mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-25 12:12:35 +07:00
59438b4647
Implement a SELinux hook for lockdown. If the lockdown module is also enabled, then a denial by the lockdown module will take precedence over SELinux, so SELinux can only further restrict lockdown decisions. The SELinux hook only distinguishes at the granularity of integrity versus confidentiality similar to the lockdown module, but includes the full lockdown reason as part of the audit record as a hint in diagnosing what triggered the denial. To support this auditing, move the lockdown_reasons[] string array from being private to the lockdown module to the security framework so that it can be used by the lsm audit code and so that it is always available even when the lockdown module is disabled. Note that the SELinux implementation allows the integrity and confidentiality reasons to be controlled independently from one another. Thus, in an SELinux policy, one could allow operations that specify an integrity reason while blocking operations that specify a confidentiality reason. The SELinux hook implementation is stricter than the lockdown module in validating the provided reason value. Sample AVC audit output from denials: avc: denied { integrity } for pid=3402 comm="fwupd" lockdown_reason="/dev/mem,kmem,port" scontext=system_u:system_r:fwupd_t:s0 tcontext=system_u:system_r:fwupd_t:s0 tclass=lockdown permissive=0 avc: denied { confidentiality } for pid=4628 comm="cp" lockdown_reason="/proc/kcore access" scontext=unconfined_u:unconfined_r:test_lockdown_integrity_t:s0-s0:c0.c1023 tcontext=unconfined_u:unconfined_r:test_lockdown_integrity_t:s0-s0:c0.c1023 tclass=lockdown permissive=0 Signed-off-by: Stephen Smalley <sds@tycho.nsa.gov> Reviewed-by: James Morris <jamorris@linux.microsoft.com> [PM: some merge fuzz do the the perf hooks] Signed-off-by: Paul Moore <paul@paul-moore.com>
470 lines
11 KiB
C
470 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* common LSM auditing functions
|
|
*
|
|
* Based on code written for SELinux by :
|
|
* Stephen Smalley, <sds@tycho.nsa.gov>
|
|
* James Morris <jmorris@redhat.com>
|
|
* Author : Etienne Basset, <etienne.basset@ensta.org>
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/init.h>
|
|
#include <net/sock.h>
|
|
#include <linux/un.h>
|
|
#include <net/af_unix.h>
|
|
#include <linux/audit.h>
|
|
#include <linux/ipv6.h>
|
|
#include <linux/ip.h>
|
|
#include <net/ip.h>
|
|
#include <net/ipv6.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/udp.h>
|
|
#include <linux/dccp.h>
|
|
#include <linux/sctp.h>
|
|
#include <linux/lsm_audit.h>
|
|
#include <linux/security.h>
|
|
|
|
/**
|
|
* ipv4_skb_to_auditdata : fill auditdata from skb
|
|
* @skb : the skb
|
|
* @ad : the audit data to fill
