linux_dsm_epyc7002/drivers/usb/gadget/s3c-hsotg.c
Julia Lawall dfdda5a0fa drivers/usb/gadget/s3c-hsotg.c: fix error return code
Convert a 0 error return code to a negative one, as returned elsewhere in the
function.

A simplified version of the semantic match that finds this problem is as
follows: (http://coccinelle.lip6.fr/)

// <smpl>
@@
identifier ret;
expression e,e1,e2,e3,e4,x;
@@

(
if (\(ret != 0\|ret < 0\) || ...) { ... return ...; }
|
ret = 0
)
... when != ret = e1
*x = \(kmalloc\|kzalloc\|kcalloc\|devm_kzalloc\|ioremap\|ioremap_nocache\|devm_ioremap\|devm_ioremap_nocache\)(...);
... when != x = e2
    when != ret = e3
*if (x == NULL || ...)
{
  ... when != ret = e4
*  return ret;
}
// </smpl>

Signed-off-by: Julia Lawall <Julia.Lawall@lip6.fr>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-08-15 15:17:41 -07:00

3724 lines
93 KiB
C

/**
* linux/drivers/usb/gadget/s3c-hsotg.c
*
* Copyright (c) 2011 Samsung Electronics Co., Ltd.
* http://www.samsung.com
*
* Copyright 2008 Openmoko, Inc.
* Copyright 2008 Simtec Electronics
* Ben Dooks <ben@simtec.co.uk>
* http://armlinux.simtec.co.uk/
*
* S3C USB2.0 High-speed / OtG driver
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/regulator/consumer.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <linux/platform_data/s3c-hsotg.h>
#include <mach/map.h>
#include "s3c-hsotg.h"
#define DMA_ADDR_INVALID (~((dma_addr_t)0))
static const char * const s3c_hsotg_supply_names[] = {
"vusb_d", /* digital USB supply, 1.2V */
"vusb_a", /* analog USB supply, 1.1V */
};
/*
* EP0_MPS_LIMIT
*
* Unfortunately there seems to be a limit of the amount of data that can
* be transferred by IN transactions on EP0. This is either 127 bytes or 3
* packets (which practically means 1 packet and 63 bytes of data) when the
* MPS is set to 64.
*
* This means if we are wanting to move >127 bytes of data, we need to
* split the transactions up, but just doing one packet at a time does
* not work (this may be an implicit DATA0 PID on first packet of the
* transaction) and doing 2 packets is outside the controller's limits.
*
* If we try to lower the MPS size for EP0, then no transfers work properly
* for EP0, and the system will fail basic enumeration. As no cause for this
* has currently been found, we cannot support any large IN transfers for
* EP0.
*/
#define EP0_MPS_LIMIT 64
struct s3c_hsotg;
struct s3c_hsotg_req;
/**
* struct s3c_hsotg_ep - driver endpoint definition.
* @ep: The gadget layer representation of the endpoint.
* @name: The driver generated name for the endpoint.
* @queue: Queue of requests for this endpoint.
* @parent: Reference back to the parent device structure.
* @req: The current request that the endpoint is processing. This is
* used to indicate an request has been loaded onto the endpoint
* and has yet to be completed (maybe due to data move, or simply
* awaiting an ack from the core all the data has been completed).
* @debugfs: File entry for debugfs file for this endpoint.
* @lock: State lock to protect contents of endpoint.
* @dir_in: Set to true if this endpoint is of the IN direction, which
* means that it is sending data to the Host.
* @index: The index for the endpoint registers.
* @name: The name array passed to the USB core.
* @halted: Set if the endpoint has been halted.
* @periodic: Set if this is a periodic ep, such as Interrupt
* @sent_zlp: Set if we've sent a zero-length packet.
* @total_data: The total number of data bytes done.
* @fifo_size: The size of the FIFO (for periodic IN endpoints)
* @fifo_load: The amount of data loaded into the FIFO (periodic IN)
* @last_load: The offset of data for the last start of request.
* @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
*
* This is the driver's state for each registered enpoint, allowing it
* to keep track of transactions that need doing. Each endpoint has a
* lock to protect the state, to try and avoid using an overall lock
* for the host controller as much as possible.
*
* For periodic IN endpoints, we have fifo_size and fifo_load to try
* and keep track of the amount of data in the periodic FIFO for each
* of these as we don't have a status register that tells us how much
* is in each of them. (note, this may actually be useless information
* as in shared-fifo mode periodic in acts like a single-frame packet
* buffer than a fifo)
*/
struct s3c_hsotg_ep {
struct usb_ep ep;
struct list_head queue;
struct s3c_hsotg *parent;
struct s3c_hsotg_req *req;
struct dentry *debugfs;
unsigned long total_data;
unsigned int size_loaded;
unsigned int last_load;
unsigned int fifo_load;
unsigned short fifo_size;
unsigned char dir_in;
unsigned char index;
unsigned int halted:1;
unsigned int periodic:1;
unsigned int sent_zlp:1;
char name[10];
};
/**
* struct s3c_hsotg - driver state.
* @dev: The parent device supplied to the probe function
* @driver: USB gadget driver
* @plat: The platform specific configuration data.
* @regs: The memory area mapped for accessing registers.
* @irq: The IRQ number we are using
* @supplies: Definition of USB power supplies
* @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
* @num_of_eps: Number of available EPs (excluding EP0)
* @debug_root: root directrory for debugfs.
* @debug_file: main status file for debugfs.
* @debug_fifo: FIFO status file for debugfs.
* @ep0_reply: Request used for ep0 reply.
* @ep0_buff: Buffer for EP0 reply data, if needed.
* @ctrl_buff: Buffer for EP0 control requests.
* @ctrl_req: Request for EP0 control packets.
* @setup: NAK management for EP0 SETUP
* @last_rst: Time of last reset
* @eps: The endpoints being supplied to the gadget framework
*/
struct s3c_hsotg {
struct device *dev;
struct usb_gadget_driver *driver;
struct s3c_hsotg_plat *plat;
spinlock_t lock;
void __iomem *regs;
int irq;
struct clk *clk;
struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsotg_supply_names)];
unsigned int dedicated_fifos:1;
unsigned char num_of_eps;
struct dentry *debug_root;
struct dentry *debug_file;
struct dentry *debug_fifo;
struct usb_request *ep0_reply;
struct usb_request *ctrl_req;
u8 ep0_buff[8];
u8 ctrl_buff[8];
struct usb_gadget gadget;
unsigned int setup;
unsigned long last_rst;
struct s3c_hsotg_ep *eps;
};
/**
* struct s3c_hsotg_req - data transfer request
* @req: The USB gadget request
* @queue: The list of requests for the endpoint this is queued for.
* @in_progress: Has already had size/packets written to core
* @mapped: DMA buffer for this request has been mapped via dma_map_single().
*/
struct s3c_hsotg_req {
struct usb_request req;
struct list_head queue;
unsigned char in_progress;
unsigned char mapped;
};
/* conversion functions */
static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
{
return container_of(req, struct s3c_hsotg_req, req);
}
static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
{
return container_of(ep, struct s3c_hsotg_ep, ep);
}
static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
{
return container_of(gadget, struct s3c_hsotg, gadget);
}
static inline void __orr32(void __iomem *ptr, u32 val)
{
writel(readl(ptr) | val, ptr);
}
static inline void __bic32(void __iomem *ptr, u32 val)
{
writel(readl(ptr) & ~val, ptr);
}
/* forward decleration of functions */
static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
/**
* using_dma - return the DMA status of the driver.
* @hsotg: The driver state.
*
* Return true if we're using DMA.
*
* Currently, we have the DMA support code worked into everywhere
* that needs it, but the AMBA DMA implementation in the hardware can
* only DMA from 32bit aligned addresses. This means that gadgets such
* as the CDC Ethernet cannot work as they often pass packets which are
* not 32bit aligned.
*
* Unfortunately the choice to use DMA or not is global to the controller
* and seems to be only settable when the controller is being put through
* a core reset. This means we either need to fix the gadgets to take
* account of DMA alignment, or add bounce buffers (yuerk).
*
* Until this issue is sorted out, we always return 'false'.
*/
static inline bool using_dma(struct s3c_hsotg *hsotg)
{
return false; /* support is not complete */
}
/**
* s3c_hsotg_en_gsint - enable one or more of the general interrupt
* @hsotg: The device state
* @ints: A bitmask of the interrupts to enable
*/
static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
{
u32 gsintmsk = readl(hsotg->regs + GINTMSK);
u32 new_gsintmsk;
new_gsintmsk = gsintmsk | ints;
if (new_gsintmsk != gsintmsk) {
dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
writel(new_gsintmsk, hsotg->regs + GINTMSK);
}
}
/**
* s3c_hsotg_disable_gsint - disable one or more of the general interrupt
* @hsotg: The device state
* @ints: A bitmask of the interrupts to enable
*/
static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
{
u32 gsintmsk = readl(hsotg->regs + GINTMSK);
u32 new_gsintmsk;
new_gsintmsk = gsintmsk & ~ints;
if (new_gsintmsk != gsintmsk)
writel(new_gsintmsk, hsotg->regs + GINTMSK);
}
/**
* s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
* @hsotg: The device state
* @ep: The endpoint index
* @dir_in: True if direction is in.
* @en: The enable value, true to enable
*
* Set or clear the mask for an individual endpoint's interrupt
* request.
*/
static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
unsigned int ep, unsigned int dir_in,
unsigned int en)
{
unsigned long flags;
u32 bit = 1 << ep;
u32 daint;
if (!dir_in)
bit <<= 16;
local_irq_save(flags);
daint = readl(hsotg->regs + DAINTMSK);
if (en)
daint |= bit;
else
daint &= ~bit;
writel(daint, hsotg->regs + DAINTMSK);
local_irq_restore(flags);
}
/**
* s3c_hsotg_init_fifo - initialise non-periodic FIFOs
* @hsotg: The device instance.
*/
static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
{
unsigned int ep;
unsigned int addr;
unsigned int size;
int timeout;
u32 val;
/* set FIFO sizes to 2048/1024 */
writel(2048, hsotg->regs + GRXFSIZ);
writel(GNPTXFSIZ_NPTxFStAddr(2048) |
GNPTXFSIZ_NPTxFDep(1024),
hsotg->regs + GNPTXFSIZ);
/*
* arange all the rest of the TX FIFOs, as some versions of this
* block have overlapping default addresses. This also ensures
* that if the settings have been changed, then they are set to
* known values.
*/
/* start at the end of the GNPTXFSIZ, rounded up */
addr = 2048 + 1024;
size = 768;
/*
* currently we allocate TX FIFOs for all possible endpoints,
* and assume that they are all the same size.
*/
for (ep = 1; ep <= 15; ep++) {
val = addr;
val |= size << DPTXFSIZn_DPTxFSize_SHIFT;
addr += size;
writel(val, hsotg->regs + DPTXFSIZn(ep));
}
/*
* according to p428 of the design guide, we need to ensure that
* all fifos are flushed before continuing
*/
writel(GRSTCTL_TxFNum(0x10) | GRSTCTL_TxFFlsh |
GRSTCTL_RxFFlsh, hsotg->regs + GRSTCTL);
/* wait until the fifos are both flushed */
timeout = 100;
while (1) {
val = readl(hsotg->regs + GRSTCTL);
if ((val & (GRSTCTL_TxFFlsh | GRSTCTL_RxFFlsh)) == 0)
break;
if (--timeout == 0) {
dev_err(hsotg->dev,
"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
__func__, val);
}
udelay(1);
}
dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
}
/**
* @ep: USB endpoint to allocate request for.
