prrn_is_enabled())
|
|
return;
|
|
|
|
/* For PRRN Events the extended log length is used to denote
|
|
* the scope for calling rtas update-nodes.
|
|
*/
|
|
handle_prrn_event(rtas_error_extended_log_length(log));
|
|
}
|
|
|
|
#else
|
|
|
|
static void handle_rtas_event(const struct rtas_error_log *log)
|
|
{
|
|
return;
|
|
}
|
|
|
|
#endif
|
|
|
|
static int rtas_log_open(struct inode * inode, struct file * file)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int rtas_log_release(struct inode * inode, struct file * file)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/* This will check if all events are logged, if they are then, we
|
|
* know that we can safely clear the events in NVRAM.
|
|
* Next we'll sit and wait for something else to log.
|
|
*/
|
|
static ssize_t rtas_log_read(struct file * file, char __user * buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
int error;
|
|
char *tmp;
|
|
unsigned long s;
|
|
unsigned long offset;
|
|
|
|
if (!buf || count < rtas_error_log_buffer_max)
|
|
return -EINVAL;
|
|
|
|
count = rtas_error_log_buffer_max;
|
|
|
|
if (!access_ok(buf, count))
|
|
return -EFAULT;
|
|
|
|
tmp = kmalloc(count, GFP_KERNEL);
|
|
if (!tmp)
|
|
return -ENOMEM;
|
|
|
|
spin_lock_irqsave(&rtasd_log_lock, s);
|
|
|
|
/* if it's 0, then we know we got the last one (the one in NVRAM) */
|
|
while (rtas_log_size == 0) {
|
|
if (file->f_flags & O_NONBLOCK) {
|
|
spin_unlock_irqrestore(&rtasd_log_lock, s);
|
|
error = -EAGAIN;
|
|
goto out;
|
|
}
|
|
|
|
if (!logging_enabled) {
|
|
spin_unlock_irqrestore(&rtasd_log_lock, s);
|
|
error = -ENODATA;
|
|
goto out;
|
|
}
|
|
#ifdef CONFIG_PPC64
|
|
nvram_clear_error_log();
|
|
#endif /* CONFIG_PPC64 */
|
|
|
|
spin_unlock_irqrestore(&rtasd_log_lock, s);
|
|
error = wait_event_interruptible(rtas_log_wait, rtas_log_size);
|
|
if (error)
|
|
goto out;
|
|
spin_lock_irqsave(&rtasd_log_lock, s);
|
|
}
|
|
|
|
offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK);
|
|
memcpy(tmp, &rtas_log_buf[offset], count);
|
|
|
|
rtas_log_start += 1;
|
|
rtas_log_size -= 1;
|
|
spin_unlock_irqrestore(&rtasd_log_lock, s);
|
|
|
|
error = copy_to_user(buf, tmp, count) ? -EFAULT : count;
|
|
out:
|
|
kfree(tmp);
|
|
return error;
|
|
}
|
|
|
|
static __poll_t rtas_log_poll(struct file *file, poll_table * wait)
|
|
{
|
|
poll_wait(file, &rtas_log_wait, wait);
|
|
if (rtas_log_size)
|
|
return EPOLLIN | EPOLLRDNORM;
|
|
return 0;
|
|
}
|
|
|
|
static const struct file_operations proc_rtas_log_operations = {
|
|
.read = rtas_log_read,
|
|
.poll = rtas_log_poll,
|
|
.open = rtas_log_open,
|
|
.release = rtas_log_release,
|
|
.llseek = noop_llseek,
|
|
};
|
|
|
|
static int enable_surveillance(int timeout)
|
|
{
|
|
int error;
|
|
|
|
error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout);
|
|
|
|
if (error == 0)
|
|
return 0;
|
|
|
|
if (error == -EINVAL) {
|
|
printk(KERN_DEBUG "rtasd: surveillance not supported\n");
|
|
return 0;
|
|
}
|
|
|
|
printk(KERN_ERR "rtasd: could not update surveillance\n");
|
|
return -1;
|
|
}
|
|
|
|
static void do_event_scan(void)
|
|
{
|
|
int error;
|
|
do {
|
|
memset(logdata, 0, rtas_error_log_max);
|
|
error = rtas_call(event_scan, 4, 1, NULL,
|
|
RTAS_EVENT_SCAN_ALL_EVENTS, 0,
|
|
__pa(logdata), rtas_error_log_max);
|
|
if (error == -1) {
|
|
printk(KERN_ERR "event-scan failed\n");
|
|
break;
|
|
}
|
|
|
|
if (error == 0) {
|
|
if (rtas_error_type((struct rtas_error_log *)logdata) !=
|
|
RTAS_TYPE_PRRN)
|
|
pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG,
|
|
0);
|
|
handle_rtas_event((struct rtas_error_log *)logdata);
|
|
}
|
|
|
|
} while(error == 0);
|
|
}
|
|
|
|
static void rtas_event_scan(struct work_struct *w);
|
|
static DECLARE_DELAYED_WORK(event_scan_work, rtas_event_scan);
|
|
|
|
/*
|
|
* Delay should be at least one second since some machines have problems if
|
|
* we call event-scan too quickly.