|
|
* @proto : the layer 4 protocol
|
|
*
|
|
* return 0 on success
|
|
*/
|
|
int ipv4_skb_to_auditdata(struct sk_buff *skb,
|
|
struct common_audit_data *ad, u8 *proto)
|
|
{
|
|
int ret = 0;
|
|
struct iphdr *ih;
|
|
|
|
ih = ip_hdr(skb);
|
|
if (ih == NULL)
|
|
return -EINVAL;
|
|
|
|
ad->u.net->v4info.saddr = ih->saddr;
|
|
ad->u.net->v4info.daddr = ih->daddr;
|
|
|
|
if (proto)
|
|
*proto = ih->protocol;
|
|
/* non initial fragment */
|
|
if (ntohs(ih->frag_off) & IP_OFFSET)
|
|
return 0;
|
|
|
|
switch (ih->protocol) {
|
|
case IPPROTO_TCP: {
|
|
struct tcphdr *th = tcp_hdr(skb);
|
|
if (th == NULL)
|
|
break;
|
|
|
|
ad->u.net->sport = th->source;
|
|
ad->u.net->dport = th->dest;
|
|
break;
|
|
}
|
|
case IPPROTO_UDP: {
|
|
struct udphdr *uh = udp_hdr(skb);
|
|
if (uh == NULL)
|
|
break;
|
|
|
|
ad->u.net->sport = uh->source;
|
|
ad->u.net->dport = uh->dest;
|
|
break;
|
|
}
|
|
case IPPROTO_DCCP: {
|
|
struct dccp_hdr *dh = dccp_hdr(skb);
|
|
if (dh == NULL)
|
|
break;
|
|
|
|
ad->u.net->sport = dh->dccph_sport;
|
|
ad->u.net->dport = dh->dccph_dport;
|
|
break;
|
|
}
|
|
case IPPROTO_SCTP: {
|
|
struct sctphdr *sh = sctp_hdr(skb);
|
|
if (sh == NULL)
|
|
break;
|
|
ad->u.net->sport = sh->source;
|
|
ad->u.net->dport = sh->dest;
|
|
break;
|
|
}
|
|
default:
|
|
ret = -EINVAL;
|
|
}
|
|
return ret;
|
|
}
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
/**
|
|
* ipv6_skb_to_auditdata : fill auditdata from skb
|
|
* @skb : the skb
|
|
* @ad : the audit data to fill
|
|
* @proto : the layer 4 protocol
|
|
*
|
|
* return 0 on success
|
|
*/
|
|
int ipv6_skb_to_auditdata(struct sk_buff *skb,
|
|
struct common_audit_data *ad, u8 *proto)
|
|
{
|
|
int offset, ret = 0;
|
|
struct ipv6hdr *ip6;
|
|
u8 nexthdr;
|
|
__be16 frag_off;
|
|
|
|
ip6 = ipv6_hdr(skb);
|
|
if (ip6 == NULL)
|
|
return -EINVAL;
|
|
ad->u.net->v6info.saddr = ip6->saddr;
|
|
ad->u.net->v6info.daddr = ip6->daddr;
|
|
ret = 0;
|
|
/* IPv6 can have several extension header before the Transport header
|
|
* skip them */
|
|
offset = skb_network_offset(skb);
|
|
offset += sizeof(*ip6);
|
|
nexthdr = ip6->nexthdr;
|
|
offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
|
|
if (offset < 0)
|
|
return 0;
|
|
if (proto)
|
|
*proto = nexthdr;
|
|
switch (nexthdr) {
|
|
case IPPROTO_TCP: {
|
|
struct tcphdr _tcph, *th;
|
|
|
|
th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
|
|
if (th == NULL)
|
|
break;
|
|
|
|
ad->u.net->sport = th->source;
|
|
ad->u.net->dport = th->dest;
|
|
break;
|
|
}
|
|
case IPPROTO_UDP: {
|
|
struct udphdr _udph, *uh;
|
|
|
|
uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
|
|
if (uh == NULL)
|
|
break;
|
|
|
|
ad->u.net->sport = uh->source;
|
|
ad->u.net->dport = uh->dest;
|
|
break;