* @flags: Allocation flags
*
* Allocate a new USB request structure appropriate for the specified endpoint
*/
static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
gfp_t flags)
{
struct s3c_hsotg_req *req;
req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
if (!req)
return NULL;
INIT_LIST_HEAD(&req->queue);
req->req.dma = DMA_ADDR_INVALID;
return &req->req;
}
/**
* is_ep_periodic - return true if the endpoint is in periodic mode.
* @hs_ep: The endpoint to query.
*
* Returns true if the endpoint is in periodic mode, meaning it is being
* used for an Interrupt or ISO transfer.
*/
static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
{
return hs_ep->periodic;
}
/**
* s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
* @hsotg: The device state.
* @hs_ep: The endpoint for the request
* @hs_req: The request being processed.
*
* This is the reverse of s3c_hsotg_map_dma(), called for the completion
* of a request to ensure the buffer is ready for access by the caller.
*/
static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *hs_ep,
struct s3c_hsotg_req *hs_req)
{
struct usb_request *req = &hs_req->req;
enum dma_data_direction dir;
dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
/* ignore this if we're not moving any data */
if (hs_req->req.length == 0)
return;
if (hs_req->mapped) {
/* we mapped this, so unmap and remove the dma */
dma_unmap_single(hsotg->dev, req->dma, req->length, dir);
req->dma = DMA_ADDR_INVALID;
hs_req->mapped = 0;
} else {
dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
}
}
/**
* s3c_hsotg_write_fifo - write packet Data to the TxFIFO
* @hsotg: The controller state.
* @hs_ep: The endpoint we're going to write for.
* @hs_req: The request to write data for.
*
* This is called when the TxFIFO has some space in it to hold a new
* transmission and we have something to give it. The actual setup of
* the data size is done elsewhere, so all we have to do is to actually
* write the data.
*
* The return value is zero if there is more space (or nothing was done)
* otherwise -ENOSPC is returned if the FIFO space was used up.
*
* This routine is only needed for PIO
*/
static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *hs_ep,
struct s3c_hsotg_req *hs_req)
{
bool periodic = is_ep_periodic(hs_ep);
u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
int buf_pos = hs_req->req.actual;
int to_write = hs_ep->size_loaded;
void *data;
int can_write;
int pkt_round;
to_write -= (buf_pos - hs_ep->last_load);
/* if there's nothing to write, get out early */
if (to_write == 0)
return 0;
if (periodic && !hsotg->dedicated_fifos) {
u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
int size_left;
int size_done;
/*
* work out how much data was loaded so we can calculate
* how much data is left in the fifo.
*/
size_left = DxEPTSIZ_XferSize_GET(epsize);
/*
* if shared fifo, we cannot write anything until the
* previous data has been completely sent.
*/
if (hs_ep->fifo_load != 0) {
s3c_hsotg_en_gsint(hsotg, GINTSTS_PTxFEmp);
return -ENOSPC;
}
dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
__func__, size_left,
hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
/* how much of the data has moved */
size_done = hs_ep->size_loaded - size_left;
/* how much data is left in the fifo */
can_write = hs_ep->fifo_load - size_done;
dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
__func__, can_write);
can_write = hs_ep->fifo_size - can_write;
dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
__func__, can_write);
if (can_write <= 0) {
s3c_hsotg_en_gsint(hsotg, GINTSTS_PTxFEmp);
return -ENOSPC;
}
} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
can_write &= 0xffff;
can_write *= 4;
} else {
if (GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
dev_dbg(hsotg->dev,
"%s: no queue slots available (0x%08x)\n",
__func__, gnptxsts);
s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTxFEmp);
return -ENOSPC;
}
can_write = GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
can_write *= 4; /* fifo size is in 32bit quantities. */
}
dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
__func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);
/*
* limit to 512 bytes of data, it seems at least on the non-periodic
* FIFO, requests of >512 cause the endpoint to get stuck with a
* fragment of the end of the transfer in it.
*/
if (can_write > 512)
can_write = 512;
/*
* limit the write to one max-packet size worth of data, but allow
* the transfer to return that it did not run out of fifo space
* doing it.
*/
if (to_write > hs_ep->ep.maxpacket) {
to_write = hs_ep->ep.maxpacket;
s3c_hsotg_en_gsint(hsotg,
periodic ? GINTSTS_PTxFEmp :
GINTSTS_NPTxFEmp);
}
/* see if we can write data */
if (to_write > can_write) {
to_write = can_write;
pkt_round = to_write % hs_ep->ep.maxpacket;
/*
* Round the write down to an
* exact number of packets.
*
* Note, we do not currently check to see if we can ever
* write a full packet or not to the FIFO.
*/
if (pkt_round)
to_write -= pkt_round;
/*
* enable correct FIFO interrupt to alert us when there
* is more room left.
*/
s3c_hsotg_en_gsint(hsotg,
periodic ? GINTSTS_PTxFEmp :
GINTSTS_NPTxFEmp);
}
dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
to_write, hs_req->req.length, can_write, buf_pos);
if (to_write <= 0)
return -ENOSPC;
hs_req->req.actual = buf_pos + to_write;
hs_ep->total_data += to_write;
if (periodic)
hs_ep->fifo_load += to_write;
to_write = DIV_ROUND_UP(to_write, 4);
data = hs_req->req.buf + buf_pos;
writesl(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
return (to_write >= can_write) ? -ENOSPC : 0;
}
/**
* get_ep_limit - get the maximum data legnth for this endpoint
* @hs_ep: The endpoint
*
* Return the maximum data that can be queued in one go on a given endpoint
* so that transfers that are too long can be split.
*/
static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
{
int index = hs_ep->index;
unsigned maxsize;
unsigned maxpkt;
if (index != 0) {
maxsize = DxEPTSIZ_XferSize_LIMIT + 1;
maxpkt = DxEPTSIZ_PktCnt_LIMIT + 1;
} else {
maxsize = 64+64;
if (hs_ep->dir_in)
maxpkt = DIEPTSIZ0_PktCnt_LIMIT + 1;
else
maxpkt = 2;
}
/* we made the constant loading easier above by using +1 */
maxpkt--;
maxsize--;
/*
* constrain by packet count if maxpkts*pktsize is greater
* than the length register size.
*/
if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
maxsize = maxpkt * hs_ep->ep.maxpacket;
return maxsize;
}
/**
* s3c_hsotg_start_req - start a USB request from an endpoint's queue
* @hsotg: The controller state.
* @hs_ep: The endpoint to process a request for
* @hs_req: The request to start.
* @continuing: True if we are doing more for the current request.
*
* Start the given request running by setting the endpoint registers
* appropriately, and writing any data to the FIFOs.
*/
static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *hs_ep,
struct s3c_hsotg_req *hs_req,
bool continuing)
{
struct usb_request *ureq = &hs_req->req;
int index = hs_ep->index;
int dir_in = hs_ep->dir_in;
u32 epctrl_reg;
u32 epsize_reg;
u32 epsize;
u32 ctrl;
unsigned length;
unsigned packets;
unsigned maxreq;
if (index != 0) {
if (hs_ep->req && !continuing) {
dev_err(hsotg->dev, "%s: active request\n", __func__);
WARN_ON(1);
return;
} else if (hs_ep->req != hs_req && continuing) {
dev_err(hsotg->dev,
"%s: continue different req\n", __func__);
WARN_ON(1);
return;
}
}
epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
__func__, readl(hsotg->regs + epctrl_reg), index,
hs_ep->dir_in ? "in" : "out");
/* If endpoint is stalled, we will restart request later */
ctrl = readl(hsotg->regs + epctrl_reg);
if (ctrl & DxEPCTL_Stall) {
dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
return;
}
length = ureq->length - ureq->actual;
dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
ureq->length, ureq->actual);
if (0)
dev_dbg(hsotg->dev,
"REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
ureq->buf, length, ureq->dma,
ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
maxreq = get_ep_limit(hs_ep);
if (length > maxreq) {
int round = maxreq % hs_ep->ep.maxpacket;
dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
__func__, length, maxreq, round);
/* round down to multiple of packets */
if (round)
maxreq -= round;
length = maxreq;
}
if (length)
packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
else
packets = 1; /* send one packet if length is zero. */
if (dir_in && index != 0)
epsize = DxEPTSIZ_MC(1);
else
epsize = 0;
if (index != 0 && ureq->zero) {
/*
* test for the packets being exactly right for the
* transfer
*/
if (length == (packets * hs_ep->ep.maxpacket))
packets++;
}
epsize |= DxEPTSIZ_PktCnt(packets);
epsize |= DxEPTSIZ_XferSize(length);
dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
__func__, packets, length, ureq->length, epsize, epsize_reg);
/* store the request as the current one we're doing */
hs_ep->req = hs_req;
/* write size / packets */
writel(epsize, hsotg->regs + epsize_reg);
if (using_dma(hsotg) && !continuing) {
unsigned int dma_reg;
/*
* write DMA address to control register, buffer already
* synced by s3c_hsotg_ep_queue().
*/
dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
writel(ureq->dma, hsotg->regs + dma_reg);
dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
__func__, ureq->dma, dma_reg);
}
ctrl |= DxEPCTL_EPEna; /* ensure ep enabled */
ctrl |= DxEPCTL_USBActEp;
dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);
/* For Setup request do not clear NAK */
if (hsotg->setup && index == 0)
hsotg->setup = 0;
else
ctrl |= DxEPCTL_CNAK; /* clear NAK set by core */
dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
writel(ctrl, hsotg->regs + epctrl_reg);
/*
* set these, it seems that DMA support increments past the end
* of the packet buffer so we need to calculate the length from
* this information.
*/
hs_ep->size_loaded = length;
hs_ep->last_load = ureq->actual;
if (dir_in && !using_dma(hsotg)) {
/* set these anyway, we may need them for non-periodic in */
hs_ep->fifo_load = 0;
s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
}
/*
* clear the INTknTXFEmpMsk when we start request, more as a aide
* to debugging to see what is going on.
*/
if (dir_in)
writel(DIEPMSK_INTknTXFEmpMsk,
hsotg->regs + DIEPINT(index));
/*
* Note, trying to clear the NAK here causes problems with transmit
* on the S3C6400 ending up with the TXFIFO becoming full.
*/
/* check ep is enabled */
if (!(readl(hsotg->regs + epctrl_reg) & DxEPCTL_EPEna))
dev_warn(hsotg->dev,
"ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
index, readl(hsotg->regs + epctrl_reg));
dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
__func__, readl(hsotg->regs + epctrl_reg));
}
/**
* s3c_hsotg_map_dma - map the DMA memory being used for the request
* @hsotg: The device state.
* @hs_ep: The endpoint the request is on.
* @req: The request being processed.
*
* We've been asked to queue a request, so ensure that the memory buffer
* is correctly setup for DMA. If we've been passed an extant DMA address
* then ensure the buffer has been synced to memory. If our buffer has no
* DMA memory, then we map the memory and mark our request to allow us to
* cleanup on completion.