|
|
*/
|
|
static unsigned long event_scan_delay = 1*HZ;
|
|
static int first_pass = 1;
|
|
|
|
static void rtas_event_scan(struct work_struct *w)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
do_event_scan();
|
|
|
|
get_online_cpus();
|
|
|
|
/* raw_ OK because just using CPU as starting point. */
|
|
cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
|
|
if (cpu >= nr_cpu_ids) {
|
|
cpu = cpumask_first(cpu_online_mask);
|
|
|
|
if (first_pass) {
|
|
first_pass = 0;
|
|
event_scan_delay = 30*HZ/rtas_event_scan_rate;
|
|
|
|
if (surveillance_timeout != -1) {
|
|
pr_debug("rtasd: enabling surveillance\n");
|
|
enable_surveillance(surveillance_timeout);
|
|
pr_debug("rtasd: surveillance enabled\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
schedule_delayed_work_on(cpu, &event_scan_work,
|
|
__round_jiffies_relative(event_scan_delay, cpu));
|
|
|
|
put_online_cpus();
|
|
}
|
|
|
|
#ifdef CONFIG_PPC64
|
|
static void retrieve_nvram_error_log(void)
|
|
{
|
|
unsigned int err_type ;
|
|
int rc ;
|
|
|
|
/* See if we have any error stored in NVRAM */
|
|
memset(logdata, 0, rtas_error_log_max);
|
|
rc = nvram_read_error_log(logdata, rtas_error_log_max,
|
|
&err_type, &error_log_cnt);
|
|
/* We can use rtas_log_buf now */
|
|
logging_enabled = 1;
|
|
if (!rc) {
|
|
if (err_type != ERR_FLAG_ALREADY_LOGGED) {
|
|
pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0);
|
|
}
|
|
}
|
|
}
|
|
#else /* CONFIG_PPC64 */
|
|
static void retrieve_nvram_error_log(void)
|
|
{
|
|
}
|
|
#endif /* CONFIG_PPC64 */
|
|
|
|
static void start_event_scan(void)
|
|
{
|
|
printk(KERN_DEBUG "RTAS daemon started\n");
|
|
pr_debug("rtasd: will sleep for %d milliseconds\n",
|
|
(30000 / rtas_event_scan_rate));
|
|
|
|
/* Retrieve errors from nvram if any */
|
|
retrieve_nvram_error_log();
|
|
|
|
schedule_delayed_work_on(cpumask_first(cpu_online_mask),
|
|
&event_scan_work, event_scan_delay);
|
|
}
|
|
|
|
/* Cancel the rtas event scan work */
|
|
void rtas_cancel_event_scan(void)
|
|
{
|
|
cancel_delayed_work_sync(&event_scan_work);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtas_cancel_event_scan);
|
|
|
|
static int __init rtas_event_scan_init(void)
|
|
{
|
|
if (!machine_is(pseries) && !machine_is(chrp))
|
|
return 0;
|
|
|
|
/* No RTAS */
|
|
event_scan = rtas_token("event-scan");
|
|
if (event_scan == RTAS_UNKNOWN_SERVICE) {
|
|
printk(KERN_INFO "rtasd: No event-scan on system\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
rtas_event_scan_rate = rtas_token("rtas-event-scan-rate");
|
|
if (rtas_event_scan_rate == RTAS_UNKNOWN_SERVICE) {
|
|
printk(KERN_ERR "rtasd: no rtas-event-scan-rate on system\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (!rtas_event_scan_rate) {
|
|
/* Broken firmware: take a rate of zero to mean don't scan */
|
|
printk(KERN_DEBUG "rtasd: scan rate is 0, not scanning\n");
|
|
return 0;
|
|
}
|
|
|
|
/* Make room for the sequence number */
|
|
rtas_error_log_max = rtas_get_error_log_max();
|
|
rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int);
|
|
|
|
rtas_log_buf = vmalloc(array_size(LOG_NUMBER,
|
|
rtas_error_log_buffer_max));
|
|
if (!rtas_log_buf) {
|
|
printk(KERN_ERR "rtasd: no memory\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
start_event_scan();
|
|
|
|
return 0;
|
|
}
|
|
arch_initcall(rtas_event_scan_init);
|
|
|
|
static int __init rtas_init(void)
|
|
{
|
|
struct proc_dir_entry *entry;
|
|
|
|
if (!machine_is(pseries) && !machine_is(chrp))
|
|
return 0;
|
|
|
|
if (!rtas_log_buf)
|
|
return -ENODEV;
|
|
|
|
entry = proc_create("powerpc/rtas/error_log", 0400, NULL,
|
|
&proc_rtas_log_operations);
|
|
if (!entry)
|
|
printk(KERN_ERR "Failed to create error_log proc entry\n");
|
|
|
|
return 0;
|
|
}
|
|
__initcall(rtas_init);
|
|
|
|
static int __init surveillance_setup(char *str)
|
|
{
|
|
int i;
|
|
|
|
/* We only do surveillance on pseries */
|
|
if (!machine_is(pseries))
|
|
return 0;
|
|
|
|
if (get_option(&str,&i)) {
|
|
if (i >= 0 && i <= 255)
|
|
surveillance_timeout = i;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
__setup("surveillance=", surveillance_setup);
|
|
|
|
static int __init rtasmsgs_setup(char *str)
|
|
{
|
|
return (kstrtobool(str, &full_rtas_msgs) == 0);
|
|
}
|
|
__setup("rtasmsgs=", rtasmsgs_setup);
|