|
|
}
|
|
case IPPROTO_DCCP: {
|
|
struct dccp_hdr _dccph, *dh;
|
|
|
|
dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
|
|
if (dh == NULL)
|
|
break;
|
|
|
|
ad->u.net->sport = dh->dccph_sport;
|
|
ad->u.net->dport = dh->dccph_dport;
|
|
break;
|
|
}
|
|
case IPPROTO_SCTP: {
|
|
struct sctphdr _sctph, *sh;
|
|
|
|
sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
|
|
if (sh == NULL)
|
|
break;
|
|
ad->u.net->sport = sh->source;
|
|
ad->u.net->dport = sh->dest;
|
|
break;
|
|
}
|
|
default:
|
|
ret = -EINVAL;
|
|
}
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
|
|
static inline void print_ipv6_addr(struct audit_buffer *ab,
|
|
struct in6_addr *addr, __be16 port,
|
|
char *name1, char *name2)
|
|
{
|
|
if (!ipv6_addr_any(addr))
|
|
audit_log_format(ab, " %s=%pI6c", name1, addr);
|
|
if (port)
|
|
audit_log_format(ab, " %s=%d", name2, ntohs(port));
|
|
}
|
|
|
|
static inline void print_ipv4_addr(struct audit_buffer *ab, __be32 addr,
|
|
__be16 port, char *name1, char *name2)
|
|
{
|
|
if (addr)
|
|
audit_log_format(ab, " %s=%pI4", name1, &addr);
|
|
if (port)
|
|
audit_log_format(ab, " %s=%d", name2, ntohs(port));
|
|
}
|
|
|
|
/**
|
|
* dump_common_audit_data - helper to dump common audit data
|
|
* @a : common audit data
|
|
*
|
|
*/
|
|
static void dump_common_audit_data(struct audit_buffer *ab,
|
|
struct common_audit_data *a)
|
|
{
|
|
char comm[sizeof(current->comm)];
|
|
|
|
/*
|
|
* To keep stack sizes in check force programers to notice if they
|
|
* start making this union too large! See struct lsm_network_audit
|
|
* as an example of how to deal with large data.
|
|
*/
|
|
BUILD_BUG_ON(sizeof(a->u) > sizeof(void *)*2);
|
|
|
|
audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
|
|
audit_log_untrustedstring(ab, memcpy(comm, current->comm, sizeof(comm)));
|
|
|
|
switch (a->type) {
|
|
case LSM_AUDIT_DATA_NONE:
|
|
return;
|
|
case LSM_AUDIT_DATA_IPC:
|
|
audit_log_format(ab, " key=%d ", a->u.ipc_id);
|
|
break;
|
|
case LSM_AUDIT_DATA_CAP:
|
|
audit_log_format(ab, " capability=%d ", a->u.cap);
|
|
break;
|
|
case LSM_AUDIT_DATA_PATH: {
|
|
struct inode *inode;
|
|
|
|
audit_log_d_path(ab, " path=", &a->u.path);
|
|
|
|
inode = d_backing_inode(a->u.path.dentry);
|
|
if (inode) {
|
|
audit_log_format(ab, " dev=");
|
|
audit_log_untrustedstring(ab, inode->i_sb->s_id);
|
|
audit_log_format(ab, " ino=%lu", inode->i_ino);
|
|
}
|
|
break;
|
|
}
|
|
case LSM_AUDIT_DATA_FILE: {
|
|
struct inode *inode;
|
|
|
|
audit_log_d_path(ab, " path=", &a->u.file->f_path);
|
|
|
|
inode = file_inode(a->u.file);
|
|
if (inode) {
|
|
audit_log_format(ab, " dev=");
|
|
audit_log_untrustedstring(ab, inode->i_sb->s_id);
|
|
audit_log_format(ab, " ino=%lu", inode->i_ino);
|
|
}
|
|
break;
|
|
}
|