*/
static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *hs_ep,
struct usb_request *req)
{
enum dma_data_direction dir;
struct s3c_hsotg_req *hs_req = our_req(req);
dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
/* if the length is zero, ignore the DMA data */
if (hs_req->req.length == 0)
return 0;
if (req->dma == DMA_ADDR_INVALID) {
dma_addr_t dma;
dma = dma_map_single(hsotg->dev, req->buf, req->length, dir);
if (unlikely(dma_mapping_error(hsotg->dev, dma)))
goto dma_error;
if (dma & 3) {
dev_err(hsotg->dev, "%s: unaligned dma buffer\n",
__func__);
dma_unmap_single(hsotg->dev, dma, req->length, dir);
return -EINVAL;
}
hs_req->mapped = 1;
req->dma = dma;
} else {
dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
hs_req->mapped = 0;
}
return 0;
dma_error:
dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
__func__, req->buf, req->length);
return -EIO;
}
static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
gfp_t gfp_flags)
{
struct s3c_hsotg_req *hs_req = our_req(req);
struct s3c_hsotg_ep *hs_ep = our_ep(ep);
struct s3c_hsotg *hs = hs_ep->parent;
bool first;
dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
ep->name, req, req->length, req->buf, req->no_interrupt,
req->zero, req->short_not_ok);
/* initialise status of the request */
INIT_LIST_HEAD(&hs_req->queue);
req->actual = 0;
req->status = -EINPROGRESS;
/* if we're using DMA, sync the buffers as necessary */
if (using_dma(hs)) {
int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
if (ret)
return ret;
}
first = list_empty(&hs_ep->queue);
list_add_tail(&hs_req->queue, &hs_ep->queue);
if (first)
s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
return 0;
}
static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
gfp_t gfp_flags)
{
struct s3c_hsotg_ep *hs_ep = our_ep(ep);
struct s3c_hsotg *hs = hs_ep->parent;
unsigned long flags = 0;
int ret = 0;
spin_lock_irqsave(&hs->lock, flags);
ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
spin_unlock_irqrestore(&hs->lock, flags);
return ret;
}
static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
struct usb_request *req)
{
struct s3c_hsotg_req *hs_req = our_req(req);
kfree(hs_req);
}
/**
* s3c_hsotg_complete_oursetup - setup completion callback
* @ep: The endpoint the request was on.
* @req: The request completed.
*
* Called on completion of any requests the driver itself
* submitted that need cleaning up.
*/
static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
struct usb_request *req)
{
struct s3c_hsotg_ep *hs_ep = our_ep(ep);
struct s3c_hsotg *hsotg = hs_ep->parent;
dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
s3c_hsotg_ep_free_request(ep, req);
}
/**
* ep_from_windex - convert control wIndex value to endpoint
* @hsotg: The driver state.
* @windex: The control request wIndex field (in host order).
*
* Convert the given wIndex into a pointer to an driver endpoint
* structure, or return NULL if it is not a valid endpoint.
*/
static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
u32 windex)
{
struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
int dir = (windex & USB_DIR_IN) ? 1 : 0;
int idx = windex & 0x7F;
if (windex >= 0x100)
return NULL;
if (idx > hsotg->num_of_eps)
return NULL;
if (idx && ep->dir_in != dir)
return NULL;
return ep;
}
/**
* s3c_hsotg_send_reply - send reply to control request
* @hsotg: The device state
* @ep: Endpoint 0
* @buff: Buffer for request
* @length: Length of reply.
*
* Create a request and queue it on the given endpoint. This is useful as
* an internal method of sending replies to certain control requests, etc.
*/
static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *ep,
void *buff,
int length)
{
struct usb_request *req;
int ret;
dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
hsotg->ep0_reply = req;
if (!req) {
dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
return -ENOMEM;
}
req->buf = hsotg->ep0_buff;
req->length = length;
req->zero = 1; /* always do zero-length final transfer */
req->complete = s3c_hsotg_complete_oursetup;
if (length)
memcpy(req->buf, buff, length);
else
ep->sent_zlp = 1;
ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
if (ret) {
dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
return ret;
}
return 0;
}
/**
* s3c_hsotg_process_req_status - process request GET_STATUS
* @hsotg: The device state
* @ctrl: USB control request
*/
static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
struct usb_ctrlrequest *ctrl)
{
struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
struct s3c_hsotg_ep *ep;
__le16 reply;
int ret;
dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
if (!ep0->dir_in) {
dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
return -EINVAL;
}
switch (ctrl->bRequestType & USB_RECIP_MASK) {
case USB_RECIP_DEVICE:
reply = cpu_to_le16(0); /* bit 0 => self powered,
* bit 1 => remote wakeup */
break;
case USB_RECIP_INTERFACE:
/* currently, the data result should be zero */
reply = cpu_to_le16(0);
break;
case USB_RECIP_ENDPOINT:
ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
if (!ep)
return -ENOENT;
reply = cpu_to_le16(ep->halted ? 1 : 0);
break;
default:
return 0;
}
if (le16_to_cpu(ctrl->wLength) != 2)
return -EINVAL;
ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
if (ret) {
dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
return ret;
}
return 1;
}
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
/**
* get_ep_head - return the first request on the endpoint
* @hs_ep: The controller endpoint to get
*
* Get the first request on the endpoint.
*/
static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
{
if (list_empty(&hs_ep->queue))
return NULL;
return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
}
/**
* s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
* @hsotg: The device state
* @ctrl: USB control request
*/
static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
struct usb_ctrlrequest *ctrl)
{
struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
struct s3c_hsotg_req *hs_req;
bool restart;
bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
struct s3c_hsotg_ep *ep;
int ret;
dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
__func__, set ? "SET" : "CLEAR");
if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
if (!ep) {
dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
__func__, le16_to_cpu(ctrl->wIndex));
return -ENOENT;
}
switch (le16_to_cpu(ctrl->wValue)) {
case USB_ENDPOINT_HALT:
s3c_hsotg_ep_sethalt(&ep->ep, set);
ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
if (ret) {
dev_err(hsotg->dev,
"%s: failed to send reply\n", __func__);
return ret;
}
if (!set) {
/*
* If we have request in progress,
* then complete it
*/
if (ep->req) {
hs_req = ep->req;
ep->req = NULL;
list_del_init(&hs_req->queue);
hs_req->req.complete(&ep->ep,
&hs_req->req);
}
/* If we have pending request, then start it */
restart = !list_empty(&ep->queue);
if (restart) {
hs_req = get_ep_head(ep);
s3c_hsotg_start_req(hsotg, ep,
hs_req, false);
}
}
break;
default:
return -ENOENT;
}
} else
return -ENOENT; /* currently only deal with endpoint */
return 1;
}
/**
* s3c_hsotg_process_control - process a control request
* @hsotg: The device state
* @ctrl: The control request received
*
* The controller has received the SETUP phase of a control request, and
* needs to work out what to do next (and whether to pass it on to the
* gadget driver).
*/
static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
struct usb_ctrlrequest *ctrl)
{
struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
int ret = 0;
u32 dcfg;
ep0->sent_zlp = 0;
dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
ctrl->bRequest, ctrl->bRequestType,
ctrl->wValue, ctrl->wLength);
/*
* record the direction of the request, for later use when enquing
* packets onto EP0.
*/
ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
/*
* if we've no data with this request, then the last part of the
* transaction is going to implicitly be IN.
*/
if (ctrl->wLength == 0)
ep0->dir_in = 1;
if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
switch (ctrl->bRequest) {
case USB_REQ_SET_ADDRESS:
dcfg = readl(hsotg->regs + DCFG);
dcfg &= ~DCFG_DevAddr_MASK;
dcfg |= ctrl->wValue << DCFG_DevAddr_SHIFT;
writel(dcfg, hsotg->regs + DCFG);
dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
return;
case USB_REQ_GET_STATUS:
ret = s3c_hsotg_process_req_status(hsotg, ctrl);
break;
case USB_REQ_CLEAR_FEATURE:
case USB_REQ_SET_FEATURE:
ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
break;
}
}
/* as a fallback, try delivering it to the driver to deal with */
if (ret == 0 && hsotg->driver) {
ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
if (ret < 0)
dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
}
/*
* the request is either unhandlable, or is not formatted correctly
* so respond with a STALL for the status stage to indicate failure.
*/
if (ret < 0) {
u32 reg;
u32 ctrl;
dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
/*
* DxEPCTL_Stall will be cleared by EP once it has
* taken effect, so no need to clear later.
*/
ctrl = readl(hsotg->regs + reg);
ctrl |= DxEPCTL_Stall;
ctrl |= DxEPCTL_CNAK;
writel(ctrl, hsotg->regs + reg);
dev_dbg(hsotg->dev,
"written DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
ctrl, reg, readl(hsotg->regs + reg));
/*
* don't believe we need to anything more to get the EP
* to reply with a STALL packet
*/
}
}
static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
/**
* s3c_hsotg_complete_setup - completion of a setup transfer
* @ep: The endpoint the request was on.
* @req: The request completed.
*
* Called on completion of any requests the driver itself submitted for
* EP0 setup packets
*/
static void s3c_hsotg_complete_setup(struct usb_ep *ep,
struct usb_request *req)
{
struct s3c_hsotg_ep *hs_ep = our_ep(ep);
struct s3c_hsotg *hsotg = hs_ep->parent;
if (req->status < 0) {
dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
return;
}
if (req->actual == 0)
s3c_hsotg_enqueue_setup(hsotg);
else
s3c_hsotg_process_control(hsotg, req->buf);
}
/**
* s3c_hsotg_enqueue_setup - start a request for EP0 packets
* @hsotg: The device state.
*
* Enqueue a request on EP0 if necessary to received any SETUP packets
* received from the host.
*/
static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
{
struct usb_request *req = hsotg->ctrl_req;
struct s3c_hsotg_req *hs_req = our_req(req);
int ret;
dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
req->zero = 0;
req->length = 8;
req->buf = hsotg->ctrl_buff;
req->complete = s3c_hsotg_complete_setup;
if (!list_empty(&hs_req->queue)) {
dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
return;
}
hsotg->eps[0].dir_in = 0;
ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
if (ret < 0) {
dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
/*
* Don't think there's much we can do other than watch the
* driver fail.
*/
}
}
/**
* s3c_hsotg_complete_request - complete a request given to us
* @hsotg: The device state.
* @hs_ep: The endpoint the request was on.
* @hs_req: The request to complete.
* @result: The result code (0 => Ok, otherwise errno)
*
* The given request has finished, so call the necessary completion
* if it has one and then look to see if we can start a new request
* on the endpoint.
*
* Note, expects the ep to already be locked as appropriate.
*/
static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *hs_ep,
struct s3c_hsotg_req *hs_req,
int result)
{
bool restart;
if (!hs_req) {
dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
return;
}
dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
/*
* only replace the status if we've not already set an error
* from a previous transaction
*/
if (hs_req->req.status == -EINPROGRESS)
hs_req->req.status = result;
hs_ep->req = NULL;
list_del_init(&hs_req->queue);
if (using_dma(hsotg))
s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
/*
* call the complete request with the locks off, just in case the
* request tries to queue more work for this endpoint.
*/
if (hs_req->req.complete) {
spin_unlock(&hsotg->lock);
hs_req->req.complete(&hs_ep->ep, &hs_req->req);
spin_lock(&hsotg->lock);
}
/*
* Look to see if there is anything else to do. Note, the completion
* of the previous request may have caused a new request to be started
* so be careful when doing this.
*/
if (!hs_ep->req && result >= 0) {
restart = !list_empty(&hs_ep->queue);
if (restart) {
hs_req = get_ep_head(hs_ep);
s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
}
}
}
/**
* s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
* @hsotg: The device state.
* @ep_idx: The endpoint index for the data
* @size: The size of data in the fifo, in bytes
*
* The FIFO status shows there is data to read from the FIFO for a given
* endpoint, so sort out whether we need to read the data into a request
* that has been made for that endpoint.
*/
static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
{
struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
struct s3c_hsotg_req *hs_req = hs_ep->req;
void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
int to_read;
int max_req;
int read_ptr;
if (!hs_req) {
u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
int ptr;
dev_warn(hsotg->dev,
"%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
__func__, size, ep_idx, epctl);
/* dump the data from the FIFO, we've nothing we can do */
for (ptr = 0; ptr < size; ptr += 4)
(void)readl(fifo);
return;
}
to_read = size;
read_ptr = hs_req->req.actual;
max_req = hs_req->req.length - read_ptr;
dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
__func__, to_read, max_req, read_ptr, hs_req->req.length);
if (to_read > max_req) {
/*
* more data appeared than we where willing
* to deal with in this request.