|
case LSM_AUDIT_DATA_IOCTL_OP: {
|
|
struct inode *inode;
|
|
|
|
audit_log_d_path(ab, " path=", &a->u.op->path);
|
|
|
|
inode = a->u.op->path.dentry->d_inode;
|
|
if (inode) {
|
|
audit_log_format(ab, " dev=");
|
|
audit_log_untrustedstring(ab, inode->i_sb->s_id);
|
|
audit_log_format(ab, " ino=%lu", inode->i_ino);
|
|
}
|
|
|
|
audit_log_format(ab, " ioctlcmd=0x%hx", a->u.op->cmd);
|
|
break;
|
|
}
|
|
case LSM_AUDIT_DATA_DENTRY: {
|
|
struct inode *inode;
|
|
|
|
audit_log_format(ab, " name=");
|
|
audit_log_untrustedstring(ab, a->u.dentry->d_name.name);
|
|
|
|
inode = d_backing_inode(a->u.dentry);
|
|
if (inode) {
|
|
audit_log_format(ab, " dev=");
|
|
audit_log_untrustedstring(ab, inode->i_sb->s_id);
|
|
audit_log_format(ab, " ino=%lu", inode->i_ino);
|
|
}
|
|
break;
|
|
}
|
|
case LSM_AUDIT_DATA_INODE: {
|
|
struct dentry *dentry;
|
|
struct inode *inode;
|
|
|
|
inode = a->u.inode;
|
|
dentry = d_find_alias(inode);
|
|
if (dentry) {
|
|
audit_log_format(ab, " name=");
|
|
audit_log_untrustedstring(ab,
|
|
dentry->d_name.name);
|
|
dput(dentry);
|
|
}
|
|
audit_log_format(ab, " dev=");
|
|
audit_log_untrustedstring(ab, inode->i_sb->s_id);
|
|
audit_log_format(ab, " ino=%lu", inode->i_ino);
|
|
break;
|
|
}
|
|
case LSM_AUDIT_DATA_TASK: {
|
|
struct task_struct *tsk = a->u.tsk;
|
|
if (tsk) {
|
|
pid_t pid = task_tgid_nr(tsk);
|
|
if (pid) {
|
|
char comm[sizeof(tsk->comm)];
|
|
audit_log_format(ab, " opid=%d ocomm=", pid);
|
|
audit_log_untrustedstring(ab,
|
|
memcpy(comm, tsk->comm, sizeof(comm)));
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case LSM_AUDIT_DATA_NET:
|
|
if (a->u.net->sk) {
|
|
struct sock *sk = a->u.net->sk;
|
|
struct unix_sock *u;
|
|
struct unix_address *addr;
|
|
int len = 0;
|
|
char *p = NULL;
|
|
|
|
switch (sk->sk_family) {
|
|
case AF_INET: {
|
|
struct inet_sock *inet = inet_sk(sk);
|
|
|
|
print_ipv4_addr(ab, inet->inet_rcv_saddr,
|
|
inet->inet_sport,
|
|
"laddr", "lport");
|
|
print_ipv4_addr(ab, inet->inet_daddr,
|
|
inet->inet_dport,
|
|
"faddr", "fport");
|
|
break;
|
|
}
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
case AF_INET6: {
|
|
struct inet_sock *inet = inet_sk(sk);
|
|
|
|
print_ipv6_addr(ab, &sk->sk_v6_rcv_saddr,
|
|
inet->inet_sport,
|
|
"laddr", "lport");
|
|
print_ipv6_addr(ab, &sk->sk_v6_daddr,
|
|
inet->inet_dport,
|
|
"faddr", "fport");
|
|
break;
|
|
}
|
|
#endif
|
|
case AF_UNIX:
|
|
u = unix_sk(sk);
|
|
addr = smp_load_acquire(&u->addr);
|
|
if (!addr)
|
|
break;
|
|
if (u->path.dentry) {
|
|
audit_log_d_path(ab, " path=", &u->path);
|
|
break;
|
|
}
|
|
len = addr->len-sizeof(short);
|
|
p = &addr->name->sun_path[0];
|
|
audit_log_format(ab, " path=");
|
|
if (*p)
|
|
audit_log_untrustedstring(ab, p);
|
|
else
|
|