*/
/* currently we don't deal this */
WARN_ON_ONCE(1);
}
hs_ep->total_data += to_read;
hs_req->req.actual += to_read;
to_read = DIV_ROUND_UP(to_read, 4);
/*
* note, we might over-write the buffer end by 3 bytes depending on
* alignment of the data.
*/
readsl(fifo, hs_req->req.buf + read_ptr, to_read);
}
/**
* s3c_hsotg_send_zlp - send zero-length packet on control endpoint
* @hsotg: The device instance
* @req: The request currently on this endpoint
*
* Generate a zero-length IN packet request for terminating a SETUP
* transaction.
*
* Note, since we don't write any data to the TxFIFO, then it is
* currently believed that we do not need to wait for any space in
* the TxFIFO.
*/
static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
struct s3c_hsotg_req *req)
{
u32 ctrl;
if (!req) {
dev_warn(hsotg->dev, "%s: no request?\n", __func__);
return;
}
if (req->req.length == 0) {
hsotg->eps[0].sent_zlp = 1;
s3c_hsotg_enqueue_setup(hsotg);
return;
}
hsotg->eps[0].dir_in = 1;
hsotg->eps[0].sent_zlp = 1;
dev_dbg(hsotg->dev, "sending zero-length packet\n");
/* issue a zero-sized packet to terminate this */
writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
DxEPTSIZ_XferSize(0), hsotg->regs + DIEPTSIZ(0));
ctrl = readl(hsotg->regs + DIEPCTL0);
ctrl |= DxEPCTL_CNAK; /* clear NAK set by core */
ctrl |= DxEPCTL_EPEna; /* ensure ep enabled */
ctrl |= DxEPCTL_USBActEp;
writel(ctrl, hsotg->regs + DIEPCTL0);
}
/**
* s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
* @hsotg: The device instance
* @epnum: The endpoint received from
* @was_setup: Set if processing a SetupDone event.
*
* The RXFIFO has delivered an OutDone event, which means that the data
* transfer for an OUT endpoint has been completed, either by a short
* packet or by the finish of a transfer.
*/
static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
int epnum, bool was_setup)
{
u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
struct s3c_hsotg_req *hs_req = hs_ep->req;
struct usb_request *req = &hs_req->req;
unsigned size_left = DxEPTSIZ_XferSize_GET(epsize);
int result = 0;
if (!hs_req) {
dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
return;
}
if (using_dma(hsotg)) {
unsigned size_done;
/*
* Calculate the size of the transfer by checking how much
* is left in the endpoint size register and then working it
* out from the amount we loaded for the transfer.
*
* We need to do this as DMA pointers are always 32bit aligned
* so may overshoot/undershoot the transfer.
*/
size_done = hs_ep->size_loaded - size_left;
size_done += hs_ep->last_load;
req->actual = size_done;
}
/* if there is more request to do, schedule new transfer */
if (req->actual < req->length && size_left == 0) {
s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
return;
} else if (epnum == 0) {
/*
* After was_setup = 1 =>
* set CNAK for non Setup requests
*/
hsotg->setup = was_setup ? 0 : 1;
}
if (req->actual < req->length && req->short_not_ok) {
dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
__func__, req->actual, req->length);
/*
* todo - what should we return here? there's no one else
* even bothering to check the status.
*/
}
if (epnum == 0) {
/*
* Condition req->complete != s3c_hsotg_complete_setup says:
* send ZLP when we have an asynchronous request from gadget
*/
if (!was_setup && req->complete != s3c_hsotg_complete_setup)
s3c_hsotg_send_zlp(hsotg, hs_req);
}
s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
}
/**
* s3c_hsotg_read_frameno - read current frame number
* @hsotg: The device instance
*
* Return the current frame number
*/
static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
{
u32 dsts;
dsts = readl(hsotg->regs + DSTS);
dsts &= DSTS_SOFFN_MASK;
dsts >>= DSTS_SOFFN_SHIFT;
return dsts;
}
/**
* s3c_hsotg_handle_rx - RX FIFO has data
* @hsotg: The device instance
*
* The IRQ handler has detected that the RX FIFO has some data in it
* that requires processing, so find out what is in there and do the
* appropriate read.
*
* The RXFIFO is a true FIFO, the packets coming out are still in packet
* chunks, so if you have x packets received on an endpoint you'll get x
* FIFO events delivered, each with a packet's worth of data in it.
*
* When using DMA, we should not be processing events from the RXFIFO
* as the actual data should be sent to the memory directly and we turn
* on the completion interrupts to get notifications of transfer completion.
*/
static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
{
u32 grxstsr = readl(hsotg->regs + GRXSTSP);
u32 epnum, status, size;
WARN_ON(using_dma(hsotg));
epnum = grxstsr & GRXSTS_EPNum_MASK;
status = grxstsr & GRXSTS_PktSts_MASK;
size = grxstsr & GRXSTS_ByteCnt_MASK;
size >>= GRXSTS_ByteCnt_SHIFT;
if (1)
dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
__func__, grxstsr, size, epnum);
#define __status(x) ((x) >> GRXSTS_PktSts_SHIFT)
switch (status >> GRXSTS_PktSts_SHIFT) {
case __status(GRXSTS_PktSts_GlobalOutNAK):
dev_dbg(hsotg->dev, "GlobalOutNAK\n");
break;
case __status(GRXSTS_PktSts_OutDone):
dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
s3c_hsotg_read_frameno(hsotg));
if (!using_dma(hsotg))
s3c_hsotg_handle_outdone(hsotg, epnum, false);
break;
case __status(GRXSTS_PktSts_SetupDone):
dev_dbg(hsotg->dev,
"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
s3c_hsotg_read_frameno(hsotg),
readl(hsotg->regs + DOEPCTL(0)));
s3c_hsotg_handle_outdone(hsotg, epnum, true);
break;
case __status(GRXSTS_PktSts_OutRX):
s3c_hsotg_rx_data(hsotg, epnum, size);
break;
case __status(GRXSTS_PktSts_SetupRX):
dev_dbg(hsotg->dev,
"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
s3c_hsotg_read_frameno(hsotg),
readl(hsotg->regs + DOEPCTL(0)));
s3c_hsotg_rx_data(hsotg, epnum, size);
break;
default:
dev_warn(hsotg->dev, "%s: unknown status %08x\n",
__func__, grxstsr);
s3c_hsotg_dump(hsotg);
break;
}
}
/**
* s3c_hsotg_ep0_mps - turn max packet size into register setting
* @mps: The maximum packet size in bytes.
*/
static u32 s3c_hsotg_ep0_mps(unsigned int mps)
{
switch (mps) {
case 64:
return D0EPCTL_MPS_64;
case 32:
return D0EPCTL_MPS_32;
case 16:
return D0EPCTL_MPS_16;
case 8:
return D0EPCTL_MPS_8;
}
/* bad max packet size, warn and return invalid result */
WARN_ON(1);
return (u32)-1;
}
/**
* s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
* @hsotg: The driver state.
* @ep: The index number of the endpoint
* @mps: The maximum packet size in bytes
*
* Configure the maximum packet size for the given endpoint, updating
* the hardware control registers to reflect this.
*/
static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
unsigned int ep, unsigned int mps)
{
struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
void __iomem *regs = hsotg->regs;
u32 mpsval;
u32 reg;
if (ep == 0) {
/* EP0 is a special case */
mpsval = s3c_hsotg_ep0_mps(mps);
if (mpsval > 3)
goto bad_mps;
} else {
if (mps >= DxEPCTL_MPS_LIMIT+1)
goto bad_mps;
mpsval = mps;
}
hs_ep->ep.maxpacket = mps;
/*
* update both the in and out endpoint controldir_ registers, even
* if one of the directions may not be in use.
*/
reg = readl(regs + DIEPCTL(ep));
reg &= ~DxEPCTL_MPS_MASK;
reg |= mpsval;
writel(reg, regs + DIEPCTL(ep));
if (ep) {
reg = readl(regs + DOEPCTL(ep));
reg &= ~DxEPCTL_MPS_MASK;
reg |= mpsval;
writel(reg, regs + DOEPCTL(ep));
}
return;
bad_mps:
dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}
/**
* s3c_hsotg_txfifo_flush - flush Tx FIFO
* @hsotg: The driver state
* @idx: The index for the endpoint (0..15)
*/
static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
{
int timeout;
int val;
writel(GRSTCTL_TxFNum(idx) | GRSTCTL_TxFFlsh,
hsotg->regs + GRSTCTL);
/* wait until the fifo is flushed */
timeout = 100;
while (1) {
val = readl(hsotg->regs + GRSTCTL);
if ((val & (GRSTCTL_TxFFlsh)) == 0)
break;
if (--timeout == 0) {
dev_err(hsotg->dev,
"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
__func__, val);
}
udelay(1);
}
}
/**
* s3c_hsotg_trytx - check to see if anything needs transmitting
* @hsotg: The driver state
* @hs_ep: The driver endpoint to check.
*
* Check to see if there is a request that has data to send, and if so
* make an attempt to write data into the FIFO.
*/
static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *hs_ep)
{
struct s3c_hsotg_req *hs_req = hs_ep->req;
if (!hs_ep->dir_in || !hs_req)
return 0;
if (hs_req->req.actual < hs_req->req.length) {
dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
hs_ep->index);
return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
}
return 0;
}
/**
* s3c_hsotg_complete_in - complete IN transfer
* @hsotg: The device state.
* @hs_ep: The endpoint that has just completed.
*
* An IN transfer has been completed, update the transfer's state and then
* call the relevant completion routines.
*/
static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *hs_ep)
{
struct s3c_hsotg_req *hs_req = hs_ep->req;
u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
int size_left, size_done;
if (!hs_req) {
dev_dbg(hsotg->dev, "XferCompl but no req\n");
return;
}
/* Finish ZLP handling for IN EP0 transactions */
if (hsotg->eps[0].sent_zlp) {
dev_dbg(hsotg->dev, "zlp packet received\n");
s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
return;
}
/*
* Calculate the size of the transfer by checking how much is left
* in the endpoint size register and then working it out from
* the amount we loaded for the transfer.
*
* We do this even for DMA, as the transfer may have incremented
* past the end of the buffer (DMA transfers are always 32bit
* aligned).
*/
size_left = DxEPTSIZ_XferSize_GET(epsize);
size_done = hs_ep->size_loaded - size_left;
size_done += hs_ep->last_load;
if (hs_req->req.actual != size_done)
dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
__func__, hs_req->req.actual, size_done);
hs_req->req.actual = size_done;
dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
/*
* Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
* When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
* ,256B ... ), after last MPS sized packet send IN ZLP packet to
* inform the host that no more data is available.
* The state of req.zero member is checked to be sure that the value to
* send is smaller than wValue expected from host.
* Check req.length to NOT send another ZLP when the current one is
* under completion (the one for which this completion has been called).
*/
if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
hs_req->req.length == hs_req->req.actual &&
!(hs_req->req.length % hs_ep->ep.maxpacket)) {
dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
s3c_hsotg_send_zlp(hsotg, hs_req);
return;
}
if (!size_left && hs_req->req.actual < hs_req->req.length) {
dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
} else
s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
}
/**
* s3c_hsotg_epint - handle an in/out endpoint interrupt
* @hsotg: The driver state
* @idx: The index for the endpoint (0..15)
* @dir_in: Set if this is an IN endpoint
*
* Process and clear any interrupt pending for an individual endpoint
*/
static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
int dir_in)
{
struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
u32 ints;
ints = readl(hsotg->regs + epint_reg);
/* Clear endpoint interrupts */
writel(ints, hsotg->regs + epint_reg);
dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
__func__, idx, dir_in ? "in" : "out", ints);
if (ints & DxEPINT_XferCompl) {
dev_dbg(hsotg->dev,
"%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
__func__, readl(hsotg->regs + epctl_reg),
readl(hsotg->regs + epsiz_reg));
/*
* we get OutDone from the FIFO, so we only need to look
* at completing IN requests here
*/
if (dir_in) {
s3c_hsotg_complete_in(hsotg, hs_ep);
if (idx == 0 && !hs_ep->req)
s3c_hsotg_enqueue_setup(hsotg);
} else if (using_dma(hsotg)) {
/*
* We're using DMA, we need to fire an OutDone here
* as we ignore the RXFIFO.
*/
s3c_hsotg_handle_outdone(hsotg, idx, false);
}
}
if (ints & DxEPINT_EPDisbld) {
dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
if (dir_in) {
int epctl = readl(hsotg->regs + epctl_reg);
s3c_hsotg_txfifo_flush(hsotg, idx);
if ((epctl & DxEPCTL_Stall) &&
(epctl & DxEPCTL_EPType_Bulk)) {
int dctl = readl(hsotg->regs + DCTL);
dctl |= DCTL_CGNPInNAK;
writel(dctl, hsotg->regs + DCTL);
}
}
}
if (ints & DxEPINT_AHBErr)
dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
if (ints & DxEPINT_Setup) { /* Setup or Timeout */
dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
if (using_dma(hsotg) && idx == 0) {
/*
* this is the notification we've received a
* setup packet. In non-DMA mode we'd get this
* from the RXFIFO, instead we need to process
* the setup here.
*/
if (dir_in)
WARN_ON_ONCE(1);
else
s3c_hsotg_handle_outdone(hsotg, 0, true);
}
}
if (ints & DxEPINT_Back2BackSetup)
dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
if (dir_in) {
/* not sure if this is important, but we'll clear it anyway */
if (ints & DIEPMSK_INTknTXFEmpMsk) {
dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
__func__, idx);
}
/* this probably means something bad is happening */
if (ints & DIEPMSK_INTknEPMisMsk) {
dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
__func__, idx);
}
/* FIFO has space or is empty (see GAHBCFG) */
if (hsotg->dedicated_fifos &&
ints & DIEPMSK_TxFIFOEmpty) {
dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
__func__, idx);
if (!using_dma(hsotg))
s3c_hsotg_trytx(hsotg, hs_ep);
}
}
}
/**
* s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
* @hsotg: The device state.
*
* Handle updating the device settings after the enumeration phase has
* been completed.
*/
static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
{
u32 dsts = readl(hsotg->regs + DSTS);
int ep0_mps = 0, ep_mps;
/*
* This should signal the finish of the enumeration phase
* of the USB handshaking, so we should now know what rate
* we connected at.
*/
dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
/*
* note, since we're limited by the size of transfer on EP0, and
* it seems IN transfers must be a even number of packets we do
* not advertise a 64byte MPS on EP0.
*/
/* catch both EnumSpd_FS and EnumSpd_FS48 */
switch (dsts & DSTS_EnumSpd_MASK) {
case DSTS_EnumSpd_FS:
case DSTS_EnumSpd_FS48:
hsotg->gadget.speed = USB_SPEED_FULL;
ep0_mps = EP0_MPS_LIMIT;
ep_mps = 64;
break;
case DSTS_EnumSpd_HS:
hsotg->gadget.speed = USB_SPEED_HIGH;
ep0_mps = EP0_MPS_LIMIT;
ep_mps = 512;
break;
case DSTS_EnumSpd_LS:
hsotg->gadget.speed = USB_SPEED_LOW;
/*
* note, we don't actually support LS in this driver at the
* moment, and the documentation seems to imply that it isn't
* supported by the PHYs on some of the devices.
*/
break;
}
dev_info(hsotg->dev, "new device is %s\n",
usb_speed_string(hsotg->gadget.speed));
/*
* we should now know the maximum packet size for an
* endpoint, so set the endpoints to a default value.
*/
if (ep0_mps) {
int i;
s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
for (i = 1; i < hsotg->num_of_eps; i++)
s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
}
/* ensure after enumeration our EP0 is active */
s3c_hsotg_enqueue_setup(hsotg);
dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
readl(hsotg->regs + DIEPCTL0),
readl(hsotg->regs + DOEPCTL0));
}
/**
* kill_all_requests - remove all requests from the endpoint's queue
* @hsotg: The device state.
* @ep: The endpoint the requests may be on.
* @result: The result code to use.
* @force: Force removal of any current requests
*
* Go through the requests on the given endpoint and mark them
* completed with the given result code.
*/
static void kill_all_requests(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *ep,
int result, bool force)
{
struct s3c_hsotg_req *req, *treq;
list_for_each_entry_safe(req, treq, &ep->queue, queue) {
/*
* currently, we can't do much about an already
* running request on an in endpoint
*/
if (ep->req == req && ep->dir_in && !force)
continue;
s3c_hsotg_complete_request(hsotg, ep, req,
result);
}
}
#define call_gadget(_hs, _entry) \
if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
(_hs)->driver && (_hs)->driver->_entry) { \
spin_unlock(&_hs->lock); \
(_hs)->driver->_entry(&(_hs)->gadget); \
spin_lock(&_hs->lock); \
}
/**
* s3c_hsotg_disconnect - disconnect service
* @hsotg: The device state.
*
* The device has been disconnected. Remove all current
* transactions and signal the gadget driver that this
* has happened.
*/
static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg)
{
unsigned ep;
for (ep = 0; ep < hsotg->num_of_eps; ep++)
kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
call_gadget(hsotg, disconnect);
}
/**
* s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
* @hsotg: The device state:
* @periodic: True if this is a periodic FIFO interrupt
*/
static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
{
struct s3c_hsotg_ep *ep;
int epno, ret;
/* look through for any more data to transmit */
for (epno = 0; epno < hsotg->num_of_eps; epno++) {
ep = &hsotg->eps[epno];
if (!ep->dir_in)
continue;
if ((periodic && !ep->periodic) ||
(!periodic && ep->periodic))
continue;
ret = s3c_hsotg_trytx(hsotg, ep);
if (ret < 0)
break;
}
}
/* IRQ flags which will trigger a retry around the IRQ loop */
#define IRQ_RETRY_MASK (GINTSTS_NPTxFEmp | \
GINTSTS_PTxFEmp | \
GINTSTS_RxFLvl)
/**
* s3c_hsotg_corereset - issue softreset to the core
* @hsotg: The device state
*
* Issue a soft reset to the core, and await the core finishing it.
*/
static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
{
int timeout;
u32 grstctl;
dev_dbg(hsotg->dev, "resetting core\n");
/* issue soft reset */
writel(GRSTCTL_CSftRst, hsotg->regs + GRSTCTL);
timeout = 1000;
do {
grstctl = readl(hsotg->regs + GRSTCTL);
} while ((grstctl & GRSTCTL_CSftRst) && timeout-- > 0);
if (grstctl & GRSTCTL_CSftRst) {
dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
return -EINVAL;
}
timeout = 1000;
while (1) {
u32 grstctl = readl(hsotg->regs + GRSTCTL);
if (timeout-- < 0) {
dev_info(hsotg->dev,
"%s: reset failed, GRSTCTL=%08x\n",
__func__, grstctl);
return -ETIMEDOUT;
}
if (!(grstctl & GRSTCTL_AHBIdle))
continue;
break; /* reset done */
}
dev_dbg(hsotg->dev, "reset successful\n");
return 0;
}
/**
* s3c_hsotg_core_init - issue softreset to the core
* @hsotg: The device state
*
* Issue a soft reset to the core, and await the core finishing it.
*/
static void s3c_hsotg_core_init(struct s3c_hsotg *hsotg)
{
s3c_hsotg_corereset(hsotg);
/*
* we must now enable ep0 ready for host detection and then
* set configuration.
*/
/* set the PLL on, remove the HNP/SRP and set the PHY */
writel(GUSBCFG_PHYIf16 | GUSBCFG_TOutCal(7) |
(0x5 << 10), hsotg->regs + GUSBCFG);
s3c_hsotg_init_fifo(hsotg);
__orr32(hsotg->regs + DCTL, DCTL_SftDiscon);
writel(1 << 18 | DCFG_DevSpd_HS, hsotg->regs + DCFG);
/* Clear any pending OTG interrupts */
writel(0xffffffff, hsotg->regs + GOTGINT);
/* Clear any pending interrupts */
writel(0xffffffff, hsotg->regs + GINTSTS);
writel(GINTSTS_ErlySusp | GINTSTS_SessReqInt |
GINTSTS_GOUTNakEff | GINTSTS_GINNakEff |
GINTSTS_ConIDStsChng | GINTSTS_USBRst |
GINTSTS_EnumDone | GINTSTS_OTGInt |
GINTSTS_USBSusp | GINTSTS_WkUpInt,
hsotg->regs + GINTMSK);
if (using_dma(hsotg))
writel(GAHBCFG_GlblIntrEn | GAHBCFG_DMAEn |
GAHBCFG_HBstLen_Incr4,
hsotg->regs + GAHBCFG);
else
writel(GAHBCFG_GlblIntrEn, hsotg->regs + GAHBCFG);
/*
* Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
* up being flooded with interrupts if the host is polling the
* endpoint to try and read data.
*/
writel(((hsotg->dedicated_fifos) ? DIEPMSK_TxFIFOEmpty : 0) |
DIEPMSK_EPDisbldMsk | DIEPMSK_XferComplMsk |
DIEPMSK_TimeOUTMsk | DIEPMSK_AHBErrMsk |
DIEPMSK_INTknEPMisMsk,
hsotg->regs + DIEPMSK);
/*
* don't need XferCompl, we get that from RXFIFO in slave mode. In
* DMA mode we may need this.
*/
writel((using_dma(hsotg) ? (DIEPMSK_XferComplMsk |
DIEPMSK_TimeOUTMsk) : 0) |
DOEPMSK_EPDisbldMsk | DOEPMSK_AHBErrMsk |
DOEPMSK_SetupMsk,
hsotg->regs + DOEPMSK);
writel(0, hsotg->regs + DAINTMSK);
dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
readl(hsotg->regs + DIEPCTL0),
readl(hsotg->regs + DOEPCTL0));
/* enable in and out endpoint interrupts */
s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPInt | GINTSTS_IEPInt);
/*
* Enable the RXFIFO when in slave mode, as this is how we collect
* the data. In DMA mode, we get events from the FIFO but also
* things we cannot process, so do not use it.
*/
if (!using_dma(hsotg))
s3c_hsotg_en_gsint(hsotg, GINTSTS_RxFLvl);
/* Enable interrupts for EP0 in and out */
s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
__orr32(hsotg->regs + DCTL, DCTL_PWROnPrgDone);
udelay(10); /* see openiboot */
__bic32(hsotg->regs + DCTL, DCTL_PWROnPrgDone);
dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
/*
* DxEPCTL_USBActEp says RO in manual, but seems to be set by
* writing to the EPCTL register..
*/
/* set to read 1 8byte packet */
writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
DxEPCTL_CNAK | DxEPCTL_EPEna |
DxEPCTL_USBActEp,
hsotg->regs + DOEPCTL0);
/* enable, but don't activate EP0in */
writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
DxEPCTL_USBActEp, hsotg->regs + DIEPCTL0);
s3c_hsotg_enqueue_setup(hsotg);
dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
readl(hsotg->regs + DIEPCTL0),
readl(hsotg->regs + DOEPCTL0));
/* clear global NAKs */
writel(DCTL_CGOUTNak | DCTL_CGNPInNAK,
hsotg->regs + DCTL);
/* must be at-least 3ms to allow bus to see disconnect */
mdelay(3);
/* remove the soft-disconnect and let's go */
__bic32(hsotg->regs + DCTL, DCTL_SftDiscon);
}
/**
* s3c_hsotg_irq - handle device interrupt
* @irq: The IRQ number triggered
* @pw: The pw value when registered the handler.