audit_log_n_hex(ab, p, len);
|
|
break;
|
|
}
|
|
}
|
|
|
|
switch (a->u.net->family) {
|
|
case AF_INET:
|
|
print_ipv4_addr(ab, a->u.net->v4info.saddr,
|
|
a->u.net->sport,
|
|
"saddr", "src");
|
|
print_ipv4_addr(ab, a->u.net->v4info.daddr,
|
|
a->u.net->dport,
|
|
"daddr", "dest");
|
|
break;
|
|
case AF_INET6:
|
|
print_ipv6_addr(ab, &a->u.net->v6info.saddr,
|
|
a->u.net->sport,
|
|
"saddr", "src");
|
|
print_ipv6_addr(ab, &a->u.net->v6info.daddr,
|
|
a->u.net->dport,
|
|
"daddr", "dest");
|
|
break;
|
|
}
|
|
if (a->u.net->netif > 0) {
|
|
struct net_device *dev;
|
|
|
|
/* NOTE: we always use init's namespace */
|
|
dev = dev_get_by_index(&init_net, a->u.net->netif);
|
|
if (dev) {
|
|
audit_log_format(ab, " netif=%s", dev->name);
|
|
dev_put(dev);
|
|
}
|
|
}
|
|
break;
|
|
#ifdef CONFIG_KEYS
|
|
case LSM_AUDIT_DATA_KEY:
|
|
audit_log_format(ab, " key_serial=%u", a->u.key_struct.key);
|
|
if (a->u.key_struct.key_desc) {
|
|
audit_log_format(ab, " key_desc=");
|
|
audit_log_untrustedstring(ab, a->u.key_struct.key_desc);
|
|
}
|
|
break;
|
|
#endif
|
|
case LSM_AUDIT_DATA_KMOD:
|
|
audit_log_format(ab, " kmod=");
|
|
audit_log_untrustedstring(ab, a->u.kmod_name);
|
|
break;
|
|
case LSM_AUDIT_DATA_IBPKEY: {
|
|
struct in6_addr sbn_pfx;
|
|
|
|
memset(&sbn_pfx.s6_addr, 0,
|
|
sizeof(sbn_pfx.s6_addr));
|
|
memcpy(&sbn_pfx.s6_addr, &a->u.ibpkey->subnet_prefix,
|
|
sizeof(a->u.ibpkey->subnet_prefix));
|
|
audit_log_format(ab, " pkey=0x%x subnet_prefix=%pI6c",
|
|
a->u.ibpkey->pkey, &sbn_pfx);
|
|
break;
|
|
}
|
|
case LSM_AUDIT_DATA_IBENDPORT:
|
|
audit_log_format(ab, " device=%s port_num=%u",
|
|
a->u.ibendport->dev_name,
|
|
a->u.ibendport->port);
|
|
break;
|
|
case LSM_AUDIT_DATA_LOCKDOWN:
|
|
audit_log_format(ab, " lockdown_reason=");
|
|
audit_log_string(ab, lockdown_reasons[a->u.reason]);
|
|
break;
|
|
} /* switch (a->type) */
|
|
}
|
|
|
|
/**
|
|
* common_lsm_audit - generic LSM auditing function
|
|
* @a: auxiliary audit data
|
|
* @pre_audit: lsm-specific pre-audit callback
|
|
* @post_audit: lsm-specific post-audit callback
|
|
*
|
|
* setup the audit buffer for common security information
|
|
* uses callback to print LSM specific information
|
|
*/
|
|
void common_lsm_audit(struct common_audit_data *a,
|
|
void (*pre_audit)(struct audit_buffer *, void *),
|
|
void (*post_audit)(struct audit_buffer *, void *))
|
|
{
|
|
struct audit_buffer *ab;
|
|
|
|
if (a == NULL)
|
|
return;
|
|
/* we use GFP_ATOMIC so we won't sleep */
|
|
ab = audit_log_start(audit_context(), GFP_ATOMIC | __GFP_NOWARN,
|
|
AUDIT_AVC);
|
|
|
|
if (ab == NULL)
|
|
return;
|
|
|
|
if (pre_audit)
|
|
pre_audit(ab, a);
|
|
|
|
dump_common_audit_data(ab, a);
|
|
|
|
if (post_audit)
|
|
post_audit(ab, a);
|
|
|
|
audit_log_end(ab);
|
|
}
|