*/
static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
{
struct s3c_hsotg *hsotg = pw;
int retry_count = 8;
u32 gintsts;
u32 gintmsk;
spin_lock(&hsotg->lock);
irq_retry:
gintsts = readl(hsotg->regs + GINTSTS);
gintmsk = readl(hsotg->regs + GINTMSK);
dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
gintsts &= gintmsk;
if (gintsts & GINTSTS_OTGInt) {
u32 otgint = readl(hsotg->regs + GOTGINT);
dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
writel(otgint, hsotg->regs + GOTGINT);
}
if (gintsts & GINTSTS_SessReqInt) {
dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
writel(GINTSTS_SessReqInt, hsotg->regs + GINTSTS);
}
if (gintsts & GINTSTS_EnumDone) {
writel(GINTSTS_EnumDone, hsotg->regs + GINTSTS);
s3c_hsotg_irq_enumdone(hsotg);
}
if (gintsts & GINTSTS_ConIDStsChng) {
dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
readl(hsotg->regs + DSTS),
readl(hsotg->regs + GOTGCTL));
writel(GINTSTS_ConIDStsChng, hsotg->regs + GINTSTS);
}
if (gintsts & (GINTSTS_OEPInt | GINTSTS_IEPInt)) {
u32 daint = readl(hsotg->regs + DAINT);
u32 daint_out = daint >> DAINT_OutEP_SHIFT;
u32 daint_in = daint & ~(daint_out << DAINT_OutEP_SHIFT);
int ep;
dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
if (daint_out & 1)
s3c_hsotg_epint(hsotg, ep, 0);
}
for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
if (daint_in & 1)
s3c_hsotg_epint(hsotg, ep, 1);
}
}
if (gintsts & GINTSTS_USBRst) {
u32 usb_status = readl(hsotg->regs + GOTGCTL);
dev_info(hsotg->dev, "%s: USBRst\n", __func__);
dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
readl(hsotg->regs + GNPTXSTS));
writel(GINTSTS_USBRst, hsotg->regs + GINTSTS);
if (usb_status & GOTGCTL_BSESVLD) {
if (time_after(jiffies, hsotg->last_rst +
msecs_to_jiffies(200))) {
kill_all_requests(hsotg, &hsotg->eps[0],
-ECONNRESET, true);
s3c_hsotg_core_init(hsotg);
hsotg->last_rst = jiffies;
}
}
}
/* check both FIFOs */
if (gintsts & GINTSTS_NPTxFEmp) {
dev_dbg(hsotg->dev, "NPTxFEmp\n");
/*
* Disable the interrupt to stop it happening again
* unless one of these endpoint routines decides that
* it needs re-enabling
*/
s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTxFEmp);
s3c_hsotg_irq_fifoempty(hsotg, false);
}
if (gintsts & GINTSTS_PTxFEmp) {
dev_dbg(hsotg->dev, "PTxFEmp\n");
/* See note in GINTSTS_NPTxFEmp */
s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTxFEmp);
s3c_hsotg_irq_fifoempty(hsotg, true);
}
if (gintsts & GINTSTS_RxFLvl) {
/*
* note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
* we need to retry s3c_hsotg_handle_rx if this is still
* set.
*/
s3c_hsotg_handle_rx(hsotg);
}
if (gintsts & GINTSTS_ModeMis) {
dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
writel(GINTSTS_ModeMis, hsotg->regs + GINTSTS);
}
if (gintsts & GINTSTS_USBSusp) {
dev_info(hsotg->dev, "GINTSTS_USBSusp\n");
writel(GINTSTS_USBSusp, hsotg->regs + GINTSTS);
call_gadget(hsotg, suspend);
s3c_hsotg_disconnect(hsotg);
}
if (gintsts & GINTSTS_WkUpInt) {
dev_info(hsotg->dev, "GINTSTS_WkUpIn\n");
writel(GINTSTS_WkUpInt, hsotg->regs + GINTSTS);
call_gadget(hsotg, resume);
}
if (gintsts & GINTSTS_ErlySusp) {
dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
writel(GINTSTS_ErlySusp, hsotg->regs + GINTSTS);
s3c_hsotg_disconnect(hsotg);
}
/*
* these next two seem to crop-up occasionally causing the core
* to shutdown the USB transfer, so try clearing them and logging
* the occurrence.
*/
if (gintsts & GINTSTS_GOUTNakEff) {
dev_info(hsotg->dev, "GOUTNakEff triggered\n");
writel(DCTL_CGOUTNak, hsotg->regs + DCTL);
s3c_hsotg_dump(hsotg);
}
if (gintsts & GINTSTS_GINNakEff) {
dev_info(hsotg->dev, "GINNakEff triggered\n");
writel(DCTL_CGNPInNAK, hsotg->regs + DCTL);
s3c_hsotg_dump(hsotg);
}
/*
* if we've had fifo events, we should try and go around the
* loop again to see if there's any point in returning yet.
*/
if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
goto irq_retry;
spin_unlock(&hsotg->lock);
return IRQ_HANDLED;
}
/**
* s3c_hsotg_ep_enable - enable the given endpoint
* @ep: The USB endpint to configure
* @desc: The USB endpoint descriptor to configure with.
*
* This is called from the USB gadget code's usb_ep_enable().
*/
static int s3c_hsotg_ep_enable(struct usb_ep *ep,
const struct usb_endpoint_descriptor *desc)
{
struct s3c_hsotg_ep *hs_ep = our_ep(ep);
struct s3c_hsotg *hsotg = hs_ep->parent;
unsigned long flags;
int index = hs_ep->index;
u32 epctrl_reg;
u32 epctrl;
u32 mps;
int dir_in;
int ret = 0;
dev_dbg(hsotg->dev,
"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
desc->wMaxPacketSize, desc->bInterval);
/* not to be called for EP0 */
WARN_ON(index == 0);
dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
if (dir_in != hs_ep->dir_in) {
dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
return -EINVAL;
}
mps = usb_endpoint_maxp(desc);
/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
epctrl = readl(hsotg->regs + epctrl_reg);
dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
__func__, epctrl, epctrl_reg);
spin_lock_irqsave(&hsotg->lock, flags);
epctrl &= ~(DxEPCTL_EPType_MASK | DxEPCTL_MPS_MASK);
epctrl |= DxEPCTL_MPS(mps);
/*
* mark the endpoint as active, otherwise the core may ignore
* transactions entirely for this endpoint
*/
epctrl |= DxEPCTL_USBActEp;
/*
* set the NAK status on the endpoint, otherwise we might try and
* do something with data that we've yet got a request to process
* since the RXFIFO will take data for an endpoint even if the
* size register hasn't been set.
*/
epctrl |= DxEPCTL_SNAK;
/* update the endpoint state */
hs_ep->ep.maxpacket = mps;
/* default, set to non-periodic */
hs_ep->periodic = 0;
switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
case USB_ENDPOINT_XFER_ISOC:
dev_err(hsotg->dev, "no current ISOC support\n");
ret = -EINVAL;
goto out;
case USB_ENDPOINT_XFER_BULK:
epctrl |= DxEPCTL_EPType_Bulk;
break;
case USB_ENDPOINT_XFER_INT:
if (dir_in) {
/*
* Allocate our TxFNum by simply using the index
* of the endpoint for the moment. We could do
* something better if the host indicates how
* many FIFOs we are expecting to use.
*/
hs_ep->periodic = 1;
epctrl |= DxEPCTL_TxFNum(index);
}
epctrl |= DxEPCTL_EPType_Intterupt;
break;
case USB_ENDPOINT_XFER_CONTROL:
epctrl |= DxEPCTL_EPType_Control;
break;
}
/*
* if the hardware has dedicated fifos, we must give each IN EP
* a unique tx-fifo even if it is non-periodic.
*/
if (dir_in && hsotg->dedicated_fifos)
epctrl |= DxEPCTL_TxFNum(index);
/* for non control endpoints, set PID to D0 */
if (index)
epctrl |= DxEPCTL_SetD0PID;
dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
__func__, epctrl);
writel(epctrl, hsotg->regs + epctrl_reg);
dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
__func__, readl(hsotg->regs + epctrl_reg));
/* enable the endpoint interrupt */
s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
out:
spin_unlock_irqrestore(&hsotg->lock, flags);
return ret;
}
/**
* s3c_hsotg_ep_disable - disable given endpoint
* @ep: The endpoint to disable.
*/
static int s3c_hsotg_ep_disable(struct usb_ep *ep)
{
struct s3c_hsotg_ep *hs_ep = our_ep(ep);
struct s3c_hsotg *hsotg = hs_ep->parent;
int dir_in = hs_ep->dir_in;
int index = hs_ep->index;
unsigned long flags;
u32 epctrl_reg;
u32 ctrl;
dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
if (ep == &hsotg->eps[0].ep) {
dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
return -EINVAL;
}
epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
spin_lock_irqsave(&hsotg->lock, flags);
/* terminate all requests with shutdown */
kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
ctrl = readl(hsotg->regs + epctrl_reg);
ctrl &= ~DxEPCTL_EPEna;
ctrl &= ~DxEPCTL_USBActEp;
ctrl |= DxEPCTL_SNAK;
dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
writel(ctrl, hsotg->regs + epctrl_reg);
/* disable endpoint interrupts */
s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
spin_unlock_irqrestore(&hsotg->lock, flags);
return 0;
}
/**
* on_list - check request is on the given endpoint
* @ep: The endpoint to check.
* @test: The request to test if it is on the endpoint.
*/
static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
{
struct s3c_hsotg_req *req, *treq;
list_for_each_entry_safe(req, treq, &ep->queue, queue) {
if (req == test)
return true;
}
return false;
}
/**
* s3c_hsotg_ep_dequeue - dequeue given endpoint
* @ep: The endpoint to dequeue.
* @req: The request to be removed from a queue.
*/
static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
struct s3c_hsotg_req *hs_req = our_req(req);
struct s3c_hsotg_ep *hs_ep = our_ep(ep);
struct s3c_hsotg *hs = hs_ep->parent;
unsigned long flags;
dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
spin_lock_irqsave(&hs->lock, flags);
if (!on_list(hs_ep, hs_req)) {
spin_unlock_irqrestore(&hs->lock, flags);
return -EINVAL;
}
s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
spin_unlock_irqrestore(&hs->lock, flags);
return 0;
}
/**
* s3c_hsotg_ep_sethalt - set halt on a given endpoint
* @ep: The endpoint to set halt.
* @value: Set or unset the halt.
*/
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
{
struct s3c_hsotg_ep *hs_ep = our_ep(ep);
struct s3c_hsotg *hs = hs_ep->parent;
int index = hs_ep->index;
u32 epreg;
u32 epctl;
u32 xfertype;
dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
/* write both IN and OUT control registers */
epreg = DIEPCTL(index);
epctl = readl(hs->regs + epreg);
if (value) {
epctl |= DxEPCTL_Stall + DxEPCTL_SNAK;
if (epctl & DxEPCTL_EPEna)
epctl |= DxEPCTL_EPDis;
} else {
epctl &= ~DxEPCTL_Stall;
xfertype = epctl & DxEPCTL_EPType_MASK;
if (xfertype == DxEPCTL_EPType_Bulk ||
xfertype == DxEPCTL_EPType_Intterupt)
epctl |= DxEPCTL_SetD0PID;
}
writel(epctl, hs->regs + epreg);
epreg = DOEPCTL(index);
epctl = readl(hs->regs + epreg);
if (value)
epctl |= DxEPCTL_Stall;
else {
epctl &= ~DxEPCTL_Stall;
xfertype = epctl & DxEPCTL_EPType_MASK;
if (xfertype == DxEPCTL_EPType_Bulk ||
xfertype == DxEPCTL_EPType_Intterupt)
epctl |= DxEPCTL_SetD0PID;
}
writel(epctl, hs->regs + epreg);
return 0;
}
/**
* s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
* @ep: The endpoint to set halt.
* @value: Set or unset the halt.
*/
static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
{
struct s3c_hsotg_ep *hs_ep = our_ep(ep);
struct s3c_hsotg *hs = hs_ep->parent;
unsigned long flags = 0;
int ret = 0;
spin_lock_irqsave(&hs->lock, flags);
ret = s3c_hsotg_ep_sethalt(ep, value);
spin_unlock_irqrestore(&hs->lock, flags);
return ret;
}
static struct usb_ep_ops s3c_hsotg_ep_ops = {
.enable = s3c_hsotg_ep_enable,
.disable = s3c_hsotg_ep_disable,
.alloc_request = s3c_hsotg_ep_alloc_request,
.free_request = s3c_hsotg_ep_free_request,
.queue = s3c_hsotg_ep_queue_lock,
.dequeue = s3c_hsotg_ep_dequeue,
.set_halt = s3c_hsotg_ep_sethalt_lock,
/* note, don't believe we have any call for the fifo routines */
};
/**
* s3c_hsotg_phy_enable - enable platform phy dev
* @hsotg: The driver state
*
* A wrapper for platform code responsible for controlling
* low-level USB code
*/
static void s3c_hsotg_phy_enable(struct s3c_hsotg *hsotg)
{
struct platform_device *pdev = to_platform_device(hsotg->dev);
dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
if (hsotg->plat->phy_init)
hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
}
/**
* s3c_hsotg_phy_disable - disable platform phy dev
* @hsotg: The driver state
*
* A wrapper for platform code responsible for controlling
* low-level USB code
*/
static void s3c_hsotg_phy_disable(struct s3c_hsotg *hsotg)
{
struct platform_device *pdev = to_platform_device(hsotg->dev);
if (hsotg->plat->phy_exit)
hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
}
/**
* s3c_hsotg_init - initalize the usb core
* @hsotg: The driver state
*/
static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
{
/* unmask subset of endpoint interrupts */
writel(DIEPMSK_TimeOUTMsk | DIEPMSK_AHBErrMsk |
DIEPMSK_EPDisbldMsk | DIEPMSK_XferComplMsk,
hsotg->regs + DIEPMSK);
writel(DOEPMSK_SetupMsk | DOEPMSK_AHBErrMsk |
DOEPMSK_EPDisbldMsk | DOEPMSK_XferComplMsk,
hsotg->regs + DOEPMSK);
writel(0, hsotg->regs + DAINTMSK);
/* Be in disconnected state until gadget is registered */
__orr32(hsotg->regs + DCTL, DCTL_SftDiscon);
if (0) {
/* post global nak until we're ready */
writel(DCTL_SGNPInNAK | DCTL_SGOUTNak,
hsotg->regs + DCTL);
}
/* setup fifos */
dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
readl(hsotg->regs + GRXFSIZ),
readl(hsotg->regs + GNPTXFSIZ));
s3c_hsotg_init_fifo(hsotg);
/* set the PLL on, remove the HNP/SRP and set the PHY */
writel(GUSBCFG_PHYIf16 | GUSBCFG_TOutCal(7) | (0x5 << 10),
hsotg->regs + GUSBCFG);
writel(using_dma(hsotg) ? GAHBCFG_DMAEn : 0x0,
hsotg->regs + GAHBCFG);
}
/**
* s3c_hsotg_udc_start - prepare the udc for work
* @gadget: The usb gadget state
* @driver: The usb gadget driver
*
* Perform initialization to prepare udc device and driver
* to work.
*/
static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
struct usb_gadget_driver *driver)
{
struct s3c_hsotg *hsotg = to_hsotg(gadget);
int ret;
if (!hsotg) {
printk(KERN_ERR "%s: called with no device\n", __func__);
return -ENODEV;
}
if (!driver) {
dev_err(hsotg->dev, "%s: no driver\n", __func__);
return -EINVAL;
}
if (driver->max_speed < USB_SPEED_FULL)
dev_err(hsotg->dev, "%s: bad speed\n", __func__);
if (!driver->setup) {
dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
return -EINVAL;
}
WARN_ON(hsotg->driver);
driver->driver.bus = NULL;
hsotg->driver = driver;
hsotg->gadget.dev.driver = &driver->driver;
hsotg->gadget.dev.of_node = hsotg->dev->of_node;
hsotg->gadget.dev.dma_mask = hsotg->dev->dma_mask;
hsotg->gadget.speed = USB_SPEED_UNKNOWN;
ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
hsotg->supplies);
if (ret) {
dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
goto err;
}
hsotg->last_rst = jiffies;
dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
return 0;
err:
hsotg->driver = NULL;
hsotg->gadget.dev.driver = NULL;
return ret;
}
/**
* s3c_hsotg_udc_stop - stop the udc
* @gadget: The usb gadget state
* @driver: The usb gadget driver
*
* Stop udc hw block and stay tunned for future transmissions
*/
static int s3c_hsotg_udc_stop(struct usb_gadget *gadget,
struct usb_gadget_driver *driver)
{
struct s3c_hsotg *hsotg = to_hsotg(gadget);
unsigned long flags = 0;
int ep;
if (!hsotg)
return -ENODEV;
if (!driver || driver != hsotg->driver || !driver->unbind)
return -EINVAL;
/* all endpoints should be shutdown */
for (ep = 0; ep < hsotg->num_of_eps; ep++)
s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
spin_lock_irqsave(&hsotg->lock, flags);
s3c_hsotg_phy_disable(hsotg);
regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
hsotg->driver = NULL;
hsotg->gadget.speed = USB_SPEED_UNKNOWN;
hsotg->gadget.dev.driver = NULL;
spin_unlock_irqrestore(&hsotg->lock, flags);
dev_info(hsotg->dev, "unregistered gadget driver '%s'\n",
driver->driver.name);
return 0;
}
/**
* s3c_hsotg_gadget_getframe - read the frame number
* @gadget: The usb gadget state
*
* Read the {micro} frame number
*/
static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
{
return s3c_hsotg_read_frameno(to_hsotg(gadget));
}
/**
* s3c_hsotg_pullup - connect/disconnect the USB PHY
* @gadget: The usb gadget state
* @is_on: Current state of the USB PHY
*
* Connect/Disconnect the USB PHY pullup
*/
static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
{
struct s3c_hsotg *hsotg = to_hsotg(gadget);
unsigned long flags = 0;
dev_dbg(hsotg->dev, "%s: is_in: %d\n", __func__, is_on);
spin_lock_irqsave(&hsotg->lock, flags);
if (is_on) {
s3c_hsotg_phy_enable(hsotg);
s3c_hsotg_core_init(hsotg);
} else {
s3c_hsotg_disconnect(hsotg);
s3c_hsotg_phy_disable(hsotg);
}
hsotg->gadget.speed = USB_SPEED_UNKNOWN;
spin_unlock_irqrestore(&hsotg->lock, flags);
return 0;
}
static struct usb_gadget_ops s3c_hsotg_gadget_ops = {
.get_frame = s3c_hsotg_gadget_getframe,
.udc_start = s3c_hsotg_udc_start,
.udc_stop = s3c_hsotg_udc_stop,
.pullup = s3c_hsotg_pullup,
};
/**
* s3c_hsotg_initep - initialise a single endpoint
* @hsotg: The device state.
* @hs_ep: The endpoint to be initialised.
* @epnum: The endpoint number
*
* Initialise the given endpoint (as part of the probe and device state
* creation) to give to the gadget driver. Setup the endpoint name, any
* direction information and other state that may be required.
*/
static void __devinit s3c_hsotg_initep(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *hs_ep,
int epnum)
{
u32 ptxfifo;
char *dir;
if (epnum == 0)
dir = "";
else if ((epnum % 2) == 0) {
dir = "out";
} else {
dir = "in";
hs_ep->dir_in = 1;
}
hs_ep->index = epnum;
snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
INIT_LIST_HEAD(&hs_ep->queue);
INIT_LIST_HEAD(&hs_ep->ep.ep_list);
/* add to the list of endpoints known by the gadget driver */
if (epnum)
list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
hs_ep->parent = hsotg;
hs_ep->ep.name = hs_ep->name;
hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT;
hs_ep->ep.ops = &s3c_hsotg_ep_ops;
/*
* Read the FIFO size for the Periodic TX FIFO, even if we're
* an OUT endpoint, we may as well do this if in future the
* code is changed to make each endpoint's direction changeable.
*/
ptxfifo = readl(hsotg->regs + DPTXFSIZn(epnum));
hs_ep->fifo_size = DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4;
/*
* if we're using dma, we need to set the next-endpoint pointer
* to be something valid.
*/
if (using_dma(hsotg)) {
u32 next = DxEPCTL_NextEp((epnum + 1) % 15);
writel(next, hsotg->regs + DIEPCTL(epnum));
writel(next, hsotg->regs + DOEPCTL(epnum));
}
}
/**
* s3c_hsotg_hw_cfg - read HW configuration registers
* @param: The device state
*
* Read the USB core HW configuration registers
*/
static void s3c_hsotg_hw_cfg(struct s3c_hsotg *hsotg)
{
u32 cfg2, cfg4;
/* check hardware configuration */
cfg2 = readl(hsotg->regs + 0x48);
hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
dev_info(hsotg->dev, "EPs:%d\n", hsotg->num_of_eps);
cfg4 = readl(hsotg->regs + 0x50);
hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
dev_info(hsotg->dev, "%s fifos\n",
hsotg->dedicated_fifos ? "dedicated" : "shared");
}
/**
* s3c_hsotg_dump - dump state of the udc
* @param: The device state
*/
static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
{
#ifdef DEBUG
struct device *dev = hsotg->dev;
void __iomem *regs = hsotg->regs;
u32 val;
int idx;
dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
readl(regs + DCFG), readl(regs + DCTL),
readl(regs + DIEPMSK));
dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
readl(regs + GAHBCFG), readl(regs + 0x44));
dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
/* show periodic fifo settings */
for (idx = 1; idx <= 15; idx++) {
val = readl(regs + DPTXFSIZn(idx));
dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
val >> DPTXFSIZn_DPTxFSize_SHIFT,
val & DPTXFSIZn_DPTxFStAddr_MASK);
}
for (idx = 0; idx < 15; idx++) {
dev_info(dev,
"ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
readl(regs + DIEPCTL(idx)),
readl(regs + DIEPTSIZ(idx)),
readl(regs + DIEPDMA(idx)));
val = readl(regs + DOEPCTL(idx));
dev_info(dev,
"ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
idx, readl(regs + DOEPCTL(idx)),
readl(regs + DOEPTSIZ(idx)),
readl(regs + DOEPDMA(idx)));
}
dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
#endif
}
/**
* state_show - debugfs: show overall driver and device state.
* @seq: The seq file to write to.
* @v: Unused parameter.
*
* This debugfs entry shows the overall state of the hardware and
* some general information about each of the endpoints available
* to the system.
*/
static int state_show(struct seq_file *seq, void *v)
{
struct s3c_hsotg *hsotg = seq->private;
void __iomem *regs = hsotg->regs;
int idx;
seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
readl(regs + DCFG),
readl(regs + DCTL),
readl(regs + DSTS));
seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
readl(regs + DIEPMSK), readl(regs + DOEPMSK));
seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
readl(regs + GINTMSK),
readl(regs + GINTSTS));
seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
readl(regs + DAINTMSK),
readl(regs + DAINT));
seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
readl(regs + GNPTXSTS),
readl(regs + GRXSTSR));
seq_printf(seq, "\nEndpoint status:\n");
for (idx = 0; idx < 15; idx++) {
u32 in, out;
in = readl(regs + DIEPCTL(idx));
out = readl(regs + DOEPCTL(idx));
seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
idx, in, out);
in = readl(regs + DIEPTSIZ(idx));
out = readl(regs + DOEPTSIZ(idx));
seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
in, out);
seq_printf(seq, "\n");
}
return 0;
}
static int state_open(struct inode *inode, struct file *file)
{
return single_open(file, state_show, inode->i_private);
}
static const struct file_operations state_fops = {
.owner = THIS_MODULE,
.open = state_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
/**
* fifo_show - debugfs: show the fifo information
* @seq: The seq_file to write data to.
* @v: Unused parameter.
*
* Show the FIFO information for the overall fifo and all the
* periodic transmission FIFOs.
*/
static int fifo_show(struct seq_file *seq, void *v)
{
struct s3c_hsotg *hsotg = seq->private;
void __iomem *regs = hsotg->regs;
u32 val;
int idx;
seq_printf(seq, "Non-periodic FIFOs:\n");
seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
val = readl(regs + GNPTXFSIZ);
seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
val >> GNPTXFSIZ_NPTxFDep_SHIFT,
val & GNPTXFSIZ_NPTxFStAddr_MASK);
seq_printf(seq, "\nPeriodic TXFIFOs:\n");
for (idx = 1; idx <= 15; idx++) {
val = readl(regs + DPTXFSIZn(idx));
seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
val >> DPTXFSIZn_DPTxFSize_SHIFT,
val & DPTXFSIZn_DPTxFStAddr_MASK);
}
return 0;
}
static int fifo_open(struct inode *inode, struct file *file)
{
return single_open(file, fifo_show, inode->i_private);
}
static const struct file_operations fifo_fops = {
.owner = THIS_MODULE,
.open = fifo_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const char *decode_direction(int is_in)
{
return is_in ? "in" : "out";
}
/**
* ep_show - debugfs: show the state of an endpoint.
* @seq: The seq_file to write data to.
* @v: Unused parameter.
*
* This debugfs entry shows the state of the given endpoint (one is
* registered for each available).
*/
static int ep_show(struct seq_file *seq, void *v)
{
struct s3c_hsotg_ep *ep = seq->private;
struct s3c_hsotg *hsotg = ep->parent;
struct s3c_hsotg_req *req;
void __iomem *regs = hsotg->regs;
int index = ep->index;
int show_limit = 15;
unsigned long flags;
seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n",
ep->index, ep->ep.name, decode_direction(ep->dir_in));
/* first show the register state */
seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
readl(regs + DIEPCTL(index)),
readl(regs + DOEPCTL(index)));
seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
readl(regs + DIEPDMA(index)),
readl(regs + DOEPDMA(index)));
seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
readl(regs + DIEPINT(index)),
readl(regs + DOEPINT(index)));
seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
readl(regs + DIEPTSIZ(index)),
readl(regs + DOEPTSIZ(index)));
seq_printf(seq, "\n");
seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
seq_printf(seq, "total_data=%ld\n", ep->total_data);
seq_printf(seq, "request list (%p,%p):\n",
ep->queue.next, ep->queue.prev);
spin_lock_irqsave(&hsotg->lock, flags);
list_for_each_entry(req, &ep->queue, queue) {
if (--show_limit < 0) {
seq_printf(seq, "not showing more requests...\n");
break;
}
seq_printf(seq, "%c req %p: %d bytes @%p, ",
req == ep->req ? '*' : ' ',
req, req->req.length, req->req.buf);
seq_printf(seq, "%d done, res %d\n",
req->req.actual, req->req.status);
}
spin_unlock_irqrestore(&hsotg->lock, flags);
return 0;
}
static int ep_open(struct inode *inode, struct file *file)
{
return single_open(file, ep_show, inode->i_private);
}
static const struct file_operations ep_fops = {
.owner = THIS_MODULE,
.open = ep_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
/**
* s3c_hsotg_create_debug - create debugfs directory and files
* @hsotg: The driver state
*
* Create the debugfs files to allow the user to get information
* about the state of the system. The directory name is created
* with the same name as the device itself, in case we end up
* with multiple blocks in future systems.
*/
static void __devinit s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
{
struct dentry *root;
unsigned epidx;
root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
hsotg->debug_root = root;
if (IS_ERR(root)) {
dev_err(hsotg->dev, "cannot create debug root\n");
return;
}
/* create general state file */
hsotg->debug_file = debugfs_create_file("state", 0444, root,
hsotg, &state_fops);
if (IS_ERR(hsotg->debug_file))
dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
hsotg, &fifo_fops);
if (IS_ERR(hsotg->debug_fifo))
dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
/* create one file for each endpoint */
for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
ep->debugfs = debugfs_create_file(ep->name, 0444,
root, ep, &ep_fops);
if (IS_ERR(ep->debugfs))
dev_err(hsotg->dev, "failed to create %s debug file\n",
ep->name);
}
}
/**
* s3c_hsotg_delete_debug - cleanup debugfs entries
* @hsotg: The driver state
*
* Cleanup (remove) the debugfs files for use on module exit.
*/
static void __devexit s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
{
unsigned epidx;
for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
debugfs_remove(ep->debugfs);
}
debugfs_remove(hsotg->debug_file);
debugfs_remove(hsotg->debug_fifo);
debugfs_remove(hsotg->debug_root);
}
/**
* s3c_hsotg_release - release callback for hsotg device
* @dev: Device to for which release is called
*/
static void s3c_hsotg_release(struct device *dev)
{
struct s3c_hsotg *hsotg = dev_get_drvdata(dev);
kfree(hsotg);
}
/**
* s3c_hsotg_probe - probe function for hsotg driver
* @pdev: The platform information for the driver
*/
static int __devinit s3c_hsotg_probe(struct platform_device *pdev)
{
struct s3c_hsotg_plat *plat = pdev->dev.platform_data;
struct device *dev = &pdev->dev;
struct s3c_hsotg_ep *eps;
struct s3c_hsotg *hsotg;
struct resource *res;
int epnum;
int ret;
int i;
plat = pdev->dev.platform_data;
if (!plat) {
dev_err(&pdev->dev, "no platform data defined\n");
return -EINVAL;
}
hsotg = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsotg), GFP_KERNEL);
if (!hsotg) {
dev_err(dev, "cannot get memory\n");
return -ENOMEM;
}
hsotg->dev = dev;
hsotg->plat = plat;
hsotg->clk = clk_get(&pdev->dev, "otg");
if (IS_ERR(hsotg->clk)) {
dev_err(dev, "cannot get otg clock\n");
return PTR_ERR(hsotg->clk);
}
platform_set_drvdata(pdev, hsotg);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
hsotg->regs = devm_request_and_ioremap(&pdev->dev, res);
if (!hsotg->regs) {
dev_err(dev, "cannot map registers\n");
ret = -ENXIO;
goto err_clk;
}
ret = platform_get_irq(pdev, 0);
if (ret < 0) {
dev_err(dev, "cannot find IRQ\n");
goto err_clk;
}
spin_lock_init(&hsotg->lock);
hsotg->irq = ret;
ret = devm_request_irq(&pdev->dev, hsotg->irq, s3c_hsotg_irq, 0,
dev_name(dev), hsotg);
if (ret < 0) {
dev_err(dev, "cannot claim IRQ\n");
goto err_clk;
}
dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
device_initialize(&hsotg->gadget.dev);
dev_set_name(&hsotg->gadget.dev, "gadget");
hsotg->gadget.max_speed = USB_SPEED_HIGH;
hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
hsotg->gadget.name = dev_name(dev);
hsotg->gadget.dev.parent = dev;
hsotg->gadget.dev.dma_mask = dev->dma_mask;
hsotg->gadget.dev.release = s3c_hsotg_release;
/* reset the system */
clk_prepare_enable(hsotg->clk);
/* regulators */
for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];
ret = regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
hsotg->supplies);
if (ret) {
dev_err(dev, "failed to request supplies: %d\n", ret);
goto err_clk;
}
ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
hsotg->supplies);
if (ret) {
dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
goto err_supplies;
}
/* usb phy enable */
s3c_hsotg_phy_enable(hsotg);
s3c_hsotg_corereset(hsotg);
s3c_hsotg_init(hsotg);
s3c_hsotg_hw_cfg(hsotg);
/* hsotg->num_of_eps holds number of EPs other than ep0 */
if (hsotg->num_of_eps == 0) {
dev_err(dev, "wrong number of EPs (zero)\n");
ret = -EINVAL;
goto err_supplies;
}
eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
GFP_KERNEL);
if (!eps) {
dev_err(dev, "cannot get memory\n");
ret = -ENOMEM;
goto err_supplies;
}
hsotg->eps = eps;
/* setup endpoint information */
INIT_LIST_HEAD(&hsotg->gadget.ep_list);
hsotg->gadget.ep0 = &hsotg->eps[0].ep;
/* allocate EP0 request */
hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
GFP_KERNEL);
if (!hsotg->ctrl_req) {
dev_err(dev, "failed to allocate ctrl req\n");
ret = -ENOMEM;
goto err_ep_mem;
}
/* initialise the endpoints now the core has been initialised */
for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
/* disable power and clock */
ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
hsotg->supplies);
if (ret) {
dev_err(hsotg->dev, "failed to disable supplies: %d\n", ret);
goto err_ep_mem;
}
s3c_hsotg_phy_disable(hsotg);
ret = device_add(&hsotg->gadget.dev);
if (ret) {
put_device(&hsotg->gadget.dev);
goto err_ep_mem;
}
ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
if (ret)
goto err_ep_mem;
s3c_hsotg_create_debug(hsotg);
s3c_hsotg_dump(hsotg);
return 0;
err_ep_mem:
kfree(eps);
err_supplies:
s3c_hsotg_phy_disable(hsotg);
regulator_bulk_free(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
err_clk:
clk_disable_unprepare(hsotg->clk);
clk_put(hsotg->clk);
return ret;
}
/**
* s3c_hsotg_remove - remove function for hsotg driver
* @pdev: The platform information for the driver
*/
static int __devexit s3c_hsotg_remove(struct platform_device *pdev)
{
struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
usb_del_gadget_udc(&hsotg->gadget);
s3c_hsotg_delete_debug(hsotg);
if (hsotg->driver) {
/* should have been done already by driver model core */
usb_gadget_unregister_driver(hsotg->driver);
}
s3c_hsotg_phy_disable(hsotg);
regulator_bulk_free(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
clk_disable_unprepare(hsotg->clk);
clk_put(hsotg->clk);
device_unregister(&hsotg->gadget.dev);
return 0;
}
#if 1
#define s3c_hsotg_suspend NULL
#define s3c_hsotg_resume NULL
#endif
static struct platform_driver s3c_hsotg_driver = {
.driver = {
.name = "s3c-hsotg",
.owner = THIS_MODULE,
},
.probe = s3c_hsotg_probe,
.remove = __devexit_p(s3c_hsotg_remove),
.suspend = s3c_hsotg_suspend,
.resume = s3c_hsotg_resume,
};
module_platform_driver(s3c_hsotg_driver);
MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:s3c-hsotg");